ebook img

Application of the Ghosh & Lamb Relation to the Spin-up/down Behavior in the X-ray Binary Pulsar 4U 1626-67 PDF

0.63 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Application of the Ghosh & Lamb Relation to the Spin-up/down Behavior in the X-ray Binary Pulsar 4U 1626-67

Publ.Astron.Soc.Japan(2014)00(0),1–13 1 doi:10.1093/pasj/xxx000 Application of the Ghosh & Lamb Relation to the Spin-up/down Behavior in the X-ray Binary Pulsar 4U 1626–67 6 1 0 Toshihiro TAKAGI1,2,*, Tatehiro MIHARA2, Mutsumi SUGIZAKI2, Kazuo 2 MAKISHIMA2 and Mikio MORII3 n a 1DepartmentofPhysics,NihonUniversity,1-8-14Kandasurugadai,Chiyoda-ku,Tokyo J 101-8308,Japan 9 2MAXIteam,RIKEN,2-1Hirosawa,Wako,Saitama351-0198,Japan 1 3ResearchCenterforStatisticalMachineLearning,InstituteofStatisticalMathematics,10-3 ] Midori-cho,Tachikawa,Tokyo190-8562,Japan E H ∗E-mail:[email protected] . Received;Accepted h p - Abstract o r We analyzed continuous MAXI/GSC data of the X-ray binary pulsar 4U 1626–67 from 2009 t s Octoberto2013September, anddetermined thepulseperiod andthepulse-period derivative a [ for every60-dinterval by the epochfolding method. Theobtained periods areconsistentwith those provided by the Fermi/GBM pulsar project. In all the 60-d intervals, the pulsar was 1 v observed to spin up, with the spin-up rate positively correlated with the 2–20 keV flux. We 4 applied the accretion torque model proposed by Ghosh & Lamb (1979, ApJ, 234, 296) to the 9 MAXI/GSC data, as well as the past data including both spin-up and spin-down phases. The 8 Ghosh & Lamb relation was confirmed to successfully explain the observed relation between 4 0 the spin-up/down rate and the flux. By comparing the model-predicted luminosity with the . 1 observedflux,thesourcedistancewasconstrainedas5–13kpc,whichisconsistentwiththat 0 by Chakrabarty (1998, ApJ, 492, 342). Conversely, if the source distance is assumed, the 6 datacanconstrainthemassandradiusoftheneutronstar,becausetheGhosh&Lambmodel 1 : depends on these parameters. We attempted this idea, and found that an assumed distance v of,e.g., 10kpc givesamass inthe rangeof1.81–1.90 solar mass,andaradius of11.4–11.5 i X km,althoughtheseresultsarestillsubjecttoconsiderablesystematicuncertaintiesotherthan r thatinthedistance. a Keywords:pulsars:individual(4U1626–67)—stars: neutron—X-rays: binaries 1 Introduction inneredgeoftheaccretiondisk, andacceleratesthepulsarro- tation untilitfinallyreachesanequilibrium determinedbythe AnX-raybinarypulsarisasystemconsistingofamagnetized accretion rateand themagnetic moment of thepulsar. Sofar, neutron star and a stellar companion. The X-ray emission is numbersoftheoretical studies havebeenperformedonthein- powered bygravitational energyofaccretingmatter. Inasys- teraction between the pulsar magnetosphere and the accretion temwithalow-masscompanionstar,theaccretionflowiscon- flows. Along this scenario, Rappaport & Joss (1977), Ghosh sideredtotakeplaceviaRoche-Lobeoverflow,andtoforman & Lamb (1979) (GL79 hereafter) and Lovelace et al. (1995) accretion disk in the vicinity of the pulsar. The angular mo- (LRB95 hereafter) proposed their accretion models and pre- mentum of the accreting gas is transferredto the pulsar at the (cid:13)c 2014.AstronomicalSocietyofJapan. 2 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 sentedequations describing thepulse-period derivative P˙ asa 2008,andfigure1visualizeslong-termbehaviorofthesequan- functionoftheluminosityL,thepulseperiodP,themassM, tities.Itclearlyshowsthatthesourcemadetransitionstwicebe- the radius Rand the surface magnetic field B of the neutron tweenthespin-upandthespin-downphases,atMJD 48000 c ∼ star. These models have been examined against observational (1990June)andMJD 54000(2008February),separatedby ∼ ∼ data(e.g. Joss&Rappaport1984;Fingeretal.1996;Reynolds 18years.IneachphaseP˙ werealmostconstant,anditsabsolute etal.1996;Bildstenetal.1997;Klochkovetal.2009;Sugizaki valueswereverysimilaras P˙ =2 5 10−11 ss−1. These | | ∼ × etal.2015). TheresultsshowthattheobservedP˙–Lrelations period-changebehaviorsuggeststhat4U1626–67isclosetoan are grossly consistent with the model predictions. However, equilibrium stateinwhich thenettorquetransferfromtheac- thevalidityofthemodelshasnotyetbeenfullyconfirmed,be- creting matter to the pulsar is approximately zero. At the last causeitrequireslong-termmonitoringofsomesuitableobjects transition in2008 whenthesourceturnedfromthespin-down withknownB ,coveringsignificantpulse-periodandluminos- into the spin-up phase, the flux increased by a factor of 2.5 c ∼ itychangeswithasufficientsamplingrate. (Camero-Arranz et al. 2010). These properties, together with Whenthesemodelsdescribingtheaccretiontorquearebet- the accurate knowledge of Bc, make this object ideal for our tercalibrated,theobservedP˙–Lrelationscangiveusobserva- study. tional constraints on M and R, which are very important be- Monitor of All-sky X-ray Image (MAXI; Matsuoka et al. causetheyaredirectlyconnectedtotheequationofstate(EOS) 2009) is an X-ray all-sky monitor on the International Space ofnuclearmatter.Sofar,variousobservationalattemptstomea- Station. Since the in-orbit operation started in 2009 August, sure M and R have been carried out, and generally yielded its main instrument, the GSC (Gas Slit Camera; Mihara et al. M 1.4M and R 12 km (e.g. reviews by Bhattacharyya 2011; Sugizaki et al. 2011), has been scanning the whole sky 201≃0andO¨⊙zel2013)≃. However, themeasurementsarenotyet every 92 min in the 2–20 keV band. The GSC field of view accurateenoughtoconstraintheEOS.Furthermore,thevalues typically scans a celestial point source for about 60 s in each ofM (mainlyfromX-raybinarypulsars)andR(mainlyfrom transit,whichislongenoughtostudythe7.6-spulsationfrom weakly-magnetized neutronstars)havebeenderivedfromdif- 4U1626–67. Thus,theMAXI/GSCdataareusefultostudythe ferentpopulationsofneutronstars.Therefore,furtherstudiesof long-termvariationoftheflux,P,andP˙. theP˙–Lrelationsareexpectedtobevaluable. Inthispaper,weanalyzetheMAXI/GSCdataof4U1626– 4U1626–67isalow-massX-raybinarypulsarfirstdetected 67 from MJD 55110 (2009 October 6) to MJD 56550 (2013 with the Uhuru satellite (Giacconi et al. 1972), and its 7.6-s September15)anddeterminetheflux,P,andP˙.Wethenapply coherent pulsation was discovered by Rappaport etal.(1977). thespin-up/downmodelsproposedbyGL79andLRB95tothe Because no period modulation due to orbital motion has been previous and the MAXI/GSC data, to examine whether either detectedbeyondanupperlimitofa sini 13lt-ms(a isthe model canexplain the observed behavior of 4U1626–67, and x x ≤ orbitalsemi-majoraxisofthepulsarandiistheorbitalinclina- toevaluatehowthesedatacanconstrainthesourcedistance,as tion),themassofthecompanionstarisestimatedtobeverylow wellasthemassandradiusoftheneutronstar. ( 0.03 0.09M for11◦ i 36◦;Levineetal.1988). Itis ∼ − ⊙ ≤ ≤ henceclassifiedasanultracompactX-raybinary(vanHaaften 2 Data Analysis etal.2012). TheBeppoSAX observation revealedacyclotron resonancescatteringfeatureat 37keV,indicatingthesurface 2.1 X-raylightcurvewithMAXI ∼ magneticfieldofBc=3.2 1012 (1+zg)G,wherezg isthe X-rayeventsof4U1626–67 wereextractedfromall-skyGSC × gravitationalredshift, data, and accumulated over every 60-d interval from MJD 1 55110 (2009 October 6) toMJD 56550 (2013 September 15), z = 1 2GM −2 1, (1) g − Rc2 − using the on-demand analysis system provided by the MAXI (cid:16) (cid:17) team2. We employed the standard regions to extract the on- representedbythegravitational constantGandthevelocityof lightc(Orlandinietal.1998).Thefeaturewasconfirmedbythe sourceandbackgroundevents;2◦radiuscircleforthesourcere- Suzaku observation (Iwakirietal. 2012). The sourcedistance gionandanannuluswithinnerandouterradiiof2◦.1and3◦,re- spectively,forthebackground.Wefittedalltheobtainedspectra was estimatedtobe5–13 kpcfromtheoptical fluxbyassum- withapower-lawmodelwithout absorption. Thefitswereac- ingthattheeffectiveX-rayalbedooftheaccretiondiskishigh (>0.9)(Chakrabarty1998). ceptable for all the 60-d intervals, and gave photon indices of ∼Since the discovery of the 7.6-s pulsation in 1977, the pe- 1.0 1.3. Wecalculatedthe2–20keVmodelflux,andpresent ∼ infigure2aitsvariationoverthe4yearsanalyzed,whereerrors riod of 4U 1626–67 has been repeatedly measured with vari- ousX-raysatellites(e.g. referencesinChakrabartyetal.1997; refer to 1σ statistical uncertainties. The flux was thus almost Camero-Arranz et al. 2010). Table 1 summarizes the X-ray 1http://gammaray.nsstc.nasa.gov/batse/pulsar/data/sources/4u1626.html fluxes, periods and period derivatives observed from 1978 to 2http://maxi.riken.jp/mxondem PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 3 Table1.X-rayflux,periodandperiodderivativeobtainedinpastobservationsof4U1626–67. Observation Flux Pulsation Date Period Band Obs. Bolometric∗ Epoch P† P˙ Ref.‡ (MJD) (keV) (10−10ergs−1cm−2) (MJD) (s) (10−11ss−1) 1978Mar 43596 0.7–60 24 3 25 3 43596.7 7.679190(26) 4.55§ 1 ± ± − 1979Feb 43928–43946 2–10 5.1 0.3 19 1 43946.0 7.677632(13) 4.9 0.1§ 2 ± ± − ± 1983May 45457–45459 2–20 10.1 0.2 19.0 0.4 45458.0 7.671350(1) 13 5 3 ± ± − ± 1983Aug 45576 2–10 5.6 0.5 20.3 1.8 45576.9 7.67077(1) 5.65 0.10l 4 ± ± − ± 1986Mar 46519–46520 1–20 14 0.4# 22 0.7 46520.0 7.6664220(5) 4.96 0.06§ 5 ± ± − ± 1987Mar 46855–48012 1–20 8.89 0.56 14.0 0.9 6 ± ± 1988Aug 47400.3 7.6625685(30) 7 1990Apr 47999–48002 2–60 20.6 24.7 48001.1 7.660069(2) 8 ∼ ∼ 1990Jun 48043–48530 1–20 6.67 0.89 10.9 1.5 6 ± ± 1990Aug 48133.5 7.66001(4) 4 1993Aug 49210–49211 0.5–10 2.8 9.9 9 ∼ ∼ 1996Aug 50301–50306 2–60 6.1 6.5 10 ∼ ∼ 2000Sep 51803 0.3–10 2.4 8.4 51803.6 7.6726(2) 11 ∗∗ 2001Aug 52145 0.3–10 1.8∗∗ 6.3 52145.1 7.6736(2) 3.39 0.96l 11 ± 2003Jun 52793 0.3–10 1.8∗∗ 6.3 52795.1 7.67514(5) 2.74 0.37l 11 ± 2003Aug 52871 0.3–10 1.6∗∗ 5.6 52871.2 7.67544(6) 4.6 1.2l 11 ± 2007Jun 54280 15–50 2.8 0.1 5.6 0.2 54280 7.6793 2.9 12 ± ± ∼ 2007Sep 54370 15–50 2.6 0.1 5.2 0.2 54370 7.6793 2.7 12 ± ± ∼ 2007Dec 54450 15–50 4.0 0.1 8.0 0.3 54450 7.6793 1.9 12 ± ± ∼ 2008Jan 54480 15–50 4.6 0.2 9.3 0.4 54480 7.6793 0.18 12 ± ± ∼ 2008Feb 54510 15–50 4.6 0.1 11.5 0.3 54510 7.6793 0.53 12 ± ± ∼ − 2008Mar 54530 2–100 10.1 0.8 11.7 0.9 13 ± ± 2008Mar 54550 15–50 5.8 0.1 14.5 0.3 54550 7.6793 2.3 12 ± ± ∼ − 2008Jun 54620 15–50 5.9 0.1 14.8 0.2 54620 7.6793 2.7 12 ± ± ∼ − Allerrorsrepresent1-σuncertainties. Converted0.5–100keVflux,assumingthespectralmodelsinCamero-Arranzetal.(2012). ∗ Valuesinparenthesesare1σerrorinthelastdigit(s). † (1) Pravdo et al. (1979) (HEAO 1/A-2), (2) Elsner et al. (1983) (Einstein/MPC), (3) Kii et al. (1986) (Tenma), (4) Mavromatakis (1994) ‡ (EXOSAT/GSPC,ROSAT),(5)Levineetal.(1988)(EXOSAT/ME),(6)Vaughan&Kitamoto(1997)(Ginga/ASM),(7)Shinodaetal.(1990)(Ginga),(8) Mihara(1995)(Ginga),(9)Angelinietal.(1995)(ASCA),(10)Orlandinietal.(1998)(BeppoSAX),(11)Kraussetal.(2007)(Chandra,XMM-Newton), (12)Thedatawerereadfromfigure4inCamero-Arranzetal.(2010)(Swift/BAT),(13)Camero-Arranzetal.(2010)(RXTE/PCAspectra). Averagedvalue. §lAveragedP˙ calculatedfromP oftheobservationandthepreviousoneinthistable. #TheerrorwasestimatedbythecountratewithME,usingthevaluesofthecountrateandtheerrorwithGSPC. Absorption-correctedflux. ∗∗ 4 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 constant at 8.6 10−10 ergcm−2s−1 before MJD 56200, ∼ × andslightlyincreasedto 9.5 10−10ergcm−2s−1afterthat ∼ × time. 2.2 Pulseperiodsandpulse-periodderivativeswith MAXI Thepulsartiminganalysisof4U1626–67wascarriedoutwith theGSCevent dataofrevision 1.5, which have atimeresolu- tionof50µs.Weextractedeventswithina1◦.5radiusfromthe sourceposition, andthen applied thebarycentric correction to their arrivaltimes. Background was notsubtracted inthetim- ing analysis. Todetermine P and P˙, we employed the epoch foldingmethod. There,χ2 ofthefoldedpulseprofile,defined as χ2 = n (yi−y¯) 2, y¯ = (√1yi)2yi, (2) Fig.1.Bolometricflux(top),period(middle)andperiodderivative(bottom) Xi=1(cid:20) √yi (cid:21) P (√1yi)2 of4U1626–67obtainedbypastX-rayobservationsfrom1978to2008. In iscalculatedforeachtrialvalueoPfPandP˙,wherenisthenum- thetoppanel,observedX-rayintensitiesareconvertedtothemodelfluxin berofbinsofthefoldedprofileandy isthenumberofeventsin i the0.5–100keVbandassumingthetypicalspectralmodelgivenbyCamero- thei-thbin. Weusedn=32,andconfirmedthattheexposure Arranzetal.(2012). Filledcirclesandsolidlinesrepresentthepastobser- is uniform over the 32 bins within 0.5%. The epoch-folding vationsintable1andBATSE1observations,respectively. analysiswasperformedforevery60-dinterval,tobecoincident withthelight-curvetimebinsemployedinsection2.1. Ineach interval,wesearchedforthevaluesofP andP˙ thatmaximize χ2. Here,theP andP˙ values measuredwiththeFermi/GBM pulsarproject3wereusedtoselectthesearchranges,andP˙ was assumedconstantineachinterval. Figure3showstheobtained χ2valuesontheP–P˙ plane,employingMJD55290–55350as atypicalexample. The1-σ errorsofP andP˙ wereestimated byMonte-Carlosimulations(seeAppendix3).Werepeatedthe analysis intheenergybandsof2–20keV,2–10keV,2–4keV, 4–10keVand10–20keV,andthenselectedtheresultsofthe2– 10keVbandbecausethemaximumχ2 wasthehighestamong them.Resultsfromtheotherenergybandswereconsistentwith these. Figure 2b and 2c show time variations of the obtained P and P˙, respectively. The absolute value of P˙ increased with the flux increase around MJD 56400. We fitted the data in figure 2b with a liner function, because their distribution ap- pears quite linear. The best-fit slope was then obtained as P˙ = 2.87 10−11ss−1.Figure2dshowstheresidualsfrom h i − × thebest-fitline,wheretheresultsoftheFermi/GBMpulsardata areoverlaid.TheresultsoftheMAXI/GSCandtheFermi/GBM arefoundtoagreewitheachotherwithintheerrors. Fig.2.The2–20keV flux(panel a), theperiod(panel b), andtheperiod derivative(panelc)of4U1626–67,obtainedevery60dwiththeMAXI/GSC 2.3 Estimationofbolometricflux datafrom2009Octoberto2013September.Panel(d)showsresidualsfrom thebest-fitlinearfunctiontotheperioddatain(b). Thehorizontal linein In the following sections, we apply the theoretical models of (c) represents the slope of the line in (b) (−2.87×10−11 ss−1). The pulsarspin-up/down,proposedbyGL79andLRB95,totheob- Fermi/GBMresultsaresuperposedbyverticallinesegments. 3http://gammaray.nsstc.nasa.gov/gbm/science/ pulsars/lightcurves/4u1626.html PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 5 3 Application of the Ghosh & Lamb relation As reviewed in section 1, GL79 derived arelation between P˙ and L in accreting X-ray pulsars, assuming that the accreting mattertransfersitsangularmomentumtothepulsaratthe“outer transitionzone”,r [equation(A2)].Theequationsweusedare 0 summarizedinAppendix1. Rappaport&Joss(1977)alsopro- posed analmost equivalent equation. Sincetheir modelequa- tionincludesanunknownparameter(ξv /v ),ofwhichthere- r ff lation to n(ω ) in the GL79 relation is calculable. Therefore, s weemploytheGL79relation. 3.1 ModelequationsrelatingP˙ totheflux AccordingtoGL79,P˙ isexpressedby Fig.3.Distributionofχ2 ofthefoldedpulseprofiles, shownasafunction P˙ = 5.0 10−5µ3072n(ωs)S1(M)P2L3776 syr−1, (3) − × ofthetrialP andP˙,obtainedfromthe2–10keVMAXI/GSCeventdatain MJD55290–55350. Therightbarindicatestheχ2 values. Themaximum where µ30 is the magnetic dipole moment µ in units of χ2is108for31degreesoffreedomatP=7.6777282sandP˙=−2.64× 1030 Gcm3,andL37 isLinunits of1037 ergs−1. Thefunc- 10−11ss−1. tions n(ω ) and S (M) aregiven in Appendix 1, where ω is s 1 s thefastnessparameterdefinedbyequation(A6). Ifω isinthe s rangeof0 0.9,n(ω )isapproximatedbyequation(A4)within s served data including those from the previous measurements − 5%. Sincen(ω )changesfrompositivetonegativedepending s and from the MAXI/GSC. For this, we have to estimate the onω (figure7),P˙ canbecomebothpositive(ω >0.349;spin s s bolometric flux F of the individual observations, consider- bol down)andnegative(ω <0.349;spinup). s ing different energy bands used in different observations, and As shown in equation (A5), S (M) contains the effective 1 employingappropriatespectralmodels. momentofinertiaI. ItisexpressedasafunctionofM andR, The energy spectrum of 4U 1626-67 were studied in both dependent on the EOS. We utilize its approximation given by the spin-up and spin-down phases (table 1), and the changes Lattimer&Schutz(2005), in the spectral shape between these two phases were reported I (0.237 0.008)MR2 (e.g.Jainetal.2010;Camero-Arranzetal.2012).Accordingto ≃ ± Camero-Arranzetal.(2012),thespectrainbothphasescanbe M R −1 M 4 R −4 1+0.42 +0.009 , × M 10km M 10km fittedwithamodelcomposedofablackbodyandacutoffpower " (cid:18) ⊙(cid:19)(cid:16) (cid:17) (cid:18) ⊙(cid:19) (cid:16) (cid:17) # law,andtheirdifferenceisintheblackbodycomponent,whose (4) temperatureis 0.5keVinthespin-up phaseand 0.2keV ∼ ∼ whichisapplicableinmostofthemajorEOSmodelsifM/R> in the spin-down phase. We hence employed these respective 0.07M km−1. ∼ spectralmodelsforthespin-upandspin-downphases,andcon- ⊙ In4U1626–67,thesurfacemagneticfieldisknownfromthe verted the 2–20 keV MAXI/GSC flux to those in the 0.5–100 cyclotronresonancescatteringfeatureasB =3.2 1012(1+ c keV band, which we identify with F . Since the power-law × bol z )G(section1).Itisconsideredtorepresentthefieldstrength g continuum isflat(photonindex 1)below 20keVandex- ∼ ∼ near the magnetic poles. Assuming that the magnetic axis is ponentially cuts off above 20 keV, the fluxes in the energy ∼ alignedtothepulsarrotationaxis,µattheequatorintheGL79 bandbelow0.5keVandabove100keVarenegligible. Forex- modelisrepresentedby ample,theconversionfactorfromthe2–20keVfluxobserved 1 by the MAXI/GSC (in the spin-up phase) to the 0.5–100 keV µ = 2BcR3. (5) flux is 1.88. In a similar way, we calculated F in the past bol Ifthesourceemissionisisotropic,LiscalculatedfromF bol observations,andpresenttheresultsintable1. andthedistanceDas Infigure4,weplottherelationbetweentheobservedP˙ and L = 4πD2F . (6) the calculated F , including the past data. It clearly shows bol bol theirnegativecorrelation,expectedfromthepulsarspinupdue Sincethepulsaremissionisanisotropic,itisnotexactlycorrect. totheaccretiontorque.Furthermore,thedatapointsinthespin- Weemploythisapproximationandthendiscusstheeffectlater. upandspin-downphasesapparentlydefinesawell-definedsin- Combining equations (3), (4), (5), and (6), as well as the gledependenceonF . expressionforz [equation(1)],weobtainatheoreticalmodel bol g 6 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 Fig.4.ArelationbetweenP˙ andFbolbytheMAXI/GSCandthepastobservations. Filledcircles,opencirclesandsquaresrepresenttheMAXI/GSCdata, theSwift/BATdataandtheothersintable1,respectively.Thedashed-dottedhorizontallineindicatesP˙ =0.Thesolidlineisthebestfitmodelcalculatedby equation(3),assumingadistanceof10kpc.TheparametersareM=1.83M⊙andR=11.4km,withχν2of2.9for37degreesoffreedom. Dashedtwo linesshowthecasewhenRischangedby±1kmwithMkeptunchanged,whiledottedtwolinesthosewhenMisvariedby±0.3M⊙withRfixedat11.4 km. equationtodescribetheobservedP˙–Lrelation,includingthree 4,wherethebestfitvalueswereobtainedasM=1.83M and ⊙ unknownparameters,D,M andR. R=11.4km(errorsareconsideredlater). Tounderstand how themodelcurvedepends onM andR, weshowinfigure4somepredictionsbyequation(3)whenei- 3.2 Comparisonbetweenthedataandtheory therM orRisslightly changed. Thus,changes inR(withD In order to determine the possible parameter ranges of D, M andM fixed)causes parallel displacements ofthe modelwith andR,wefittedtheobservedP˙–F relationinfigure4with littlechangesinitsslope,whilethoseinM(withDandRfixed) bol appearsmainlyinslopechangeswiththe“zero-cross”pointnot themodelpreparedasabove.Whenerrorsassociatedwithsome pastmeasurements ofP˙ areunavailable, weassumedanarbi- much affected. In other words, the observed P˙–Fbol relation trarilysmallvalue(∆P˙ =6 10−16ss−1),becausetheoverall hasessentiallytwodegreesoffreedom,namely,thezero-cross × pointandtheslope,andtheirjointuseallowsustosimultane- errorsaredominatedbythoseinF . Thistreatmentwascon- bol firmedto little affect the fitting results. Since it is difficult to ously constrain two (in the present case M and R) out of the constrainallthe threeparameterssimultaneously fromtheP˙– threemodelparameters: theother one(D inthepresentcase) remainsunconstrained. Below, letus consider physical mean- F relationalone,wefirstassumedthesourcedistanceDtobe bol ingsbehindthismodelbehavior. somevaluesfrom3to20kpc,andthendeterminedtheallowed M–Rregionsasafunctionoftheassumeddistance. Asanex- Infigure4,thezero-crosspointatthespin-up/downthresh- ample,thefittingresultassumingD=10kpcisshowninfigure old represents a torque-equilibrium condition, wherein so- PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 7 calledco-rotationradius,whichisalmostuniquelydetermined whichapproximatelyagreeswiththelocusinfigure5. by the observed P (with some dependence on M), can be Infigure4, the best-fit reduced chi-squared, χ 2 =2.9 for ν equatedwithmagnetosphericradius,ortheouter-transition ra- ν=37degreesoffreedom(DOF),isnotwithintheacceptable dius r0 in the GL79 model (Appendix 1). At this radius, the range. Onepossiblecauseforthislargeχ2 maybesystematic gravitationalpressurecalculatedfromL D2Fbol shouldbal- errorsontheobservedfluxes,becausethefluxdatatakenfrom ∝ ance the magnetic pressure, and this condition specifies the various pastresultsmustbesubject tocross-calibrationuncer- value of µ. By further comparing this µ with the accurately taintiesamongthedifferentinstrumentsemployed. Wethusre- measuredBc,wecanconstrainRviaequation(5). Asaresult, peatedthemodelfittingbygraduallyincreasingthesystematic thezero-crosspointbecomesmoresensitivelytoRratherthan errorsinthefluxfrom1%,tofindthatχ 2 1isattainedifthe ν ∼ toM. Morequantitatively, thetorque-equilibrium conditionin systematicerrorsaresetat5.5%. Thisnumberisquitereason- equation(A6),ωs=0.349,canbecombinedwithequation(5), able, becausethefluxesoftheCrabnebula measuredbythese toyieldascalingforthefluxatthetorqueequilibriumas instruments scatter by 10% (Kirschetal. 2005) mostlikely ∼ Fbol∝M−23R5D−2, (7) dthueesetoinusntrcuemrtaeinnttsi.es intheabsolutephotometricsensitivities of wheredependencesonBcandP wereomitted. Sincethefitχν2 wasfoundtodependlittleonD,wehave TheslopeoftheP˙–F relationinfigure4meansthecon- decidedtoemploythesystematicerrorof5.5%throughout,and bol versionfactorfromanincrementoftheluminosity (andhence calculatedthestatisticallyallowedM–Rregionatthe68%con- oftheaccretiontorque)tothatintheneuron-starrotation.Thus, fidencelimits (χ2 increment∆χ2<2.3 for2DOF).Infigure it is inversely proportional to I, so that an increase in M will 5,theobtainedallowedregionisindicatedbyapairofdashed maketheslopesmaller(intheabsolutevalue). AlargerRwill lines,andtherangesofM andRforrepresentativedistancesof actinthesamesensethroughI,butthiseffectispartiallycan- 6,7,8,...,13kpcarelistedintable2. celedbyaninducedincreaseinµ,throughequation(3),which would make period changes easier. As a result, the slope be- 3.3 Systematicuncertainties comesmainlydeterminedbyM. Quantitatively, atthehighest spin-up regime which most accurately specifies the slope, we Althoughthepresentmodelfittinghasbeenfoundtohaveaca- canapproximateω 0,andhencen(ωs) constantfromfig- pability ofratheraccuratelyconstraining M andRwhenD is → ∼ ure7,torewriteequation(3)as given,theuncertaintyrangeinfigure5(dashedlines)considers P˙ M−170R−72L76 M−170R−27D172Fbol67 (8) onlystatisticalerrors.Wethereforeneedtoevaluatesystematic − ∝ ∝ errorsassociatedwithseveralassumptionsandapproximations when ignoring the higher-order terms in equation (4). This which we have employed. Among them, the approximations yieldstheslopeas involved in equation (A4) for n(ω ) of the GL79 model, and s equation(4)forI,areconsideredtobeaccuratetowithin<5% dP˙ 10 2 12 1 −dFbol ∝M−7 R−7D 7 Fbol−7. (9) (GL79)and<10%(Lattimer&Schutz2005),respectively.We henceneglectingtheseeffects,andconsiderbelowmoredomi- By changing the assumed D, we calculated the best-fit M nantsourcesofsystematicerrors. andR,andshowtheirlocusasasolidlineinfigure5,wherethe One obvious uncertainty is inequation (6),which assumes mass-radiusrelationsfromrepresentativeEOSs[SLy(Douchin thatthetime-averagedfluxofapulsarisidenticaltotheaverage &Haensel2001),APR(Akmaletal.1998)andShen(Shenet overthewholedirection.Althoughthedifferencebetweenthese al.1998a;Shenetal.1998b)presentedinYagi&Yunes(2013)] twoaverageshasnotbeenestimatedin4U1626–67, Basko& are also shown. In order for the derived M and R fall in the Sunyaev(1975)examinedthisissueinHerX-1,asimilarlow- nominal neutron-star parameters range, M =(1.0 2.4) M and R=8.5 15 km (e.g. Bhattacharyya 2010; O−¨zel 2013⊙), massX-raybinarypulsar,andconcludedthatthedifferenceisat − most50%. Assumingthattheconditionissimilarin4U1626– thedistancemustbeD=5 13kpc. Thisisinagoodagree- − 67,weassignasystematicuncertaintytothefluxupto 50%, mentwithChakrabarty(1998). Forreference,thelocusinfig- ∼ whichistransferredalmostdirectlytothatinthenormalization ure5canbeanalyticallycalculatedinthefollowingway.When factorofequation(3).AnotheruncertaintyinherenttotheGL79 a value of D is given, the measured zero-point flux specifies modelisthoseintheaccretiongeometry,includingtheexactlo- M−2/3R5D−2 via equation (7), while the slope in figure 4 specifiesM−10/7R−2/7D12/7Fb−o1l/7viaequation(9).Byelim- caantdiotnheofatnhgele“souatmerotnrgantshiteiopnuzlsoanre’s”rroadtaituisonr0aoxfise,qiutsatimonag(nAe2ti)c, inating D from these two scalings, and ignoring the weakly varyingfactorF−1/7,weobtain axis,andtheaccretionplane;weassumedthattherotationand bol magneticaxesareparallel, andareperpendicular totheaccre- M R2 (10) tionplane. Alltheseeffectsmayberepresentedeffectivelyby ∝ 8 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 4 Application of the Lovelacemodel As described insection 1anddetailed inAppendix 2, LRB95 developedanother(inasensemoresophisticated)model,tobe called “Lovelace model” here, to explain therelation between P˙ andL, assumingmagneticoutflows and/or magneticbreak- ing. Using the “turnover radius” r [equation (A8)] and the to co-rotationradiusr [equation(A9)],themodelpredictsspin- cr upwithoutflowswhenr <r ,andprovidesbothspin-upand to cr spin-down solutions with magnetic braking by the disk when r >r . Toexplainboththespin-upandspin-downbehavior to cr of4U1626–67withtheLRB95model,r >r musttherefore to cr besatisfiedinthespin-downphase. However,inthespin-down phaseof4U1626–67,wefoundthatr >r isnotsatisfiedun- to cr dertheparameterswhichweassumed.Forexample,thevalues areestimatedtober =1.3 108cmandr =7.0 108cm to cr × × Fig.5.Variousconstraints ontheneutron starparameters, shown onthe withFbol=9.3 10−10ergcm−2s−1,M=1.73M ,R=11.1 mass-radius plane. Thesolidlinesindicate howthebest-fit valuesofM × ⊙ km, D=6kpc, andαD =0.01. Thus, the Lovelace model andR,allowedbythedatainfigure4,varyasDischanged. Thecases m cannotexplainthespin-downphaseof4U1626–67. offourdifferentvaluesofthenormalizationfactorAareshown. Apairof dashedlinesrepresent68%errorsfortheA=1.0curve,whiledottedlines Eventhough theLovelacemodelhastheaboveproblem, it givecontoursofthesourcedistanceto4U1626–67.Thegraysolidlinesare mass-radiusrelationspredictedbythreeEOSs;SLy,APRandShen. mightprovideareasonableexplanationtothespin-upbehavior of 4U 1626–67. Because r <r is satisfied in the spin-up to cr Table2.AllowedM–Rregionsoftheneutronstarof4U1626– phaseofthis object, weshould employ the“spin-up with out- 67foranassumeddistancecorrespondingtothedashedlinesin flows” solution by LRB95, which describes the P˙–L relation figure5 as Assumeddistance Mass Radius ∗ ∗ αD 0.15 (kpc) (M⊙) (km) P˙ ≈ −4.3×10−5µ300.285 0.1m R60.85 6.0 1.09–1.15 9.03–9.11 0.425 (cid:16) (cid:17) M − 7.0 1.28–1.34 9.70–9.79 × M I45−1P2L370.85syr−1, (11) 8.0 1.45–1.53 10.3–10.4 (cid:18) ⊙(cid:19) 9.0 1.63–1.71 10.9–11.0 10.0 1.81–1.90 11.4–11.5 whereαistheviscousparameterinShakura&Sunyaev(1973), 11.0 1.98–2.08 11.8–12.0 D is the magnetic diffusivity parameter, R is R in units of m 6 12.0 2.15–2.26 12.2–12.4 106 cm, and I is I in units of 1045 gcm2. In LRB95, α 45 13.0 2.32–2.43 12.6–12.8 is assumed to be 0.01 to 0.1 and D to be of order of unity. m Equation(11)isequivalenttoequation(3),wherethethemajor 68%confidence(2-parameterserrors)limits. ∗ difference is that the factor n(ω ) in the latter is replaced by s αD intheformer. m uncertaintyinµ .Becauser isproportionaltoµ 4/7andthe 30 0 30 We thus selected the spin-up-phase data from table 1, and righthandsideofequation(3)toµ 2/7,anuncertaintyinµ 30 30 fitted them with equation (11), over the parameter ranges of by,e.g.,50%,wouldinducea25%changeinthecoefficientof M =1.0 2.4M andR=8.5 15km. AresultforD=6 equation(3). − ⊙ − kpcandαD =0.01isshowninfigure6,inthesameformat m Tojointlytakeintoaccountalltheseuncertainties,wehave as figure 4 (but limited to P˙ <0). The fit is far from being decided to introduce an artificial normalization factor A, and acceptable, with χ 2 =46 for 30 DOF. Changing D or αD ν m multiplied it to the right hand side of equation (3). Then, the didnotsolvetheproblem.Thisisnotsurprising,sinceequation modelfitting was repeated by changing Afrom0.5 to 1.5. In (11) can explain a torque-equilibrium condition (P˙ =0) only figure5,theallowedM–RregionsforA=0.5,0.8,1.2,and1.5 whenthefluxtendstozero. ThismakeacontrasttotheGL79 arealso drawn. Thus, the uncertainty indeed affects the mass model, and disagrees with the measurements. In conclusion, determination, butRremainsverywellconstrained aslongas theLRB95modelcannotexplaintheobservedbehavior of4U Dissomehowdetermined. 1626–67. PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 9 served flux. Our distance estimate is also consistent with that ofChakrabarty(1998), 5–13kpc, whichwasderivedfromthe opticalfluxassumingthattheeffectiveX-rayalbedooftheac- cretiondiskis>0.9. Conversely,∼if the distance D is assumed, the P˙–F re- bol lation can fixM and R with relatively small statistical errors. Table 2 lists the allowed M and R ranges for typical source distances assumed. Thus, onceD canbedeterminedbysome othermeans,M andRof4U1626–67canbeconstrainedtoa rathernarrowrange,whichwouldbeusefultopin-downthenu- clearEOS.Apointofparticularimportanceisthatthepresent methodcanprovidetheinformationonR,whichismorevitally needed than that onM, without not much affectedby various systematicerrors(figure5). In order to further increase the reliability of the GL79 method,itisimportanttounderstandthesystematicerrors(sec- Fig.6.AscatterplotbetweenP˙ andFbolinthespin-upphases,obtained tion3.3). Inthis respect,anapplication oftheGL79modelto bytheMAXI/GSCandothersatellites, presented inthesamemanneras BeX-raybinaries byKlus etal.(2014) isworthnoting. They figure4. ThedashedhorizontallineindicatesP˙ =0. Thesolidlineisthe comparedthesurfacemagneticfieldofthesepulsarscalculated bestfitmodelbyequation(11),withM=1.73M⊙,R=11.1km,D=6 kpc,andαDm=0.01.Thefitgoodnessisχν2=46(1400/30)for30DOF. using the GL79 model (=BGL79), with that measured using cyclotronresonancescatteringfeatures(=B ). Theratiowas C 5 Discussion foundasBGL79/BC=3 4intwoexamples,GROJ1008–57 − andA0535+26. ThiscorrespondstoavalueofA 1.5,which ApplyingtheepochfoldinganalysistotheMAXI/GSCdata,we ≃ isconsistentwiththe50%uncertaintyinAassumedinsection determinedP,P˙,andtheX-rayfluxof4U1626–67 forevery 3.3.Thus,studyingalargernumberofsourceswouldbeimpor- 60-dintervalfrom2009Octoberto2013September.Thepulsar tant. has been spinning up throughout this period, and the spin-up ratewaspositivelycorrelatedwiththeflux. On the P˙–F plane (figure 4), these MAXI/GSC results Acknowledgments bol wereconfirmedtobefullyconsistentwiththosefromthepast The authors are grateful to all members of the MAXI team, BATSE observations (table 1). In fact, the overall data jointly define pulsar team andFermi/GBM pulsar project. This workwas supported a well defined P˙ vs. Fbol correlation, covering rather evenly by RIKEN Junior Research Associate Program, and the Ministry of thespin-upandspin-downphasesfromP˙ = 6 10−11ss−1 Education,Culture,Sports,ScienceandTechnology(MEXT),Grant-in- − × to+5 10−11 ss−1. Utilizing thesefavorableconditions, we AidNo.24340041. × have successfully shown that the accretion-torque theory by GL79 can adequately explain the overall P˙–F behavior of bol Appendix 1 Ghosh & Lamb model 4U 1626–67, while that of LRB95 model cannot explain the dataevenlimitingthecomparisontothespin-upphase. GL79derivedanequationbetweenP˙ andLinanX-raybinary pulsar. The accreting matter transfers the angular momentum Another favorable condition of this object is the accurate to the pulsar at the “outer transition zone”, r . Equation (11) knowledge of its surface magnetic field. As a result, the ob- 0 servedP˙–Fbol relation werefound toconstrain, viatheGL79 inGL79denotesr0=0.52rA(0),whererA(0)isthecharacteristic Alfvenradius.Substitutingthenumbers model, two of the three unknown parameters; the distance D, athlleowmeadsstoMtaokfetahneypvuallsuaer,inantdheitnsormadiinuaslRm.asWshanendrMadiaunsdraRngaeres rA(0) = 3.2×108M˙1−772 µ3074 MM −71 cm, (A1) ofneutronstars,namelyM=(1.0 2.4)M andR=8.5 15 (cid:18) ⊙(cid:19) − ⊙ − 1 kkmpc.resTpheicstiivselcyo,ntshiestdeinsttawncitehctahnebleimciotnDstra>in3edktpocDde=riv5e−d b1y3 r0 = 1.7×108M˙1−772 µ3074 MM −7 cm, (A2) (cid:18) ⊙(cid:19) Ciohraokfr4abUar1t6y2e6t–a6l7.(u1n9d9e7r);thteheassesuamutphtoiorsnaonf∼aIly=ze1dth1e0P4˙5bgehcmav2- whereM˙17istheaccretionrateM˙ inunitsof1017gs−1. × GL79gave their theoretical P˙–Lrelation [equation (15)in andM =1.4M ,thenestimatedthemassaccretionratetobe M˙ >1 1016 g⊙s−1usingasimilarconsiderationtotheGL79 GL79]as fram∼ew×ork, and compared the expected luminosity to the ob- P˙ = 5.0 10−5µ3072n(ωs)S1(M)P2L3776 syr−1, (A3) − × 10 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 InLRB95,αisassumedas0.01to0.1andD isorderunity. m r hasbasicallythesamenatureasr intheGL79model[equa- to 0 tion (A2)]. According to r and r , LRB95 demonstrates a to cr magneticoutflowcase(r <r )andmagneticbrakingofthe to cr diskcase(r >r ),wherer is to cr cr r GM 31 1.5 108 M 31P23 cm, (A9) cr≡ ω 2 ≈ × M (cid:16) ∗ (cid:17) (cid:18) ⊙(cid:19) andω =2π/P. ∗ Whenr issmallerthanr ,thepulsarshowsspin-upwith to cr magneticoutflow. P˙ equation[equation(18b)inLRB95]con- sistsM˙ andr .BymovingP totherightside, to 1 P˙ ≈−5.8×10−5P2M˙17I4−51 MM 2 10r8tocm 12 syr−1.(A10) Fig.7.Thefunctionn(ωs)withωs. Theapproximationbyequation(A4)is (cid:18) ⊙(cid:19) (cid:16) (cid:17) effectiveinωs=0−0.9.Thus,n(ωs)becomes0atωs∼0.349,ispositive BydeducingM˙ =LR/GM, inωs<∼0.349,andnegativeinωs>∼0.349. αD 0.15 P˙ ≈ −4.3×10−5µ300.285 0.1m R60.85 awnhderSe1L(Mis)deafireneddesbcyriLbed=reMs˙p(eGctiMve/lyR)b.yTehqeufautinocntison(1s0n)(aωnsd) × MM −0.425I45−1P(cid:16)2L370(cid:17).85syr−1. (A11) (cid:18) ⊙(cid:19) (17)inGL79as Itisequivalenttoequation(A3). Theindicesarethesame,and n(ω ) 1.39[1 ω 4.03(1 ω )0.173 0.878 ] thefactorisalmostthesame. ThedifferenceistheαDm term s s s ≈ − { − − } insteadofthen(ω )term. ×(1−ωs)−1, (A4) When rto is lasrger than rcr, magnetic braking takes place. 3 S1(M) = R667 MM −7I45−1. (A5) Iwtocraknswasorskpifno-rdobwotnh.spin-upandspin-down,althoughitmostly (cid:18) ⊙(cid:19) Here,ω istheso-calledfastnessparameter,whichisadimen- s sionless parameter, defined as theratio of thepulsar’s angular Appendix3 Errorestimation ofperiod and frequency to the Keplerian angular frequency of the accreting periodderivative matter. Thisω isexpressedapproximatelybyequation(16)in s We usually use the folding method to obtain P and P˙ of the GL79as pulse, orbit etc. First we assume a set of P and P˙, then fold ωs 1.35µ3067 S2(M)P−1L37−37. (A6) thelightcurvewiththem.Ifthereisnoperiodicitytheresultant ≈ folded light curve is flat. If there is a pulsation with P and Here,S (M)isgivenbyequation(18)inGL79as 2 P˙ it shows apulse shape. Wecalculate χ2 which is asum of 2 3 M −7 squared deviation from the mean, to evaluate the existence of S2(M) = R6−7 M . (A7) apulse. Wechange P andP˙ tofindthemost-likely P andP˙ (cid:18) ⊙(cid:19) which give themaximum χ2. Wecan drawdistribution ofχ2 Equation(A4)isaccuratetowithin5%for0 ω 0.9. The ≤ s≤ intheP andP˙ plane. Figure3is anexample which weused behaviorofn(ω )isplottedinfigure7,wherethezerocrossover s inthis paper toobtain P andP˙ of4U1626–67. Thus wecan pointisseentotakeplaceatω 0.349. s∼ deriveP andP˙,however,theirerrorsarenotobvious. Appendix2 Lovelacemodel A.3.1 Method1-parameteraandthestandard LRB95introducedmagneticoutflowsandmagneticbreakingto estimate- explaintherelationbetweenP˙ andM˙. Aftermanynumerical The most primitive and straight-forward method for error- integrationstheyintroducedrto,wheretheangularvelocityωa estimation is to assume that the errors ∆P, ∆P˙ corresponds of accreting matter reaches the maximum (dω /dr=0). The a toadifferenceofpulsenumberainthewholetimespanT of s mattertransferstheangularmomentumtothepulsaratr=r . to theobservation. r isgivenbyequation(16)inLRB95as to aP2 2aP2 ∆P = ∆P˙ = (A12) rto≈0.91×108 α0D.1m 0.3µ030.57M˙1−70.3 MM −0.15cm.(A8) a is usualTlys less than 1 pulse. EqTusa2tion (A12) are led by as (cid:16) (cid:17) (cid:18) ⊙(cid:19)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.