PASJ:Publ.Astron.Soc.Japan,1–??, (cid:13)c 2012.AstronomicalSocietyofJapan. Application of the Titius–Bode Rule to the 55 Cancri System: Tentative Prediction of a Possibly Habitable Planet ManfredCuntz DepartmentofPhysics,UniversityofTexasatArlington,Box19059, Arlington,TX76019,USA [email protected] (Received;accepted) 2 1 Abstract 0 2 Following the notion that the Titius–Bode rule (TBR) may also be applicable to some extra-solar planetary systems,althoughthisnumbercouldberelativelysmall,itisappliedto55Cancri,whichisaG-typemain-sequence n star currentlyknownto hostfive planets. Followinga concise computationalprocess, we tentativelyidentifyfour a J new hypothetical planetary positions given as 0.081, 0.41, 1.51 and 2.95 AU from the star. The likelihood that 6 thesepositionsareoccupiedbyrealexistingplanetsissignificantlyenhancedforthepositionsof1.51and2.95AU in the view of previoussimulationson planetformationand planetaryorbitalstability. For example, Raymondet ] al. (2008)arguedthat additionalplanetswouldbe possible between55Cnc f and55 Cnc d, whichwould include P planetssituatedat1.51and2.95AU.Iftwoadditionalplanetsareassumedtoexistbetween55Cncfand55Cncd, E thededuceddomainsofstabilitywouldbegivenas1.3–1.6and2.2–3.3AU.Thepossibleplanetnear1.5AUappears . h tobelocatedattheoutskirtsofthestellarhabitablezone,whichishowevernotablyaffectedbythestellarparameters p aswellastheadoptedmodelofcircumstellarhabitability. Wealsocomputethedistanceofthenextpossibleouter - planet in the 55 Cnc system, which if existing is predicted to be located between 10.9 and 12.2 AU, which is o r consistentwithorbitalstabilityconstraints. Theinherentstatistical significanceoftheTBRisevaluatedfollowing st themethodbyLynch(2003). Yetitisuptofutureplanetarysearchmissionstoverifyorfalsifytheapplicabilityof a theTBRtothe55Cncsystem,andtoattaininformationonadditionalplanets,ifexisting. [ Keywords:astrobiology—methods:statistical—stars: individual(55Cnc)—stars: planetarysystems 4 v 1. Introduction tistical analyses. For example, Lynch (2003) argued that it 8 3 is not possible to conclude unequivocallythat laws (or rules) 0 One of the more controversial aspects in the study of the of Titius–Bode type are, or are not, significant, a conclusion 5 Solar System as well as studies of selected extrasolar plane- that also appears to be consistent with the work by Hayes & 7. tarysystemsistheapplicationoftheTitius–Boderule(TBR). Tremaine (1998). Moreover, the main conclusion of Lynch 0 Historically,theTBRwasfirstderivedandappliedtotheSolar (2003)isalsosharedbyNeslusˇan(2004).Neslusˇan(2004)also 1 Systemwhereitplayedasignificantroleinthesearchfornew pointedoutthecuriositythatiftheEarth’sdistanceisexcluded 1 planetaryobjects(e.g.,Nieto1972). ThediscoveryofUranus from the sequence, then the probability of the occurrence of : v byHerschelin1781andthelargestobjectoftheMars–Jupiter thatsequencebychanceisradicallyreducedfrom95to100% i asteroidbelt,Ceres,byPiazziin1801appearedtoconfirmthe downto3%. X applicabilityandsignificanceoftheTBR.TheTBRhistorically IfnoappropriatephysicalexplanationfortheTBRisidenti- r givenbytheformula fied,itistypicallyarguedthattheTBRmaybemerelyaruleof a chance(“numerology”),fuelledbythepsychologicaltendency r =0.4+0.3×2n, n=−∞,0,1,2,3,... (1) n toidentifypatternswherenoneexist(Newmanetal.1994).On (inAU)is,however,entirelyinapplicabletoNeptuneandtothe theotherhand,therearepreviousdetailedastrophysicalandas- formerSolarSystemplanetPluto1,whichisstilloftenconsid- trodynamicalstudiesthatpotentiallypointtoaphysicalback- eredtobeanappropriaterepresentativeofthesteadilyincreas- groundoftheTBR,atleastfortheSolarSystemand(byimpli- ingnumberofKuiperBeltObjects(e.g.,Jewitt&Luu2001). cation)foraselectednumberofextrasolarplanetarysystemsas A considerable amount of previous discussion revolves well. Forexample,White (1972)arguedthatjet streamsmay around the interpretation of the TBR for the Solar System, developinarotatinggaseousdiskatdiscreteorbitaldistances including its well-known insufficiency, see, e.g., Graner & given by a geometric progression. This result appears to be Dubrulle (1994), Hayes & Tremaine (1998), Lynch (2003), broadlyconsistentwiththeworkbySchmitz(1984),whopur- andNeslusˇan(2004)forpreviousstudieslargelybasedonsta- suedananalyticanalysisofthestructure,stability,andformof marginally stable axisymmetric perturbationsof idealized ro- 1 Plutoismentionedmerelyforhistoricalreasons;itisoftenconsideredto tatinggasclouds. Hisstudyshowedthattheradialpartsofthe highlightthelimitationsoftheTBRfortheSolarSystem. Plutoisinthe expansion solutions obtained from the governing differential 3:2mean-motionresonancewithNeptuneandisthusnotadynamically independentobject.Moreover,long-termintegrationshaveuncoveredthat yieldsimpleoscillatingfunctionswithTBR-typefeatures. itsorbitischaoticyetstableoverbillion-yeartimescales(Malhotra1993). A similar approach was undertaken by Graner & Dubrulle 2 AstronomicalSocietyofJapan [Vol., Table1.StellarParameters Quantity Value Reference SpectralType G8V Gonzalez(1998) Distancea 12.5±0.13pc ESA(1997) ApparentMagnitudeV 5.96 SIMBADwebsiteb RACoordinate 08h52m35.811s SIMBADwebsiteb DECCoordinate +28◦19′50.95′′ SIMBADwebsiteb EffectiveTemperature 5280K seetext Radiusc 0.925±0.023R Ribasetal.(2003) ⊙ Mass 0.92±0.05M Valenti&Fischer(2005) ⊙ Aged 5±3Gyr Fischeretal.(2008) Metallicity[Fe/H] +0.31±0.04 Valenti&Fischer(2005) aDatafromtheHipparcosCatalogue. bSeehttp://simbad.u-strasbg.fr cAlternativevalue:1.15±0.035R (Bainesetal.2008). ⊙ dAmorestringentdetermination,whichis4.5±1Gyr,hasbeengivenbyDonahue(1998)andHenryetal.(2000). Table2.PlanetarySystema Planet Distance(AU) Period(d) M sini(MJ) Discovery 55Cnce 0.01583 ±0.00020 0.7365400 ±0.0000030 0.027 ±0.0011 2004/2011 55Cncb 0.115 ±0.0000011 14.65162 ±0.0007 0.824 ±0.007 1996 55Cncc 0.240 ±0.000045 44.3446 ±0.007 0.169 ±0.008 2002 55Cncf 0.781 ±0.007 260.00 ±1.1 0.144 ±0.04 2007 55Cncd 5.77 ±0.11 5218 ±230 3.835 ±0.08 2002 aData given by Fischer et al. (2008) and references therein, except for 55 Cnc e, for which the data from Dawson & Fabrycky(2010)andWinnetal.(2011)wereused. (1994), who argued that a Titius–Bode type law emerges au- ened significance of the TBR, except that its meaning is that tomaticallyasaconsequenceofthescaleinvarianceandrota- stable planetary systems tend to be spaced in a regular man- tional symmetry of the protoplanetarydisc, and that such ge- ner. However, they indicate that their method could be used ometrical relationshipsare a generic characteristic of a broad toidentifypotentiallyunstableplanetarysystems,especiallyif range of physical systems. Li et al. (1995) investigated the appliedinconjunctionwithlong-termorbitintegrations.Afur- nonlinear development and evolution of density disturbances thercontributiontotheinterpretationoftheTBRwasmadeby in nebular disks on the basis of one of their previousstudies. Nottale(1996)andNottaleetal.(1997)basedonanapproach Their analysis showed that the perturbed density is unstable ofscale relativityandquantizationofthe SolarSystem. Itat- with respect to self-modulation, leading to the formation of temptstodescribetheSolarSystem intermsoffractaltrajec- density field localization and collapse. In the case of a self- tories governedby a Schro¨dinger-likeequation. The physical similar collapse, the perturbed density was found to increase backgroundandjustificationofthisapproach,however,remain withtimeandtoformsteadyringswithverylargebutlimited highlyuncertain.Acontroversialbuttestableaspectofthisthe- amplitudes.Thedistancesoftheseringswerefoundtofollowa oryisthatitproposestheexistenceofoneortwosmallplanets geometricprogressionakintotheTBR. Also,inhissummary betweenthe Sun andMercury,whichto date haveno support about the final stages of planetesimal accumulation, Lissauer throughobservations.Ontheotherhand,thesestudiespointto (1993)pointedoutthat “[t]he self-limiting natureof runaway thegeneralpossibilityof“empty”orbits,whichmayalsobeof growthstronglyimpliesthatprotoplanetsformatregularinter- interesttogeneralizedapplicationsoftheTBRaswell. valsinsemimajoraxis.”Thisresultappearstoentailgeometri- Inthefollowing,wewillapplyageneralizedversionofthe cal spacing of planetsin planetarysystems, potentiallymodi- TBR,withoutsubscribingtoaspecificphysicalinterpretation, fiedbytheirlong-termorbitaldynamicalevolution,inpossible totheplanetarysystemof55Cancri(=ρ1 Cnc=HD75732= agreementwith(amodifiedversionof)theTBR. HIP 43587 = HR 3522; G8 V) (see Table 1), which was his- Another approach invoking statistical numerical experi- toricallythefourthstarotherthantheSunafter51Peg,70Vir, mentswasadoptedbyHayes&Tremaine(1998). Theychose and47UMa(notcountingthepulsarPSR1257+12aswellas to fit randomlyselected artificial planetarysystems to Titius– othercontroversialcases)thatwasidentifiedhostinga planet. BodetypelawsconsideringadistanceruleinspiredbytheHill A previous effort to apply the TBR to 55 Cnc has been pur- stability of adjacent planets. They did not identify a height- suedbyPoveda&Lara(2008),whichwillalsobediscussedin No.] Usageofpasj00.cls 3 the following. Additionally, we will compareour results to a Table3.StellarEffectiveTemperature modifiedversionoftheTBRgivenbyLynch(2003)previously appliedtotheSolarSystem. Teff (K) Reference 55 Cnc is known to host five planets, named 55 Cnc b 5150±75 Gonzalez(1998) to 55 Cnc f, which were discovered between 1996 and 2007 5336±90 Fuhrmannetal.(1998) by Butler et al. (1997), Marcy et al. (2002), McArthur et al. 5250±70 Gonzalez&Vanture(1998) (2004),andFischeretal.(2008);notethatallplanetshavebeen 5243±93 deStrobeletal.(2001) detectedusingtheradialvelocitymethod.Thepositionsofthe 5338±53 Ribasetal.(2003) planets,accordingtotheiroriginaldeterminations,aregivenas 5279±62 Santosetal.(2004) 0.038,0.115,0.240,0.781,and5.77AU,respectively,andtheir 5234±44 Fischer&Valenti(2005) masses(Mpsini)rangefrom0.034to3.835MJ (seeTable2; italsogivesinformationontherespectiveuncertainties). However, a notable controversy emerged about the inner- WealsocommentonapreviousapplicationoftheTBRtothe most planet 55 Cnc e. Dawson & Fabrycky (2010) argued 55CncsystemgivenbyPoveda&Lara(2008). Moreover,we that the position of 55 Cnc e is given as 0.016 rather than providean analysis of the statistical significance for the TBR 0.038 AU based on an improved method that allowed to dis- forwarded by this work, as well as of the previous TBR ver- tinguish an alias from the true planetary frequencyin a more sionbyPoveda&Lara(2008),followingthemethodofLynch reliable manner. This reviseddistance was subsequentlycon- (2003).Finally,wepresentoursummaryandconclusions. firmedbyWinnetal.(2011)basedoncontinuousphotometric monitoringwiththeMOST(Microvariability&Oscillationsof 2. MethodsandResults STars)spacetelescope. Moreover,thereisanongoingdiscus- sionabouttheprincipalpossibilityofadditionalplanetsinthe 2.1. ComputationoftheTBRParameters 55Cncsystem,particularlyinthegapbetween0.8and5AU. ThecenterpieceofourstudyistheapplicationoftheTBRto Thisspeculationisfuelledbydetailedorbitalstabilitystudies, theplanetarysystemof55Cnc. Akintotheapplicationofthe including studies involving putative Earth-mass planets (von TBRtotheSolarSystem,weoriginallyselectedasapproach Blohetal.2003;Rivera&Haghighipour2007;Raymondetal. 2008;Smith&Lissauer2009;Jietal.2009). Ifsuchaplanet TB A if i=1 a = (2) exists, it would also possibly imply the presence of a poten- i A+B·Zi−2 if i>1 tially habitable planet if appropriate conditions are met (e.g., guidedby thne originalplanetarydata of Fischer et al. (2008). Lammeretal.2009). HereA,B,andZ constitutefreeparameters,whichneedtobe Thestar55Cncisamiddle-agedmain-sequencestarwitha determinedbasedontheknownpositionsofthepreviouslydis- massofapproximately0.95M⊙(Valenti&Fischer2005),with coveredfiveplanets.Basedonthefiveknownplanets55Cnce, a stellar effective temperature of about5250 K (see Table 3). 55Cncb, 55Cncc, 55Cnc f, and55Cncd, areidentifiedas FromtheHipparcosparallaxof79.8±0.84mas(ESA1997), i=1,3,4,6,and9,respectively. aluminosityof0.61±0.04L⊙ (seeTable1)canbededuced, This version of the TBR is consistentwith its originalver- which is consistent with its spectral type G8 V (Gonzalez sioncustomarilyappliedtotheSolarSystem. NotethatB in- 1998); see also discussion by Marcy et al. (2002). The age dicates the compactnessof the system (i.e., the higher B, the of the star can be obtained from the strength of the chromo- less densethe overallplanetarydistribution),whereasZ indi- sphericCaIIH+Kemission,indicatinganageof4.5±1Gyr catestheprogressionoftherelativespacingoftheplanets. For (Donahue 1998; Henry et al. 2000); see also Baliunas et al. theSolarSystem,thefreeparametersoftheabovegivenequa- (1997)forpreviouswork. Anotherelementofourworkisthe tiontakethefollowingvalues:A=0.4,B=0.3,andZ=2.0. assessment of 55 Cnc’s circumstellar habitability, which will However, in the meantime, a controversy emerged regarding be pursued following the approach by Kasting et al. (1993) thelocationoftheinnermostplanet55Cnce,whichbasedon andUnderwoodetal.(2003);additionally,itwillconsiderthe a re-analysis of existing data was identified to be positioned possibleextensionoftheouterboundaryofhabitabilityasdis- at 0.016 AU rather than 0.038 AU. We therefore revised the cussedby,e.g.,Forget&Pierrehumbert(1997),Mischnaetal. proposedversionof the TBR such thatthe position of the in- (2000),andHalevyetal.(2009). nermost planet is changed to aTB = A/Z. Fortunately, test 1 Ourpaperisstructuredasfollows. Aftertheintroductionof simulationshaveshown thatthe key predictionsofthis work, historicalaspectsoftheTBRand55Cncitself,asdone,wede- i.e.,thelocationofthehypotheticalplanetsat0.081,0.41,1.51 scribeourmethodsandresults. Emphasiswillbeplacedonthe and2.95AUaswellasthepossibleexteriorplanet,expectedto calculationalprocessconcerningtheTBRbasedonfourdiffer- belocatedbetween10.9and12.2AU(ifexisting),areentirely entmeasuresofdifference;theyareappliedtoassessthedevia- unchangedby this alteration. Moreover,the innermostplanet tionsbetweenthepositionsofthefiveknownplanetsof55Cnc isalsonotpartofthepolynomialfitdeterminedbyZ,justlike (i.e.,55Cncbto55Cncf)andthepredictionsoftheTBR,thus incaseoftheSolarSystem. allowingto constrainthe unknownTBR parameters. In addi- Thepivotalaspectofourstudyistodetermineandoptimize tion, we comment on the possibility of a habitable planet in theparametersA, B, andZ basedonthepositionsofthefive the55CncsystemasimpliedbytheTBR.Thereafter,wecon- known planets of the 55 Cnc system, which are identified as siderotherrelevantstudies,particularlystudiesregardingcon- i= 1, 3, 4, 6, and 9. The positions of these five planets are straintsfromorbitalstabilitysimulationsandplanetformation. calculatedusingadequatetrialvaluesforA, B,andZ. These 4 AstronomicalSocietyofJapan [Vol., Table4.Titius–BodeParameters MDIF A B Z MDIF1 0.032±0.003 0.049±0.001 1.973±0.006 MDIF2 0.031±0.001 0.050±0.001 1.971±0.006 MDIF3 0.031±0.002 0.050±0.001 1.969±0.006 MDIF4 0.031±0.001 0.047±0.001 1.991±0.004 Table5.DistancesofRealandHypotheticalPlanetsa Planet Observed Titius–BodeRule MDIF1 MDIF2 MDIF3 MDIF4 55Cnce 0.016 0.016 0.016 0.016 0.015 ... (HPL1) ... 0.082 0.081 0.081 0.078 55Cncb 0.115 0.130 0.129 0.130 0.125 55Cncc 0.240 0.224 0.224 0.225 0.218 ... (HPL2) ... 0.411 0.411 0.413 0.403 55Cncf 0.781 0.779 0.781 0.783 0.771 ... (HPL3) ... 1.506 1.509 1.511 1.504 ... (HPL4) ... 2.940 2.945 2.945 2.965 55Cncd 5.77 5.770 5.774 5.768 5.872 aDistancesinunitsofAU. parametersaresubsequentlyoptimizedthroughminimizingthe numerical differences between the observed and “predicted” 6 distances (i.e., semimajor axes) of the observed five planets. Thelateralsorequiresameasureofdifference. Inthefollow- ing four different measures of difference, henceforth referred 5 toasMDIF,havebeenadopted,whichare: absolutelinearde- viation(MDIF1),relativelineardeviation(MDIF2),absolute U) 4 quadraticdeviation(MDIF3),andrelativequadraticdeviation A (MDIF4). Theequationsforthedistancedifferenceparameter ( ce 3 δri arethusgivenas n sta δri = rpl,i−rpTlB,i (3) Di 2 (cid:12) (cid:12) (cid:12)r −rTB(cid:12) δr = (cid:12) pl,i pl,i(cid:12) (4) 1 i (cid:12) rpl,i (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)2 0 δri = (cid:12)(cid:12)rpl,i−rpTlB,i(cid:12)(cid:12) (5) 1 2 3 4 5 6 7 8 9 Number of Planet (cid:16) r −rTB(cid:17) 2 δr = pl,i pl,i , (6) i r pl,i ! Fig.1. Distancesofobserved(fullcircles)andpredicted(opencircles) planets (orplanetary positions)inthe55Cncsystem. Thepredicted wherer denotestheobserveddistance(semi-majoraxis)of pl,i planetshavebeencomputedfollowingtheTBRbasedonMDIF1(see planeti and rTB denotesthe distance valueobtainedthrough Table2). pl,i theapplicationoftheTBR. Table4givesdetailedinformationontheTBRparametersA, B,andZ,includingtherespectiveuncertaintybars,whichare duetothedistanceuncertaintiesof55Cncbtof(seeTable1) givenbyobservations. ItisfoundthatA≃0.031,B≃0.049, and Z ≃ 1.98. There is very little impact by the particular choiceofmeasureofdifference. Forexample,thespacingpa- rameter Z is found to vary between 1.969±0.006 (MDIF 3) No.] Usageofpasj00.cls 5 A, B, and Z, the smaller the resulting residual. Second, the residual cannot approach zero, even if an increasingly higher 0.03 0.2 precisionforA, B, andZ ispermitted, owingtothe factthat 55 Cnc f HPL 3 theTBR(ifapplicable)shouldbeviewedasa“rule”ratherthan 55 Cnc d a(physical)“law”. ThereisnowaythattheTBRasproposed 0.015 0.1 (oranymodificationthereof)willbeabletopreciselyrepresent PL 3] d] thepositionsofthecurrentlyknownfiveplanetsinthe55Cnc nc f, H 0 0 5 Cnc sSyosltaermSyassteamls.o encounteredin applications of the TBR to the C 5 55 δr [ NextwefocusonthecaseofthehypotheticalplanetHPL3 δr [ (see Table 5) positioned near 1.51 AU; see Table 7 for de- −0.015 −0.1 tails. Concerningthe four measuresof difference, MDIF, the position of HPL 3 is found to range between 1.504±0.025 (MDIF 4) and 1.511±0.028 (MDIF 3). Note again that the −0.03 −0.2 11 22 33 44 55 66 77 88 991100111111221133114411551166117711881199220022112222223322442255 uncertaintyinthepositionofHPL3duetothechoiceofMDIF Serial Number of Simulation isinsignificant. However,thishypotheticalplanetisofpoten- tiallyhighrelevancebecauseitmaybelocatedin55Cnc’shab- Fig.2. Distancevariationsδrfor55Cncf,55Cncd,andthehypothet- itablezone(HZ).Therefore,itwillbediscussedinmoredetail icalplanet3foraseriesof25statisticalsimulations. For55Cncfand below(seeSect.2.3). 55Cncd, thesevariations areduetotheobservational uncertainties, whichare0.007and0.11AU,respectively. ForHPL3,thedistance ConsideringthepotentialimportanceofHPL 3, ifexisting, variations werecomputedfollowing theTBRbasedonMDIF1(see we also investigatedthe distancevariationδr duetothe mea- Table2). surementuncertaintiesfor55Cncfand55Cncd(seeTable1) aspublished;theuncertaintymeasurementismostsubstantial and1.991±0.004(MDIF4).Furthermore,thedistanceuncer- for55Cncd(bothinabsoluteandrelativeunits). Theresults taintiesfor55Cncbtof,givenbytheobservations,havealso are givenin Fig.2; here theimplementedversionof theTBR arelativelysmalleffectonthevaluesofA,B,andZ;notethat was based on MDIF 1. Various positions for 55 Cnc f and theassociateduncertaintyis0.3%orlessincaseofZ. 55CncdwereassumedusingaMonte–Carloapproach(Press etal.1989)consideringtheirobservationallydeduceddistance 2.2. ApplicationsandTests measurements. We pursued a total of 25 simulations. In our The derivationof the TBR parametersA, B, andZ can be seriesofsimulations,theabsolutevariationδr forHPL3was used to identify possible additional planetary positions in the lessthan0.03AU. 55 Cnc system (see Table 5), potentially occupied by plan- Another application of the TBR is the computation of the ets. Specifically,fourplanetarypositionsarefound,whichare: distanceofthenextpossibleouterplanetofthe55Cncsystem, 0.081, 0.41, 1.51 and 2.95 AU. As expected from our previ- i.e.,locatedbeyond55Cncd,whichisatadistanceofapprox- ousdiscussion,theinfluenceofthedifferentchoicesofMDIF imately5.77AU.Thishypotheticalplanetispredictedtobelo- is only of very minor importance. Figure 1 offers a detailed catedbetween10.9and12.2AU(seeTable8).Moreprecisely, depiction of the observed and predicted hypothetical planets. its position is predicted in the range between 11.33±0.43 Notetheveryhighqualityofthefitfori>1. (MDIF3)and11.66±0.39(MDIF4). Prior to discussing further results of our study, we want to 2.3. TheHabitableZoneof55Cnc presentthefindingsfromdetailedtestsabouttheconvergence oftheTBRparameters,notablyZ. Again,theTBRparameters Inthefollowingwediscussthepossiblelocationofanewly A, B, and Z are obtained by trying to fit the positionsof the predictedplanetintheHZ of55Cnc. Theextentof55Cnc’s known planets 55 Cnc b to 55 Cnc f by using the TBR. This HZcanbecalculatedfollowingtheformalismbyUnderwood requires the choice of a measure of difference, MDIF; addi- etal.(2003)basedonpreviousworkbyKastingetal.(1993). tionally,italsorequiresthechoiceofaprecisionparameterfor Underwoodet al. (2003)supplieda polynomialfit depending A,B,andZ thatwaschosenas10−k withk=1,2,3,and4. on the stellar luminosity and the stellar effective temperature Thecontrolparameterofconvergencewasthe summedresid- that allows to calculate the extent of the conservativeand the ualofthedifferenceinthepositionsbetweentheobservedand generalizedHZ. Noting that55Cnc is less luminousthanthe predicted (fitted) distances of the five known 55 Cnc system Sun, it is expected that its HZ is less extended than the solar planets. HZ,forwhichthelimitsofthegeneralizedHZhavebeengiven Our results are given in Table 6. As expected, it is found as0.84and1.67AU,respectively(Kastingetal.1993). that the higher the selected precision, the more accurate are Theluminosityof55Cnchasbeendeducedas0.61±0.04 the obtainedvaluesfor A, B (notshown), and Z deducedby L basedonthestellardistanceandapparentmagnitude;note ⊙ fittingthepositionsofthefiveobservedplanets. However,the that this value is fully consistent with the standard values for summed residuals are found to never approach exactly zero, the stellar effectivetemperatureand luminosity (see Table 1). regardlessofMDIFandtheprecisionparameter,althoughthe However, if its stellar radius is 1.15 ± 0.035 R , obtained ⊙ residualwillconvergetowardaverysmalllimit(i.e.,between byBainesetal.(2008)basedonnewinterferometricmeasure- 10−2 and 5×10−4), especially if MDIF 3 is selected. This ments,insteadofR=0.925R (Ribasetal.2003),therevised ⊙ resultis expected. First, the higherthe intendedprecisionfor stellarluminosityisthusgivenas0.90L . Thisincreasedlu- ⊙ 6 AstronomicalSocietyofJapan [Vol., Table7.DistanceoftheHypotheticalPlanet3 MDIF Distance(AU) s et MDIF1 1.506±0.027 n MDIF2 1.509±0.029 a Pl MDIF3 1.511±0.028 MDIF4 1.504±0.025 0.5 1 1.5 2 2.5 Distance (AU) minosity is, however,difficult, thoughnot impossible, to rec- oncilewiththeotherparametersof55Cnc,suchasitsapparent s et magnitude,spectraltypeanddistance. n a Based on the standard values for the stellar parameters of Pl 55 Cnc, the limits of the conservative HZ are given as 0.75 and 1.08 AU, whereas the limits of generalizedHZ are given 0.5 1 1.5 2 2.5 as 0.68 and 1.34 AU (see Fig. 3 and Table 9). Surely, larger Distance (AU) limitsareattainedifthehighervalueforthestellarluminosity is adopted. The underlyingdefinition of habitability is based ontheassumptionthatliquidsurfacewaterisaprerequisitefor Fig.3. Distancesof55Cncf(fullcircle)andthehypotheticalplanet 3(opencircles)inrelationshiptotheHZof55Cnc,wheredarkgray, life, akeyconceptthatisalsothebasisofongoingandfuture mediumgrayandlightgraydenotetheconservative, general,andex- searchesforextrasolarhabitableplanets(e.g.,Catanzariteetal. tremeHZ,respectively(seeTable9).ThepositionofHPL3wascom- 2006;Cockelletal.2009). Thenumericalevaluationofthese putedfollowingtheTBRbasedonMDIF1,2,3,and4(fromtopto bottom). Thedepicteduncertaintybarsare3σ,andaremostlydueto limits is based on an Earth-type planet with a CO2/H2O/N2 atmosphere. thesmallobservationaluncertaintiesof55Cncfand55Cncd.Thetop figureshowstheHZof55CncbasedonR=0.925R⊙(Ribasetal. We pointoutthatconcerningthe outeredgeofhabitability, 2003),whereasthebottomfigureassumesR=1.15R⊙(Bainesetal. evenlessconservativelimitshavebeenproposedinthemean- 2008),implyingarelativelyhighstellarluminosityof0.90L⊙. time(e.g.,Forget&Pierrehumbert1997;Mischnaetal.2000). Theyarebasedontheassumptionofrelativelythickplanetary CO2 atmospheresinvokingstrongbackwarmingthatisfurther enhancedby the presence of CO2 crystals and clouds. These types of limits can be as large as 2.4 AU in case of the Sun; however, they depend on distinct properties of the planetary atmosphere, and are thus subject to ongoingstudies and con- Table6.ConvergenceofTitius–BodeParameters troversies (e.g., Halevy et al. 2009). Concerning55 Cnc, the revisedouterlimitcanbeaslargeas1.85AUforthestandard MDIF Precision Za Residual stellar parameters and up to 2.31 AU for the increased value MDIF1 10−1 2.1 4.41×10−1 of the stellar luminosity. These limits can be considered in 10−2 1.98 3.90×10−2 the assessment of the hypothetical planet near 1.51 AU (see 10−3 1.973 3.31×10−2 Table 7). Note that the position of this hypotheticalplanet is 10−4 1.9704 3.03×10−2 notsignificantlyaffectedbythechoiceofMDIF.Basedonthe MDIF2 10−1 2.0 3.93×10−1 standardparametersfor55Cnc,thisplanetwouldbelocatedin 10−2 1.98 2.04×10−1 theextremelyextendedHZ.Iftheincreasedvalueofthestellar 10−3 1.971 1.91×10−1 luminosity of 0.90 L⊙ is assumed, it would be located in the 10−4 1.9704 1.90×10−1 generalizedHZ.Adepictionofthedifferentscenariosisgiven MDIF3 10−1 2.1 6.16×10−2 inFig.3. 10−2 1.98 5.94×10−4 Another important aspect regarding the circumstellar hab- 10−3 1.969 4.56×10−4 itability of 55 Cnc concerns the planet 55 Cnc f. It is a hot 10−4 1.9691 4.52×10−4 Neptunewithamassofabout15%ofJupiter’smass;therefore, MDIF4 10−1 2.0 3.80×10−2 itisalmostcertainlyunfittohostlife. 55Cncfislocatedator 10−2 1.99 1.68×10−2 neartheinneredgeofthe55Cnc’sHZ,especiallyifthestan- 10−3 1.991 1.68×10−2 dard value for the 55 Cnc’s luminosity is adopted. However, 10−4 1.9908 1.68×10−2 55Cncfmaybeanappropriateobjectforhostingoneormore habitablemoons.Previousstudiesonhabitablemoonsofextra- aAnequivalentincreaseinprecisionisalso attainedfor solar planets have been given by, e.g., Williams et al. (1997) theparametersAandB. andDonnison(2010). No.] Usageofpasj00.cls 7 Table8.DistanceofanHypotheticalExteriorPlanet Table9.HabitableZoneof55Cancri MDIF Distance(AU) Description Distance(AU) MDIF1 11.35±0.45 ... Standard Alternative MDIF2 11.35±0.44 HZ-i(general) 0.68 0.84 MDIF3 11.33±0.43 HZ-i(conservative) 0.75 0.93 MDIF4 11.66±0.39 HZ-o(conservative) 1.08 1.35 HZ-o(general) 1.34 1.66 HZ-o(extreme) 1.85 2.31 3. ConsiderationofOtherStudies 3.1. Constraints from Orbital Stability Simulations and CommentsonPlanetaryFormation planetsis relativelyinsensitive tostellar mass. Thisworkhas been expanded by Raymond et al. (2006) and applied to the Anyplanetproposedtoexistinastar–planetsystembythe special case of 55 Cnc. They found that the majority of the meansoftheTBRorotherwiseneedstopassthetestoforbital simulationsresultedintheformationofterrestrialplanetsposi- stability.Previously,detailedsimulationsoforbitalstabilityfor tionedin55Cnc’sHZ,includingplanetsnear1.5AUfromthe thesystemof55Cnchavebeengivenby,e.g.,Raymondetal. star. (2008)takingintoaccountthefiveknownplanetsofthe55Cnc The existence of additional planets, including habitable system. Raymond et al. (2008) presented a highly detailed planets,inthegapbetween55Cncfand55Cncd,i.e.,between studywithparticularfocusontheeffectsofmeanmotionreso- 0.781and5.77AU,alsoappearstobeconsistentwiththeexis- nancesduetotheplanets55Cncfand55Cncd. Theyshowed tenceofaprotoplanetarydiskestimatedtohavearadialsurface that additional planets could exist between these two known densityprofilesuchasσ(r)=r−3/2(Fischeretal.2008).They planets, including hypothetical planets located near 1.51 and alsodiscussedtheoverallsurfacedensityofthedisk,whichis 2.95AU.Specifically,iftwoadditionalplanetsareassumedto estimated to be considerably higher than in the solar nebula. exist between 55 Cnc f and 55 Cnc d, the domains of stabil- Theformationofterrestrialplanets2 in thegapisfurthermore ity aregivenas1.3–1.6and2.2–3.3AU. Thisis an important indirectlyimpliedby therelativelyhighcontentofheavyele- findingregardingthehypothetical,potentiallyhabitableplanet mentsasindicatedbytheenhancedmetallicityof55Cncitself HPL3,proposedat1.51AU(seeTable7). givenas[Fe/H]=+0.31±0.04(Valenti&Fischer2005). A subsequent study of orbital stability was given by Ji et al. (2009). They also considered the impact of mean motion 3.2. PreviousApplicationoftheTBRto55Cnc resonancesandidentifiedvariousunstablelocations.However, A previous attempt to predict additional planets in the they identified a wide region of orbital stability between 1.0 55CncsystembasedontheTBRhasbeengivenbyPoveda& and2.3AU,apotentialhomesteadofhabitableterrestrialplan- Lara(2008).Atthattimeallcurrentlyknownplanets55Cncb ets. Thesepotentialplanetswerealsoidentifiedtohavearela- to 55 Cnc f were already discovered. Poveda & Lara (2008) tivelyloworbitaleccentricity.Furthermore,theorbitalstability assumeda“law”oftheformof simulationsby Raymondet al. (2008)and Ji et al. (2009)are also lendingindirectsupportto the principalpossibility of an aTB = α·eλi (7) i exterior planet, which, if existing, should be located between (inAU)withαandλasfreeparameters. Takingintoaccount 10.9and12.2AUfromthestar(seeTable8). theplanets55Cnce,55Cncb,55Cncc,and55Cncf,located Although orbital stability for the hypothetical planet near between 0.038 (originally determined position for 55 Cnc e) 1.51AUappearstobewarranted,itisstillimportanttogaugeif and0.781AU,andrepresentedbyi=1to4,αandλwerede- suchaplanetcouldhaveformedinthefirstplacenotingthatthe ducedas0.0148and0.9781,respectively. ThismodifiedTBR existenceofclose-ingiantplanet(s)havebeenviewedtohave is successful to also “predict” the outermost planet 55 Cnc d an adverse effect (Armitage et al. 2003). Subsequent studies at5.77AU,countedasi=6,whichhoweverwaswell-known byRaymondetal. (2005,2006)havepointedoutthatthefor- whenPoveda&Lara(2008)proposedthenewlaw. mationandhabitabilityofterrestrialplanetsinthepresenceof Making 55 Cnc d also part of the fit results in a small ad- close-ingiantplanetsisindeedpossible. justment of the parameters α and λ, which then acquire the Raymond et al. (2006) gave detailed simulations also en- valuesof0.0142and0.9975,respectively. Themainaspectof compassing the system of 55 Cnc. Assuming that the giant the work by Poveda& Lara (2008)is to predicta new planet planetsformedandmigratedquickly,theyfoundthatterrestrial fori=5andpossiblyalsoanexteriorplanetfori=7aswell. planetsmaybeabletoformfromasecondgenerationofplan- The correspondingdistancesof these hypotheticalplanetsare etesimals. For55Cnc,objectswithmassesupto0.6M and, ⊕ given as 2.08 and 15.3 AU; the correspondingorbitalperiods insomecases,substantialwatercontentareabletoform;these oftheplanetsareapproximately3.1and62years,respectively. objectsare foundin orbitin 55 Cnc’s HZ. This type of result Noneoftheseputativeplanetsareexpectedtobelocatedinthe isalsoconsistentwithfindingsfromthequantitativenumerical programbyWetherill(1996),whodemonstratedthathabitable 2 FollowingthestudybySmith&Lissauer(2009),anyadditionalplanetsin terrestrialplanetscanformforawiderangeofmain-sequence the55Cncsystemareexpectedtohavearelativelysmallmasstowarrant stars,notingthatthenumberanddistancedistributionofthose thesystem’sorbitalstability.Thelowmassofanypossibleplanetcanalso readilyexplainwhysofartheywereabletoescapedetection. 8 AstronomicalSocietyofJapan [Vol., 55 Cnc’s HZ. Moreover, the work by Poveda & Lara (2008) oftheplanetarysequence. However,thenewlyproposedTBR assumesthe planet55Cnc e to belocatedat0.038AU rather has the attractive feature that it is of virtually the same form than0.01583AUasidentifiedbyWinnetal.(2011);notethat as that of the Solar System; see Eq. (1). Here the parameter Poveda&Larapublishedtheirworkbeforetheupdatedresult B describes the compactness of the system3, which is much became available. Thus, it is unclear if or how the “law” by higherthanforthe SolarSystem. Furthermore,theparameter Poveda & Lara (2008) could be altered to accommodate this Z describes the relative geometricalspacing of the system; it finding.Aless-than-idealapproachcouldbetoassigni=0.11 isvirtuallyidenticaltothatoftheSolarSystem,i.e.,Z=2.0. (orroundedtoi=0.1)totheinnermostplanet55Cnce. Perhapssurprisingly,theTBRappearstobeaboutasappli- cable to the 55 Cnc system as to the Solar System gaugedby 4. EvaluationofStatisticalSignificance whether or not the degreeof similarity between the predicted and observed distance sequences can occur by chance (see Animportantaspectofthisstudyistoevaluatethestatistical Introduction for data on the Solar System). Thus, the appli- significance of the TBR as deduced. In this case, we largely cationoftheTBRto55Cncappearstobejustified. However, followthemethodpreviouslyappliedbyLynch(2003)toboth considerablecareisrequiredtodrawfinalconclusionsbecause theSolarSystemandtheUraniansatellite system. Inthefirst thefittingoffiveknownplanetsassumingfourgapsinthese- step, the mean square deviation is calculated. For the TBR quenceis mucheasierthanfitting the continuoussequenceof proposedinthepresentwork,wefind ninedistances,i.e.,withthemeanasteroidaldistanceincluded andPlutoomitted; see Neslusˇan(2004). Itwillbe thetask of χ2fit = 1 log(ai−A)− logB+(i−2)·logZ 2(8) futureplanetarysearchmissionstoinquireiftheplanetarysys- 4 i temof55Cncfollows(1)theTBRofthiswork,(2)theTBR X(cid:2) (cid:0) (cid:1)(cid:3) wherea constitutetheobserveddistancesfortheplanetsi=3, byPoveda&Lara(2008),(3)anotherversionofTBR-typese- i 4,6,and9. ForA,B, andZ,weadopttheaveragevaluesat- quencing,or(4)noTBR-typesequencingafterall,asfoundfor tainedbythesetsofrunspertainingtothefourdifferentmea- thevastmajorityofthecurrentlyknownplanetarysystems. suresofdifference,MDIF(seeTable4). Furthermore,wepur- sued a sufficently large number N of statistical model runs, 5. SummaryandConclusions whereforeachmodelj weobtain The goal of our study is to provide an application of the χ2 = 1 log(a −A)− logB+(i−2+ky)·logZ 2(9) TBR to the 55 Cancri star–planet system. It is clearly un- j 4 i i derstoodthattheTBRdoesnothavethesamestandingasthe i X(cid:2) (cid:0) (cid:1)(cid:3) variouswell-establishedmethodsforthesearchandidentifica- withy asa randomnumberintherange[−1/2,+1/2]andk i tionofextrasolarplanets;see,e.g.,Jones(2008)foradetailed takenask=2/3(Lynch2003). FortheTBRasproposed,we figinvdenχafist1=.586.·4170·−110−w2it;hmNor=eo1v0e7r,.the average value of χj is oapvperevaireswto.Hboewsuevcceer,sassfuplo(iwntiethdionultiminitths)efIonrtraodlaurcgteiosne,gtmheeTntBoRf theSolarSystem. Basedonprincipalconsiderations,itwould Equivalent expressions hold if the method suggested by therefore be highly extremely unlikely if there was no other Lynch(2003)isappliedtotheversionofTBRpreviouslygiven planetarysystem forwhicha TBR-typeplanetspacingwould byPoveda&Lara(2008).Inthiscase,wefind berealized,althoughthenumberofthosesystemsmayberel- χ2 = 1 log a − logα+iλ 2 (10) ativelysmall. fit 4 i Thus, the predictionsconveyedin thisstudy followthe hy- i X(cid:2) (cid:0) (cid:1)(cid:3) pothesis that the TBR is applicable to the 55 Cnc planetary fori=2,3,4,and6,and system. Thisapproachentailsthepredictionoffourplanetary χ2 = 1 log a − logα+(i+ky )λ 2. (11) positionsinteriortotheoutermostplanet55Cncd, whichare j 4 i i given as 0.081, 0.41, 1.51, and 2.95 AU. Whether these po- Xi (cid:2) (cid:0) (cid:1)(cid:3) sitions are “empty”, filled with asteroid / comet belts (like in For the TBR by Poveda & Lara (2008), we find χfit =9.67· one instant of the Solar System, where Ceres is customarily 10−2andtheaveragevalueofχj isgivenas2.15·10−1. viewed as substitute for a planet)or occupiedby a developed Evidently,eachindividualvalueofχjcaneitherbeχj≤χfit planetisbeyondthescopeofthiswork;inthiscaseadditional or χj > χfit. The amount of χj values with χj ≤χfit gives astrophysicalrequirementsneedtobemet. theprobabilitythatthesequenceascalculatedbytheTBRand Pertaining to this latter point, the strongest case for addi- theobservedsequencecanoccurbychange. Basedonthisap- tionalplanets around55 Cnc is given for the possible planets proach,itisfoundthatthenewlyproposedTBRissignificantat near 1.51 and 2.95 AU, notingthat they would be most com- alevelof91.8%,whereastheTBRproposedbyPoveda&Lara patiblewithdetailedstudiesoforbitalstability(Raymondetal. (2008)issignificantatalevelof96.5%. Thus,theanalysisof 2008;Jietal.2009)aswellaspreviousstudiesabout55Cnc’s statistical significance of these two differentversionsof TBR proposedprotoplanetarydisk(Fischeretal.2008). Forexam- for55Cncshowsthatbothofthemareinherentlyhighlysignif- ple,Raymondetal.(2008)arguedthatadditionalplanetscould icantalbeitthelevelofsignificancefortheversionpreviously given by Poveda & Lara (2008)is slightly higher. Moreover, 3 Theincreasedcompactnessoftheplanetarysystemof55Cnccompared totheSolarSystemisalreadyimpliedbytheknownfiveplanets,which theTBRattainedbyPoveda&Lara(2008)isbasedontwofree inspired coining the term “packed planetary systems” hypothesis (e.g., parametersinsteadofthreefreeparametersforthedescription Raymondetal.2005). No.] Usageofpasj00.cls 9 existbetween55Cncfand55Cncd,includingplanetslocated Cockell,C.S.,etal.2009,Astrobiology,9,1 near1.51and2.95AUintheviewoflong-termorbitalstability deStrobel,G.C.,Soubiran,C.,&Ralite,N.2001,A&A,373,159 simulations.Specifically,iftwoadditionalplanetsareassumed Dawson,R.I.,&Fabrycky,D.C.2010,ApJ,722,937 toexistbetween55Cncfand55Cncd,thedomainsofstabil- Donahue, R. A. 1998, in ASP Conf. Ser., 154, Cool Stars, Stellar Systems, and the Sun, Tenth Cambridge Workshop, ed. R. A. itywerederivedas1.3–1.6and2.2–3.3AU.Thesetworanges Donahue&J.A.Bookbinder(SanFrancisco:ASP),CD1235 arefullycompatiblewiththeresultsofthepresentstudy. Donnison,J.R.2010,MNRAS,406,1918 Moreover, the possible planet near 1.51 AU is of particuar EuropeanSpaceAgency1997,TheHipparcosandTychoCatalogues interest as it appearsto be located at the outskirts of the stel- (SP-1200)(Noordwijk:ESA) larHZ.Theexistenceofthisplanetisconsistentwithbothor- Fischer,D.A.,&Valenti,J.2005,ApJ,622,1102 bital stability simulations and studies of the formationof ter- Fischer,D.A.,etal.2008,ApJ,675,790 restrialplanetsfor55Cnc. Forexample,calculationsofterres- Forget,F.,&Pierrehumbert,R.T.1997,Science,278,1273 trialplanetformationbyRaymondetal.(2006)showedthatthe Fuhrmann,K.,Pfeiffer,M.J.,&Bernkopf,J.1998,A&A,336,942 majorityoftheirsimulationsleadtothebuild-upofterrestrial Gonzalez,G.1998,A&A,334,221 planetsin55Cnc’sHZ,includingplanetsnear1.5AUfromthe Gonzalez,G.,&Vanture,A.D.1998,A&A,339,L29 star. Nonetheless, the final verdictof potentialhabitabilityof Graner,F.,&Dubrulle,B.1994,A&A,282,262 Halevy, I., Pierrehumbert, R. T., &Schrag, D.P.2009, J. Geophys. thispossibleplanet(ifexisting)dependsonasizeablenumber Res.,114,D18112 of factors, including the definition of the zone of circumstel- Hayes,W.,&Tremaine,S.1998,Icarus,135,549 larhabitability,consideringthattheouterboundaryofthestel- Henry,G.W.,Baliunas,S.L.,Donahue,R.A.,Fekel,F.C.,&Soon, lar HZ is notablyimpactedby a variety of astrobiologicalas- W.2000,ApJ,531,415 pects(e.g.,Lammeretal.2009)includingthestructure,density Jewitt,D.C.,&Luu,J.X.2001,AJ,122,2099 andcompositionsof the planetaryatmosphere(e.g., Forget& Ji, J.-H., Kinoshita, H., Liu, L., & Li, G.-Y. 2009, Res. Astron. Pierrehumbert1997;Mischnaetal.2000;Halevyetal.2009). Astrophys.,9,703 TheTBR asimplementedfollowscloselythe previousver- Jones,B.W.2008,Int.J.Astrobiol.,7,279 sion as appliedto the Solar System with A, B, and Z as free Kasting,J.F.,Whitmire,D.P.,&Reynolds,R.T.1993,Icarus,101, parameters,whichwereobtainedthroughcarefulstatisticalfit- 108 Lammer,H.,etal.2009,A&ARev.,17,181 tingconsideringthefiveknownplanetsofthe55Cncsystem. Li,X.Q.,Zhang,H.,&Li,Q.B.1995,A&A,304,617 Here we obtain A≃ 0.031, B ≃ 0.049, and Z ≃ 1.98. The Lissauer,J.J.1993,ARA&A,31,129 parameter B indicates the compactness of the planetary sys- Lynch,P.2003,MNRAS,341,1174 tem, which is much higher than for the Solar System as also Malhotra,R.1993,Nature,365,819 indicated by the conventionalversion of Solar System’s TBR Marcy,G.W.,etal.2002,ApJ,581,1375 (B =0.3). The parameter Z indicates the relative geometri- McArthur,B.E.,etal.2004,ApJL,614,L81 calspacing ofthe planetarysystem; itis virtuallyidenticalto Mischna, M. A., Kasting, J. F., Pavlov, A., & Freedman, R. 2000, thatoftheSolarSystem(Z =2.0). Wealsocomputedtheor- Icarus,145,546 bitaldistanceofathenextpossibleouterplanetofthe55Cnc Neslusˇan,L.2004,MNRAS,351,133 system, i.e., exterior to 55 Cnc d. Our study predicts that if Newman,W.I.,Haynes,M.P.,&Terzian,Y.1994,ApJ,431,147 existing it would be located between 10.9 and 12.2 AU from Nieto,M.M.1972,TheTitius–BodeLawofPlanetaryDistances: Its HistoryandTheory(Oxford:Pergamon) thestar. Thisdistanceisconsistentwithpreviousorbitalstabil- Nottale,L.1996,A&A,315,L9 ity analyses, which predict the position of a possible exterior Nottale,L.,Schumacher,G.,&Gay,J.1997,A&A,322,1018 planetasbeyond10AU(Raymondetal.2008). Poveda,A.,&Lara,P.2008,Rev.Mex.Astron.Astrof´ısica,44,243 In summary, it is obviously up to future observational ef- Press, W. H., Flannery, B. P., Teukolsky, S.A., & Vetterling, W. T. fortstoverifyorfalsifytheexistenceofanypossibleadditional 1989,NumericalRecipes.TheArtofScientificComputing(New planets. From a general perspective, these efforts will assist York:CambridgeUniv.Press) in gauging the applicability of the TBR outside of the Solar Raymond,S.N.,Quinn,T.,&Lunine,J.I.2005,Icarus,177,256 System, and will help to discriminate between different ver- Raymond,S.N.,Barnes,R.,&Kaib,N.A.2006,ApJ,644,1223 sionsoftheTBRiffoundapplicabletothe55Cncstar–planet Raymond,S.N.,Barnes,R.,&Gorelick,N.2008,ApJ,689,478 system. Ribas, I., Solano, E.,Masana, E., &Gime´nez, A.2003, A&A,411, L501 Theauthoracknowledgesvaluablecommentsbyananony- Rivera,E.,&Haghighipour,N.2007,MNRAS,374,599 Santos,N.C.,Israelian,G.,&Mayor,M.2004,A&A,415,1153 mousreferee,whichalsoresultedintheadditionofSection4. Schmitz,F.1984,A&A,131,309 Smith,A.W.,&Lissauer,J.J.2009,Icarus,201,381 References Underwood, D. R., Jones, B. W., & Sleep, P. N. 2003, Int. J. Astrobiol.,2,289 Armitage,P.J.2003,ApJL,582,L47 Valenti,J.A.,&Fischer,D.A.2005,ApJS,159,141 Baines,E.K.,etal.2008,ApJ,680,728 von Bloh, W., Cuntz, M., Franck, S., & Bounama, C. 2003, Baliunas,S.L.,Henry,G.W.,Donahue,R.A.,Fekel,F.C.,&Soon, Astrobiology,3,681 W.H.1997,ApJL,474,L119 Wetherill,G.W.1996,Icarus,119,219 Butler, R. P., Marcy, G. W., Williams, E., Hauser, H., & Shirts, P. Williams,D.M.,Kasting,J.F.,&Wade,R.A.1997,Nature,385,234 1997,ApJL,474,L115 Winn,J.N.,etal.2011,ApJL,737,L18 Catanzarite,J.,Shao,M.,Tanner,A.,Unwin,S.,&Yu,J.2006,PASP, White,M.L.1972,NaturePhys.Sci.,238,104 118,1319