ebook img

Application of measurement models to impedance spectroscopy PDF

292 Pages·1994·10.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Application of measurement models to impedance spectroscopy

APPLICATIONOFMEASUREMENTMODELS TO IMPEDANCESPECTROSCOPY By PANKAJAGARWAL ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1994 Copyright1994 by PankajAgarwal ACKNOWLEDGMENTS TheauthorthanksProfessorMarkE. Orazem,ProfessorLuisH. Garcia-Rubio andProfessorOscarD.Crisallefortheirguidanceandsupport;Dr.ClaudeDeslouisand Dr. Bernard Tribollet ofCNRS, Paris, France fortheirguidance and support inthe electro-hydrodynamicalimpedancework;ProfessorJ.RossMacdonaldoftheUniversity ofNorthCarolina,ChapelHillforhisguidanceintheinitialregressionscarriedoutinthis work;researchgroupmembersAndrewN.Jansen,OliverC.MoghissiandPaulT.Wojcik for providing some ofthe experimental dataused in this work; and research group membersStevenL.CarsonandJ.MatthewEstebanfortheircontributions. ThisworkwassupportedinpartbyGatesEnergyProductsInc.,OfficeofNaval ResearchandtheNationalScienceFoundationandtheElectrochemicalSociety. iii TABLEOFCONTENTS ACKNOWLEDGMENTS iii LISTOFTABLES vii LISTOFFIGURES viii ABSTRACT xviii CHAPTERS INTRODUCTION 1 1 1.1AFrameworkforModelIdentification 2 1.1.1OptimalDesignofExperiments 3 1.1.2CharacterizationofMeasurements 4 1.1.3ModelIdentification 6 1.2NewDirectionsforStatisticalAnalysis 6 2IMPEDANCESPECTROSCOPY:EXPERIMENTALDESIGN 9 2.1TheoryofImpedanceMeasurement 9 2.1.1Single-SineTechnique 10 2.2Instrumentation 13 2.2.1TheElectrochemicalCell 14 2.2.2Potentiostat 15 2.2.3FrequencyResponseAnalyzer 16 2.2.4ComputerInterface 16 2.3 Software 17 2.3.1MenuOptions 18 2.3.2TypicalExperimentalResults 26 2.4Conclusions 27 3MEASUREMENTMODELS:DEMONSTRATIONOFAPPLICABILITY 41 3.1Introduction 41 3.2MeasurementModels 42 3.3ApproachforDemonstrationofApplicability 44 IV 3.4ResultsandDiscussion 46 3.4.1SequentialConstructionofaModel:Circuit1 46 3.4.2ApplicationtoDiffusionSystems:Circuit2 49 3.4.3ApplicationtoInductiveSystems:Circuit3 50 3.4.4ApplicationtoConstantPhaseElements:Circuit4 51 3.4.5ApplicationtoCoatedMetals:Circuit5 51 3.4.6InterpretationofParameterValues 52 3.5Conclusions 52 4MEASUREMENTMODELS:DETERMINATIONOFERRORSTRUCTURE 71 4.1ClassificationofMeasurementErrors 71 4.2DeterminationofStochasticErrors 73 4.2.1StationarySystems 73 4.2.2Non-StationarySystems 74 4.2.3FilteringTechnique 76 4.3ModelfortheErrorStructure 77 4.4ApplicationsoftheErrorStructure 81 4.5Conclusions 83 5MEASUREMENTMODELS:CONSISTENCYWITHKRAMERS-KRONIG RELATIONS 100 5.1TheKramers-KronigRelations 101 5.2ReviewofMethodsforDeterminingConsistency 102 5.2.1DirectIntegrationofKramers-KronigRelation 103 5.2.2ExperimentalChecksforConsistency 107 5.2.3RegressionofCircuitAnalogues 108 5.3MethodBasedonMeasurementModel 108 5.3.1Algorithm 109 5.3.2Monte-CarloSimulation 114 5.3.3ApplicationtoExperimentalData 116 5.4Conclusion 119 6METALHYDRIDES:ELECTROCHEMICALIMPEDANCEEXPERIMENTS ANDANALYSIS 130 6.1Background 130 6.2ElectrochemicalImpedanceExperiments 134 6.2.1LaNis 136 6.2.2MmNij 137 6.3Analysis 137 6.3.1MeasurementModel 138 6.3.2ProcessModel 141 6.4Conclusions 148 v 1 7MEASUREMENTMODELS:APPLICATIONTOELECTRO- HYDRODYNAMICALIMPEDANCESPECTROSCOPY 193 7.1PrinciplesofEHD 193 7.2EHDExperiments 196 7.3MeasurementModelAnalysis 197 7.4ProcessModelforEHD 198 7.5RegressionofProcessModeltoData 199 7.6Conclusions 201 8CONCLUSIONS 216 9SUGGESTIONSFORFUTUREWORK 218 APPENDIXA 220 FORTRANCODEFORMEASUREMENTMODEL 220 APPENDIXB 244 FORTRANCODEFORMONTE-CARLOSIMULATION 244 APPENDIXC 251 FORTRANCODEFORPROCESSMODEL 25 REFERENCES 265 BIOGRAPHICALSKETCH 271 vi LISTOFTABLES Tables 2.1:ThemeasuringresistorsavailableonSI1286[18] 28 2.2:ThemeasuringresistorsavailableonPAR273A[19] 28 3.1:Valuesforcircuitparameters 54 3.2:TheresultsoftheRegressionoftheVoigtMeasurementmodel(Fig.3.1)tothe circuitsshowninFig3.2 55 4.1:ParameterEstimatesfortheErrorStructureModel(Equation4.14)Obtainedby RegressiontoreplicateDataforn-GaAs 84 7.1:SummaryoftheexperimentalconditionsusedtocollectEHDdata 202 7.2:ExperimentalconditionsusedtocollectdatashowninFigure7.2 203 Vll 1 LISTOFFIGURES Figures 1.1:Flowdiagramforthemeasuementandcharacterizationofamaterial-electrodesystem [7](reproducedwithpermissionfromtheauthor) 7 1.2:Flowdiagramforimpedancespectroscopyproposedinthiswork 8 2.1:Small-signalanalysisofanelectrochemicalnon-linearsystem[4](reproducedwith permissionfromtheauthor) 29 2.2:Principleofcorrelationanalysis[14](reproducedwithpermissionfromthe author) 30 2.3:a)2-terminalelectrochemicalcell,b)3-terminalelectrochemicalcell,c)4-terminal electrochemicalcell[11](reproducedwithpermissionfromtheauthor) 3 2.4:Schematicoftheexperimentalsetup 32 2.5:Controlfrontpaneloftheimpedancesoftware(PotentiostaticMode) 33 2.6:Controlfrontpaneloftheimpedancesoftware(GalvanostaticMode) 34 2.7:DatacollectionfrontpanelforFigure2.5 35 2.8:DatacollectionfrontpanelforFigure2.6 36 2.9:TypicaldatafileforanexperimentwithsettingsfromFigure2.5 37 2.10:TypicaldatafileforanexperimentwithsettingsfromFigure2.6 38 2.11:ThesolidlinerepresentstheabsolutevaluefortheexperimentshowninFigure2.5. Thedashedlinerepresentsthemeasuringresistor 39 2.12:a)ThesolidlinerepresentstheabsolutevaluefortheexperimentshowninFigure 2.6.Thedashedlinerepresentsthemeasuringresistor,b)Thecirclesrepresentthe perturbationcurrentamplitudeasafunctionoffrequency 40 3.1:TheVoigtelectricalcircuitanaloguecorrespondingtothemeasurementmodelused inthiswork(equation(3.1)) 56 vm 3.2:Electricalcircuitanaloguesfor:1)hydrogenevolutiononLaNi5[24];2)corrosionof icraornboinn0st.e5elMiHn23SwOt4%atNathCelcsoorlruotsiioonnnpeoatrentthiealco[r3r0]o;si4o)ncpoortreonstiiaoln[o2f9]a;m3o)dceolrrpiotsionof electrodein0.5MNaCl[31];and5)corrosionofapaintedmetal[32] 57 3.3:RegressionofameasurementmodelwithoneVoigtelementtosyntheticdata(o) obtainedfromCircuit1(hydrogenevolutiononLaNis[24]).Solidlinesinallfigures aretheresultsofthemodelfit. Theresidualsumofsquaresforthefitwas37.15...58 3.4:RegressionofameasurementmodelwithtwoVoigtelementstosyntheticdata(o) obtainedfromCircuit1(hydrogenevolutiononLaNi5[24]).Theresidualsumof squaresforthefitwas0.5588.Solidlinesinallfiguresaretheresultsofthemodelfit. Thelinespresentedinthelowertwofiguresarethemodelfitand itsdeconvolution intothecontributionofeachVoigtelement 59 3.5:RegressionofameasurementmodelwiththreeVoigtelementstosyntheticdata(o) obtainedfromCircuit1(hydrogenevolutiononLaNi5[24]).Theresidualsumof squaresforthefitwas2.112x10'4.Solidlinesinallfiguresaretheresultsofthe modelfit.Thelinespresentedinthelowertwofiguresarethemodelfitandits deconvolutionintothecontributionofeachVoigtelement 60 3.6:RegressionofameasurementmodelwithfourVoigtelementstosyntheticdata(o) obtainedfromCircuit1(hydrogenevolutiononLaNis[24]).Theresidualsumof squaresforthefitwas1.772xlO'7.Solidlinesinallfiguresaretheresultsofthe modelfit.Thelinespresentedinthelowertwofiguresarethemodelfitandits deconvolutionintothecontributionofeachVoigtelement 61 3.7:RegressionofameasurementmodelwithfiveVoigtelementstosyntheticdata(o) obtainedfromCircuit1(hydrogenevolutiononLaNi5[24]).Theresidualsumof squaresforthefitwas4.915x10'10.Solidlinesinallfiguresaretheresultsofthe model 62 3.8:Normalizedsumofsquaresfortheregressionofameasurementmodeltosynthetic dataobtainedfromCircuit1(hydrogenevolutiononLaNi5[24])asafunctionofthe numberofVoigttimeconstantsemployedinthemodel:(o)regressiontosynthetic data;(A)regressiontosyntheticdatawithrandomnoiseadded;and(dashedline) normalizednoiselevel 63 3.9:Residualerrors(o)asafunctionoffrequencyfortheregressionofameasurement modelwithfiveVoigtelementstosyntheticdataobtainedfromCircuit1(hydrogen evolutiononLaNis[24]) 64 3.10:RegressionofameasurementmodelwiththreeVoigtelementstosyntheticdata(o) obtainedfromCircuit2withaddedrandomnoise(5%amplitude). Theresidualsum IX ofsquaresforthefitwas2.424xl0'2.Solidlinesinallfiguresaretheresultsofthe modelfit.Thelinespresentedinthelowertwofiguresarethemodelfitandits deconvolutionintothecontributionofeachVoigtelement 65 3.11:Residualerrorsasafunctionoffrequencyfortheregressionofameasurement modelwiththreeVoigtelementstosyntheticdata(o)obtainedfromCircuit2with addedrandomnoise(5%maximumamplitude) 66 3.12:RegressionofameasurementmodelwithfourVoigtelementstosyntheticdata(o) obtainedfromCircuit2(corrosionofcarbonsteelin3wt%NaClsolutionnearthe corrosionpotential[29]).Theresidualsumofsquaresforthefitwas3.763xlO'6 Solidlinesinallfiguresaretheresultsofthemodelfit.Thelinespresentedinthe lowertwofiguresarethemodelfitanditsdeconvolutionintothecontributionof eachVoigtelement 67 3.13:RegressionofameasurementmodelwiththreeVoigtelementstosyntheticdata(o) obtainedfromCircuit3(corrosionofironin0.5MH2SO4atthecorrosionpotential [30]).Theresidualsumofsquaresforthefitwas3.221xl0'14.Solidlinesinall figuresaretheresultsofthemodelfit.Thelinespresentedinthelowertwofigures arethemodelfitanditsdeconvolutionintothecontributionofeach Voigtelement 68 3.14:RegressionofameasurementmodelwitheightVoigtelementstosyntheticdata(o) obtainedfromCircuit4(corrosionofamodelpitelectrodein0.5MNaCl[30]).The residualsumofsquaresforthefitwas1.491x10'2.Solidlinesinallfiguresarethe resultsofthemodelfit.Thelinespresentedinthelowertwofiguresarethemodelfit anditsdeconvolutionintothecontributionofeachVoigtelement 69 3.15:RegressionofameasurementmodelwithtwoVoigtelementstosyntheticdata(o) obtainedfromCircuit5(corrosionofapaintedmetal[32]).Theresidualsumof squaresforthefitwas2.055x1O'14.Solidlinesinallfiguresaretheresultsofthe modelfit.Thelinespresentedinthelowertwofiguresarethemodelfitandits deconvolution 70 4.1:Fivereplicatemeasurementsforann-GaAssinglecrystalheldat320K 85 4.2:Unfilteredstandarddeviation forGaAs singlecrystalat320K. Circlesrepresentthe realandthetrianglesrepresenttheimaginarypartofthestandarddeviation 86 4.3:SixreplicateImpedancemeasurementsforCopperinalkalinesolution 87 4.4:Realresidualerrorsfortheregressionofasinglemeasurementmodeltothedata showninFigure4.3 88 x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.