ebook img

Applications of Degree Theory on Dynamical Systems with Symmetry PDF

178 Pages·2017·0.72 MB·English
by  WuHao Pin
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Applications of Degree Theory on Dynamical Systems with Symmetry

APPLICATIONS OF DEGREE THEORY TO DYNAMICAL SYSTEMS WITH SYMMETRY (WITH SPECIAL FOCUS ON COMPUTATIONAL ASPECTS AND ALGEBRAIC CHALLENGES) by Hao-pin Wu APPROVED BY SUPERVISORY COMMITTEE: Zalman Balanov, Co-Chair Wieslaw Krawcewicz, Co-Chair Dmitry Rachinskiy Qingwen Hu Copyright ⃝c 2018 Hao-pin Wu All rights reserved To My Family APPLICATIONS OF DEGREE THEORY TO DYNAMICAL SYSTEMS WITH SYMMETRY (WITH SPECIAL FOCUS ON COMPUTATIONAL ASPECTS AND ALGEBRAIC CHALLENGES) by HAO-PIN WU, MS DISSERTATION Presented to the Faculty of The University of Texas at Dallas in Partial Ful(cid:12)llment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN MATHEMATICS THE UNIVERSITY OF TEXAS AT DALLAS May 2018 ACKNOWLEDGMENTS I would like to thank Professor Balanov and Professor Krawcewicz for their advice and support throughout the PhD program; it would not be possible for me to accomplish what I have in my dissertation without their help. Thank to Professor Rachinskiy and Professor Hu for sharing their insights and valuable ideas with me from time to time; their help is important to my research work. For the research work in Chapter 4 of my dissertation, I want to thank Profosser Muzychuk; it is a precious experience for me to work with such an accomplished mathematician. Also, thanks to Dr. Jafeh and Dr. Li; the efforts they made in their research eventually became the foundation of my work. Finally, I want to thank my family and all the friends I met in UTD for their support on my pursuit of the PhD degree. April 2018 v APPLICATIONS OF DEGREE THEORY TO DYNAMICAL SYSTEMS WITH SYMMETRY (WITH SPECIAL FOCUS ON COMPUTATIONAL ASPECTS AND ALGEBRAIC CHALLENGES) Hao-pin Wu, PhD The University of Texas at Dallas, 2018 Supervising Professors: Zalman Balanov, Co-Chair Wieslaw Krawcewicz, Co-Chair The study of dynamical systems with symmetry usually deals with the impact of symmetries (described by a certain group G) on the existence, multiplicity, stability and topological structure of solutions to the system, (local/global) bifurcation phenomena, etc. Among differentapproaches, degreetheory(includingBrouwerdegreeandequivariantdegree), which involves analysis, topology and algebra, provides an effective tool for the study. In our research, we focus on three motivating problems related to dynamical systems with symmetry: (a) bifurcation of periodic solutions in symmetric reversible FDEs; (b) existence ofperiodicsolutionstoequivariantHamiltoniansystems; (c)existenceofperiodicsolutionsto systems homogeneous at in(cid:12)nity. In Problem (a), equivariant degree with no free parameters provides us with the complete description of bifurcating branches of 2(cid:25)-periodic solutions to reversible systems. In Problem (b), we can predict various symmetric vibrational modes of the fullerene molecule C using gradient degree. The study of Problem (c) leads to 60 several results in algebra; two important results among them are (i) a characterization of the class of (cid:12)nite solvable groups in terms of lengths of non-trivial orbits in irreducible vi representations, and (ii) the existence of an equivariant quadratic map between two non- equivalent (n (cid:0) 1)-dimensional S -representation spheres (n is odd). Finally, as the result n of developing computational tools for equivariant degree, we present the related algorithms and examples. vii TABLE OF CONTENTS ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation and Historical Remarks . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Bifurcation of Periodic Solutions in Symmetric Reversible FDEs . . . 1 1.1.2 Existence of Periodic Solutions to Equivariant Hamiltonian Systems . 3 1.1.3 Existence of Periodic Solutions to Systems Homogeneous at In(cid:12)nity . 3 1.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Brouwer Degree in the Presence of Symmetries . . . . . . . . . . . . . 4 1.2.2 The Equivariant Degree . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Algebraic Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Computation of Equivariant Degrees . . . . . . . . . . . . . . . . . . 6 1.3.2 Solvable Groups and the Existence of Equivariant Quadratic Maps . . 7 1.4 Summary of Results and Overview . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.1 Bifurcation of Periodic Solutions in Symmetric Reversible FDEs . . . 8 1.4.2 Existence of Periodic Solutions to Equivariant Hamiltonian Systems . 8 1.4.3 Existence of Periodic Solutions to Systems Homogeneous at In(cid:12)nity . 9 1.4.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 CHAPTER2 BIFURCATIONOFSPACEPERIODICSOLUTIONSINSYMMETRIC REVERSIBLE FDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Equivariant Jargon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Subgroups in Direct Product of Groups G (cid:2)G . . . . . . . . . . . . 18 1 2 2.2.3 ((cid:0)(cid:2)O(2))-Representations . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.4 Admissible G-Pairs and Burnside Ring A(G) . . . . . . . . . . . . . . 22 viii 2.2.5 Equivariant Degree without Parameter . . . . . . . . . . . . . . . . . 24 2.3 Assumptions and Fixed-Point Problem Reformulation . . . . . . . . . . . . . 27 2.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.2 G-Equivariant Operator Reformulation of (2.1) in Functional Spaces . 29 2.4 ((cid:0)(cid:2)O(2))-Degree Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.1 Linearization and Necessary Condition for the Bifurcation . . . . . . 32 2.4.2 Sufficient Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.3 Computation of !((cid:11) ) . . . . . . . . . . . . . . . . . . . . . . . . . . 38 o 2.5 Computation of !((cid:11) ): Examples . . . . . . . . . . . . . . . . . . . . . . . . 41 0 2.5.1 Space-Reversal Symmetry for Second Order DDEs and IDEs . . . . . 41 2.5.2 Coupling Systems with Octahedral Symmetry and First Order Refor- mulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5.3 Equivariant Spectral Information . . . . . . . . . . . . . . . . . . . . 43 2.5.4 Parameter Space and Bifurcation Mechanism . . . . . . . . . . . . . . 47 2.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 CHAPTER 3 NONLINEAR VIBRATIONS IN THE FULLERENE MOLECULE C 53 60 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 Equivariant Degree Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.1 Euler Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.2 Burnside Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.3 Euler Ring Homomorphism . . . . . . . . . . . . . . . . . . . . . . . 61 3.2.4 Twisted Subgroups and Related Modules . . . . . . . . . . . . . . . . 62 3.2.5 Computations of Euler Ring U(G) in Special Cases . . . . . . . . . . 63 3.2.6 Brouwer G-Equivariant Degree . . . . . . . . . . . . . . . . . . . . . 65 3.2.7 G-Equivariant Gradient Degree . . . . . . . . . . . . . . . . . . . . . 67 3.2.8 Degree on the Slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.9 Computations of the Gradient G-Equivariant Degree . . . . . . . . . 73 3.2.10 Basic Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.3 Fullerene Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 ix 3.3.1 Equations for Carbons . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3.2 Force Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.3 Icosahedral Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.3.4 Icosahedral Minimizer . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.3.5 Isotypical Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.4 Equivariant Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.4.1 Equivariant Gradient Map . . . . . . . . . . . . . . . . . . . . . . . . 91 3.4.2 Bifurcation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.4.3 Computation of the Gradient Degree . . . . . . . . . . . . . . . . . . 96 3.5 Description of the Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.5.1 Standing Waves (Brake Orbits) . . . . . . . . . . . . . . . . . . . . . 100 3.5.2 Traveling Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 CHAPTER 4 ON SOME APPLICATIONS OF GROUP REPRESENTATION THE- ORY TO ALGEBRAIC PROBLEMS RELATED TO THE CONGRUENCE PRIN- CIPLE FOR EQUIVARIANT MAPS . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.1.1 Topological Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.1.2 Main Results and Overview . . . . . . . . . . . . . . . . . . . . . . . 105 4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2.1 Groups and Their Actions . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2.2 Group Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3 (cid:11)-Characteristic of G-Representations . . . . . . . . . . . . . . . . . . . . . . 110 4.3.1 (cid:11)-Characteristic of Solvable Group Representations . . . . . . . . . . 113 4.3.2 (cid:11)-Characteristic of Nilpotent Group Representations . . . . . . . . . 117 4.4 (cid:11)-Characteristic of an Augmentation Module Related to 2-transitive Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.4.1 2-Transitive Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.4.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.5 Irreducible Representations with Trivial (cid:11)-Characteristic . . . . . . . . . . . 122 x

Description:
different approaches, degree theory (including Brouwer degree and .. Comparing to Brouwer degree, computation of equivariant degree is, however,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.