ebook img

Applications of Machine Learning in Wireless Communications PDF

492 Pages·2019·25.412 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Applications of Machine Learning in Wireless Communications

IETTELECOMMUNICATIONSSERIES81 Applications of Machine Learning in Wireless Communications Othervolumesinthisseries: Volume9 PhaseNoiseinSignalSourcesW.P.Robins Volume12 SpreadSpectruminCommunicationsR.SkaugandJ.F.Hjelmstad Volume13 AdvancedSignalProcessingD.J.Creasey(Editor) Volume19 TelecommunicationsTraffic,TariffsandCostsR.E.Farr Volume20 AnIntroductiontoSatelliteCommunicationsD.I.Dalgleish Volume26 Common-ChannelSignallingR.J.Manterfield Volume28 VerySmallApertureTerminals(VSATs)J.L.Everett(Editor) Volume29 ATM:ThebroadbandtelecommunicationssolutionL.G.CuthbertandJ.C.Sapanel Volume31 DataCommunicationsandNetworks,3rdEditionR.L.Brewster(Editor) Volume32 AnalogueOpticalFibreCommunicationsB.Wilson,Z.GhassemlooyandI.Z.Darwazeh (Editors) Volume33 ModernPersonalRadioSystemsR.C.V.Macario(Editor) Volume34 DigitalBroadcastingP.Dambacher Volume35 Principles of Performance Engineering for Telecommunication and Information SystemsM.Ghanbari,C.J.Hughes,M.C.SinclairandJ.P.Eade Volume36 TelecommunicationNetworks,2ndEditionJ.E.Flood(Editor) Volume37 OpticalCommunicationReceiverDesignS.B.Alexander Volume38 SatelliteCommunicationSystems,3rdEditionB.G.Evans(Editor) Volume40 SpreadSpectruminMobileCommunicationO.Berg,T.Berg,J.F.Hjelmstad,S.Haavik andR.Skaug Volume41 WorldTelecommunicationsEconomicsJ.J.Wheatley Volume43 TelecommunicationsSignallingR.J.Manterfield Volume44 DigitalSignalFiltering,AnalysisandRestorationJ.Jan Volume45 RadioSpectrumManagement,2ndEditionD.J.Withers Volume46 IntelligentNetworks:PrinciplesandapplicationsJ.R.Anderson Volume47 LocalAccessNetworkTechnologiesP.France Volume48 TelecommunicationsQualityofServiceManagementA.P.Oodan(Editor) Volume49 StandardCodecs:ImagecompressiontoadvancedvideocodingM.Ghanbari Volume50 TelecommunicationsRegulationJ.Buckley Volume51 SecurityforMobilityC.Mitchell(Editor) Volume52 UnderstandingTelecommunicationsNetworksA.Valdar Volume53 VideoCompressionSystems:FromfirstprinciplestoconcatenatedcodecsA.Bock Volume54 StandardCodecs:Imagecompressiontoadvancedvideocoding,3rdEdition M.Ghanbari Volume59 DynamicAdHocNetworksH.RashvandandH.Chao(Editors) Volume60 UnderstandingTelecommunicationsBusinessA.ValdarandI.Morfett Volume65 AdvancesinBody-CentricWirelessCommunication:Applicationsandstate-of-the- artQ.H.Abbasi,M.U.Rehman,K.QaraqeandA.Alomainy(Editors) Volume67 ManagingtheInternetofThings:Architectures,theoriesandapplicationsJ.Huang andK.Hua(Editors) Volume68 AdvancedRelayTechnologiesinNextGenerationWirelessCommunications I.KrikidisandG.Zheng Volume69 5GWirelessTechnologiesA.Alexiou(Editor) Volume70 CloudandFogComputingin5GMobileNetworksE.Markakis,G.Mastorakis, C.X.MavromoustakisandE.Pallis(Editors) Volume71 UnderstandingTelecommunicationsNetworks,2ndEditionA.Valdar Volume72 IntroductiontoDigitalWirelessCommunicationsHong-ChuanYang Volume73 NetworkasaServiceforNextGenerationInternetQ.DuanandS.Wang(Editors) Volume74 Access,FronthaulandBackhaulNetworksfor5G&BeyondM.A.Imran,S.A.R.Zaidi andM.Z.Shakir(Editors) Volume76 TrustedCommunicationswithPhysicalLayerSecurityfor5GandBeyond T.Q.Duong,X.ZhouandH.V.Poor(Editors) Volume77 NetworkDesign,ModellingandPerformanceEvaluationQ.Vien Volume78 PrinciplesandApplicationsofFreeSpaceOpticalCommunicationsA.K.Majumdar, Z.Ghassemlooy,A.A.B.Raj(Editors) Volume79 SatelliteCommunicationsinthe5GEraS.K.Sharma,S.ChatzinotasandD.Arapoglou Volume80 TransceiverandSystemDesignforDigitalCommunications,5thEditionScott R.Bullock Volume905 ISDNApplicationsinEducationandTrainingR.MasonandP.D.Bacsich Applications of Machine Learning in Wireless Communications Edited by Ruisi He and Zhiguo Ding The Institution of Engineering and Technology PublishedbyTheInstitutionofEngineeringandTechnology,London,UnitedKingdom TheInstitutionofEngineeringandTechnologyisregisteredasaCharityinEngland&Wales (no.211014)andScotland(no.SC038698). ©TheInstitutionofEngineeringandTechnology2019 Firstpublished2019 ThispublicationiscopyrightundertheBerneConventionandtheUniversalCopyright Convention.Allrightsreserved.Apartfromanyfairdealingforthepurposesofresearch orprivatestudy,orcriticismorreview,aspermittedundertheCopyright,Designsand PatentsAct1988,thispublicationmaybereproduced,storedortransmitted,inany formorbyanymeans,onlywiththepriorpermissioninwritingofthepublishers,orin thecaseofreprographicreproductioninaccordancewiththetermsoflicencesissued bytheCopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethose termsshouldbesenttothepublisherattheundermentionedaddress: TheInstitutionofEngineeringandTechnology MichaelFaradayHouse SixHillsWay,Stevenage Herts,SG12AY,UnitedKingdom www.theiet.org Whiletheauthorsandpublisherbelievethattheinformationandguidancegiveninthis workarecorrect,allpartiesmustrelyupontheirownskillandjudgementwhenmaking useofthem.Neithertheauthorsnorpublisherassumesanyliabilitytoanyoneforany lossordamagecausedbyanyerrororomissioninthework,whethersuchanerroror omissionistheresultofnegligenceoranyothercause.Anyandallsuchliability isdisclaimed. Themoralrightsoftheauthorstobeidentifiedasauthorsofthisworkhavebeen assertedbytheminaccordancewiththeCopyright,DesignsandPatentsAct1988. BritishLibraryCataloguinginPublicationData AcataloguerecordforthisproductisavailablefromtheBritishLibrary ISBN978-1-78561-657-0(hardback) ISBN978-1-78561-658-7(PDF) TypesetinIndiabyMPSLimited PrintedintheUKbyCPIGroup(UK)Ltd,Croydon Contents Foreword xiii 1 Introductionofmachinelearning 1 Yangli-aoGeng,MingLiu,QingyongLi,andRuisiHe 1.1 Supervisedlearning 1 1.1.1 k-Nearestneighboursmethod 2 1.1.2 Decisiontree 4 1.1.3 Perceptron 9 1.1.4 Summaryofsupervisedlearning 19 1.2 Unsupervisedlearning 20 1.2.1 k-Means 21 1.2.2 Density-basedspatialclusteringofapplicationswithnoise 23 1.2.3 Clusteringbyfastsearchandfindofdensitypeaks 24 1.2.4 Relativecoremergeclusteringalgorithm 27 1.2.5 GaussianmixturemodelsandEMalgorithm 29 1.2.6 Principalcomponentanalysis 34 1.2.7 Autoencoder 37 1.2.8 Summaryofunsupervisedlearning 40 1.3 Reinforcementlearning 41 1.3.1 Markovdecisionprocess 42 1.3.2 Model-basedmethods 44 1.3.3 Model-freemethods 46 1.3.4 Deepreinforcementlearning 50 1.3.5 Summaryofreinforcementlearning 53 1.4 Summary 56 Acknowledgement 57 References 57 2 Machine-learning-enabledchannelmodeling 67 ChenHuang,RuisiHe,AndreasF.Molisch,ZhangduiZhong,andBoAi 2.1 Introduction 67 2.2 Propagationscenariosclassification 69 2.2.1 Designofinputvector 70 2.2.2 Trainingandadjustment 71 2.3 Machine-learning-basedMPCclustering 72 2.3.1 KPowerMeans-basedclustering 73 2.3.2 Sparsity-basedclustering 76 vi Applicationsofmachinelearninginwirelesscommunications 2.3.3 Kernel-power-density-basedclustering 78 2.3.4 Time-cluster-spatial-lobe(TCSL)-basedclustering 82 2.3.5 Target-recognition-basedclustering 82 2.3.6 Improvedsubtractionforcluster-centroidinitialization 84 2.3.7 MR-DMSclustering 86 2.4 AutomaticMPCtrackingalgorithms 89 2.4.1 MCD-basedtracking 89 2.4.2 Two-waymatchingtracking 90 2.4.3 Kalmanfilter-basedtracking 91 2.4.4 ExtendedKalmanfilter-basedparametersestimation andtracking 92 2.4.5 Probability-basedtracking 93 2.5 Deeplearning-basedchannelmodelingapproach 95 2.5.1 BP-basedneuralnetworkforamplitudemodeling 96 2.5.2 Developmentofneural-network-basedchannelmodeling 96 2.5.3 RBF-basedneuralnetworkforwirelesschannelmodeling 99 2.5.4 Algorithmimprovementbasedonphysicalinterpretation 101 2.6 Conclusion 103 References 103 3 Channelpredictionbasedonmachine-learningalgorithms 109 XueJiangandZhimengZhong 3.1 Introduction 109 3.2 Channelmeasurements 110 3.3 Learning-basedreconstructionalgorithms 111 3.3.1 Batchalgorithms 111 3.3.2 Onlinealgorithms 124 3.4 Optimizedsampling 126 3.4.1 Activelearning 126 3.4.2 Channelpredictionresultswithpath-lossmeasurements 127 3.5 Conclusion 130 References 131 4 Machine-learning-basedchannelestimation 135 YueZhu,GongpuWang,andFeifeiGao 4.1 Channelmodel 137 4.1.1 Channelinputandoutput 138 4.2 Channelestimationinpoint-to-pointsystems 139 4.2.1 Estimationoffrequency-selectivechannels 139 4.3 Deep-learning-basedchannelestimation 140 4.3.1 Historyofdeeplearning 140 4.3.2 Deep-learning-based channel estimator for orthogonal frequencydivisionmultiplexing(OFDM)systems 142 Contents vii 4.3.3 DeeplearningformassiveMIMOCSIfeedback 145 4.4 EM-basedchannelestimator 149 4.4.1 BasicprinciplesofEMalgorithm 149 4.4.2 AnexampleofchannelestimationwithEMalgorithm 152 4.5 Conclusionandopenproblems 156 References 157 5 Signalidentificationincognitiveradiosusingmachinelearning 159 JingwenZhangandFanggangWang 5.1 Signalidentificationincognitiveradios 159 5.2 Modulationclassificationviamachinelearning 161 5.2.1 Modulationclassificationinmultipathfadingchannelsvia expectation–maximization 162 5.2.2 Continuousphasemodulationclassificationinfading channelsviaBaum–Welchalgorithm 170 5.3 Specificemitteridentificationviamachinelearning 178 5.3.1 Systemmodel 179 5.3.2 Featureextraction 181 5.3.3 IdentificationprocedureviaSVM 185 5.3.4 Numericalresults 189 5.3.5 Conclusions 194 References 195 6 Compressivesensingforwirelesssensornetworks 197 WeiChen 6.1 Sparsesignalrepresentation 198 6.1.1 Signalrepresentation 198 6.1.2 Representationerror 199 6.2 CSandsignalrecovery 200 6.2.1 CSmodel 200 6.2.2 Conditionsfortheequivalentsensingmatrix 202 6.2.3 Numericalalgorithmsforsparserecovery 204 6.3 OptimizedsensingmatrixdesignforCS 206 6.3.1 Elad’smethod 206 6.3.2 Duarte-CarvajalinoandSapiro’smethod 208 6.3.3 Xuetal.’smethod 209 6.3.4 Chenetal.’smethod 210 6.4 CS-basedWSNs 211 6.4.1 Robustdatatransmission 211 6.4.2 Compressivedatagathering 213 6.4.3 Sparseeventsdetection 214 6.4.4 Reduced-dimensionmultipleaccess 216 6.4.5 Localization 217 6.5 Summary 218 References 218 viii Applicationsofmachinelearninginwirelesscommunications 7 Reinforcementlearning-basedchannelsharinginwireless vehicularnetworks 225 AndreasPressas,ZhengguoSheng,andFalahAli 7.1 Introduction 225 7.1.1 Motivation 226 7.1.2 Chapterorganization 227 7.2 Connectedvehiclesarchitecture 227 7.2.1 Electroniccontrolunits 227 7.2.2 Automotivesensors 228 7.2.3 Intra-vehiclecommunications 228 7.2.4 Vehicularadhocnetworks 228 7.2.5 Networkdomains 229 7.2.6 Typesofcommunication 229 7.3 Dedicatedshortrangecommunication 231 7.3.1 IEEE802.11p 231 7.3.2 WAVEShortMessageProtocol 232 7.3.3 Controlchannelbehaviour 233 7.3.4 Messagetypes 234 7.4 TheIEEE802.11pmediumaccesscontrol 234 7.4.1 Distributedcoordinationfunction 234 7.4.2 Basicaccessmechanism 235 7.4.3 Binaryexponentialbackoff 236 7.4.4 RTS/CTShandshake 237 7.4.5 DCFforbroadcasting 238 7.4.6 Enhanceddistributedchannelaccess 238 7.5 Networktrafficcongestioninwirelessvehicularnetworks 239 7.5.1 Transmissionpowercontrol 240 7.5.2 Transmissionratecontrol 240 7.5.3 Adaptivebackoffalgorithms 240 7.6 Reinforcementlearning-basedchannelaccesscontrol 241 7.6.1 Reviewoflearningchannelaccesscontrolprotocols 241 7.6.2 Markovdecisionprocesses 242 7.6.3 Q-learning 242 7.7 Q-learningMACprotocol 243 7.7.1 Theactionselectiondilemma 243 7.7.2 Convergencerequirements 244 7.7.3 Aprioriapproximatecontroller 244 7.7.4 Onlinecontrolleraugmentation 246 7.7.5 Implementationdetails 247 7.8 VANETsimulationmodelling 248 7.8.1 Networksimulator 248 7.8.2 Mobilitysimulator 249 7.8.3 Implementation 249 7.9 Protocolperformance 251 7.9.1 Simulationsetup 251 Contents ix 7.9.2 Effectofincreasednetworkdensity 252 7.9.3 Effectofdatarate 254 7.9.4 Effectofmulti-hop 255 7.10 Conclusion 256 References 256 8 Machine-learning-basedperceptualvideocodinginwireless multimediacommunications 261 ShengxiLi,MaiXu,YufanLiu,andZhiguoDing 8.1 Background 261 8.2 Literaturereviewonperceptualvideocoding 264 8.2.1 Perceptualmodels 264 8.2.2 Incorporationinvideocoding 265 8.3 MinimizingperceptualdistortionwiththeRTEmethod 267 8.3.1 RatecontrolimplementationonHEVC-MSP 267 8.3.2 Optimizationformulationonperceptualdistortion 269 8.3.3 RTEmethodforsolvingtheoptimizationformulation 270 8.3.4 Bitreallocationformaintainingoptimization 274 8.4 Computationalcomplexityanalysis 275 8.4.1 Theoreticalanalysis 276 8.4.2 Numericalanalysis 278 8.5 Experimentalresultsonsingleimagecoding 279 8.5.1 Testandparametersettings 279 8.5.2 Assessmentonrate–distortionperformance 281 8.5.3 AssessmentofBD-ratesavings 287 8.5.4 Assessmentofcontrolaccuracy 289 8.5.5 Generalizationtest 290 8.6 Experimentalresultsonvideocoding 292 8.6.1 Experiment 296 8.7 Conclusion 300 References 302 9 Machine-learning-basedsaliencydetectionanditsvideodecoding applicationinwirelessmultimediacommunications 307 MaiXu,LaiJiang,andZhiguoDing 9.1 Introduction 307 9.2 Relatedworkonvideo-saliencydetection 310 9.2.1 Heuristicvideo-saliencydetection 310 9.2.2 Data-drivenvideo-saliencydetection 311 9.3 Databaseandanalysis 312 9.3.1 Databaseofeyetrackingonrawvideos 312 9.3.2 Analysisonoureye-trackingdatabase 313 9.3.3 Observationsfromoureye-trackingdatabase 315 9.4 HEVCfeaturesforsaliencydetection 317 9.4.1 BasicHEVCfeatures 317

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.