APPLICATIONS OF DEGREE THEORY TO DYNAMICAL SYSTEMS WITH SYMMETRY (WITH SPECIAL FOCUS ON COMPUTATIONAL ASPECTS AND ALGEBRAIC CHALLENGES) by Hao-pin Wu APPROVED BY SUPERVISORY COMMITTEE: Zalman Balanov, Co-Chair Wieslaw Krawcewicz, Co-Chair Dmitry Rachinskiy Qingwen Hu Copyright ⃝c 2018 Hao-pin Wu All rights reserved To My Family APPLICATIONS OF DEGREE THEORY TO DYNAMICAL SYSTEMS WITH SYMMETRY (WITH SPECIAL FOCUS ON COMPUTATIONAL ASPECTS AND ALGEBRAIC CHALLENGES) by HAO-PIN WU, MS DISSERTATION Presented to the Faculty of The University of Texas at Dallas in Partial Ful(cid:12)llment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN MATHEMATICS THE UNIVERSITY OF TEXAS AT DALLAS May 2018 ACKNOWLEDGMENTS I would like to thank Professor Balanov and Professor Krawcewicz for their advice and support throughout the PhD program; it would not be possible for me to accomplish what I have in my dissertation without their help. Thank to Professor Rachinskiy and Professor Hu for sharing their insights and valuable ideas with me from time to time; their help is important to my research work. For the research work in Chapter 4 of my dissertation, I want to thank Profosser Muzychuk; it is a precious experience for me to work with such an accomplished mathematician. Also, thanks to Dr. Jafeh and Dr. Li; the efforts they made in their research eventually became the foundation of my work. Finally, I want to thank my family and all the friends I met in UTD for their support on my pursuit of the PhD degree. April 2018 v APPLICATIONS OF DEGREE THEORY TO DYNAMICAL SYSTEMS WITH SYMMETRY (WITH SPECIAL FOCUS ON COMPUTATIONAL ASPECTS AND ALGEBRAIC CHALLENGES) Hao-pin Wu, PhD The University of Texas at Dallas, 2018 Supervising Professors: Zalman Balanov, Co-Chair Wieslaw Krawcewicz, Co-Chair The study of dynamical systems with symmetry usually deals with the impact of symmetries (described by a certain group G) on the existence, multiplicity, stability and topological structure of solutions to the system, (local/global) bifurcation phenomena, etc. Among differentapproaches, degreetheory(includingBrouwerdegreeandequivariantdegree), which involves analysis, topology and algebra, provides an effective tool for the study. In our research, we focus on three motivating problems related to dynamical systems with symmetry: (a) bifurcation of periodic solutions in symmetric reversible FDEs; (b) existence ofperiodicsolutionstoequivariantHamiltoniansystems; (c)existenceofperiodicsolutionsto systems homogeneous at in(cid:12)nity. In Problem (a), equivariant degree with no free parameters provides us with the complete description of bifurcating branches of 2(cid:25)-periodic solutions to reversible systems. In Problem (b), we can predict various symmetric vibrational modes of the fullerene molecule C using gradient degree. The study of Problem (c) leads to 60 several results in algebra; two important results among them are (i) a characterization of the class of (cid:12)nite solvable groups in terms of lengths of non-trivial orbits in irreducible vi representations, and (ii) the existence of an equivariant quadratic map between two non- equivalent (n (cid:0) 1)-dimensional S -representation spheres (n is odd). Finally, as the result n of developing computational tools for equivariant degree, we present the related algorithms and examples. vii TABLE OF CONTENTS ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation and Historical Remarks . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Bifurcation of Periodic Solutions in Symmetric Reversible FDEs . . . 1 1.1.2 Existence of Periodic Solutions to Equivariant Hamiltonian Systems . 3 1.1.3 Existence of Periodic Solutions to Systems Homogeneous at In(cid:12)nity . 3 1.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Brouwer Degree in the Presence of Symmetries . . . . . . . . . . . . . 4 1.2.2 The Equivariant Degree . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Algebraic Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Computation of Equivariant Degrees . . . . . . . . . . . . . . . . . . 6 1.3.2 Solvable Groups and the Existence of Equivariant Quadratic Maps . . 7 1.4 Summary of Results and Overview . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.1 Bifurcation of Periodic Solutions in Symmetric Reversible FDEs . . . 8 1.4.2 Existence of Periodic Solutions to Equivariant Hamiltonian Systems . 8 1.4.3 Existence of Periodic Solutions to Systems Homogeneous at In(cid:12)nity . 9 1.4.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 CHAPTER2 BIFURCATIONOFSPACEPERIODICSOLUTIONSINSYMMETRIC REVERSIBLE FDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Equivariant Jargon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Subgroups in Direct Product of Groups G (cid:2)G . . . . . . . . . . . . 18 1 2 2.2.3 ((cid:0)(cid:2)O(2))-Representations . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.4 Admissible G-Pairs and Burnside Ring A(G) . . . . . . . . . . . . . . 22 viii 2.2.5 Equivariant Degree without Parameter . . . . . . . . . . . . . . . . . 24 2.3 Assumptions and Fixed-Point Problem Reformulation . . . . . . . . . . . . . 27 2.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.2 G-Equivariant Operator Reformulation of (2.1) in Functional Spaces . 29 2.4 ((cid:0)(cid:2)O(2))-Degree Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.1 Linearization and Necessary Condition for the Bifurcation . . . . . . 32 2.4.2 Sufficient Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.3 Computation of !((cid:11) ) . . . . . . . . . . . . . . . . . . . . . . . . . . 38 o 2.5 Computation of !((cid:11) ): Examples . . . . . . . . . . . . . . . . . . . . . . . . 41 0 2.5.1 Space-Reversal Symmetry for Second Order DDEs and IDEs . . . . . 41 2.5.2 Coupling Systems with Octahedral Symmetry and First Order Refor- mulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5.3 Equivariant Spectral Information . . . . . . . . . . . . . . . . . . . . 43 2.5.4 Parameter Space and Bifurcation Mechanism . . . . . . . . . . . . . . 47 2.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 CHAPTER 3 NONLINEAR VIBRATIONS IN THE FULLERENE MOLECULE C 53 60 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 Equivariant Degree Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.1 Euler Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.2 Burnside Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.3 Euler Ring Homomorphism . . . . . . . . . . . . . . . . . . . . . . . 61 3.2.4 Twisted Subgroups and Related Modules . . . . . . . . . . . . . . . . 62 3.2.5 Computations of Euler Ring U(G) in Special Cases . . . . . . . . . . 63 3.2.6 Brouwer G-Equivariant Degree . . . . . . . . . . . . . . . . . . . . . 65 3.2.7 G-Equivariant Gradient Degree . . . . . . . . . . . . . . . . . . . . . 67 3.2.8 Degree on the Slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.9 Computations of the Gradient G-Equivariant Degree . . . . . . . . . 73 3.2.10 Basic Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.3 Fullerene Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 ix 3.3.1 Equations for Carbons . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3.2 Force Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.3 Icosahedral Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.3.4 Icosahedral Minimizer . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.3.5 Isotypical Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.4 Equivariant Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.4.1 Equivariant Gradient Map . . . . . . . . . . . . . . . . . . . . . . . . 91 3.4.2 Bifurcation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.4.3 Computation of the Gradient Degree . . . . . . . . . . . . . . . . . . 96 3.5 Description of the Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.5.1 Standing Waves (Brake Orbits) . . . . . . . . . . . . . . . . . . . . . 100 3.5.2 Traveling Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 CHAPTER 4 ON SOME APPLICATIONS OF GROUP REPRESENTATION THE- ORY TO ALGEBRAIC PROBLEMS RELATED TO THE CONGRUENCE PRIN- CIPLE FOR EQUIVARIANT MAPS . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.1.1 Topological Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.1.2 Main Results and Overview . . . . . . . . . . . . . . . . . . . . . . . 105 4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2.1 Groups and Their Actions . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2.2 Group Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3 (cid:11)-Characteristic of G-Representations . . . . . . . . . . . . . . . . . . . . . . 110 4.3.1 (cid:11)-Characteristic of Solvable Group Representations . . . . . . . . . . 113 4.3.2 (cid:11)-Characteristic of Nilpotent Group Representations . . . . . . . . . 117 4.4 (cid:11)-Characteristic of an Augmentation Module Related to 2-transitive Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.4.1 2-Transitive Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.4.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.5 Irreducible Representations with Trivial (cid:11)-Characteristic . . . . . . . . . . . 122 x
Description: