ebook img

Application of intuitionistic neutrosophic graph structures in decision-making PDF

2017·0.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Application of intuitionistic neutrosophic graph structures in decision-making

Annals of Fuzzy Mathematics and Informatics FMI @ Volume14, No. 1, (July 2017), pp. 1–27 ISSN:2093–9310 (print version) (cid:13)c KyungMoon Sa Co. ISSN:2287–6235 (electronic version) http://www.kyungmoon.com http://www.afmi.or.kr Application of intuitionistic neutrosophic graph structures in decision-making Muhammad Akram, Muzzamal Sitara Received 9 January 2017; Revised 8 February2017; Accepted 16 February 2017 Abstract. In this research study, we present concept of intuitionis- ticneutrosophicgraph structures. Weintroducethecertain operations on intuitionistic neutrosophicgraph structuresand elaborate them with suit- ableexamples. Further,weinvestigatesomeremarkablepropertiesofthese operators. Moreover,wediscussahighlyworthwhilereal-lifeapplicationof intuitionisticneutrosophicgraphstructuresindecision-making. Lastly,we elaborate general procedure of our application bydesigning an algorithm. 2010 AMS Classification: 03E72, 05C72,05C78, 05C99 Keywords: Intuitionistic neutrosophic graph structures, Decision making Corresponding Author: Muhammad Akram ([email protected]) 1. Introduction G raphical models are extensively useful tools for solving combinatorial prob- lems of different fields including optimization, algebra, computer science, topology andoperationsresearchetc. Fuzzygraphicalmodelsarecomparativelymorecloseto nature,becauseinnaturevaguenessandambiguityoccurs. Therearemanycomplex phenomena andprocessesin science and technologyhavingincomplete information. To deal such cases we needed a theory different from classical mathematics. Graph structures as generalized simple graphs are widely used for study of edge colored and edge signed graphs, also helpful and copiously used for studying large domains of computer science. Initially in 1965, Zadeh [29] proposed the notion of fuzzy sets to handle uncertainty in a lot of real applications. Fuzzy set theory is finding large number of applications in real time systems, where information inherent in systems has various levels of precision. Afterwards, Turksen [26] proposed the idea ofinterval-valuedfuzzy set. Butin varioussystems,there aremembershipandnon- membership values, membership value is in favor of an event and non-membership value is against of that event. Atanassov [8] proposed the notion of intuitionistic MuhammadAkrametal./Ann. FuzzyMath. Inform. 14(2017),No. 1,1–27 fuzzy set in 1986. The intuitionistic fuzzy sets are more practical and applicable in real-life situations. Intuitionistic fuzzy set deal with incomplete information, that is, degree of membership function, non-membership function but not indeterminate andinconsistentinformationthatexists definitely in many systems, including belief system, decision-support systems etc. In 1998, Smarandache [24] proposed another notion of imprecise data named as neutrosophic sets. “Neutrosophic set is a part of neutrosophy which studies the origin, nature and scope of neutralities, as well as their interactions with different ideational spectra”. Neutrosophic set is recently proposed powerful formal framework. For convenient usage of neutrosophic sets in real-lifesituations,Wangetal. [27]proposedsingle-valuedneutrosophicsetasagen- eralization of intuitionistic fuzzy set[8]. A neutrosophic set has three independent components having values in unit interval [0, 1]. On the other hand, Bhowmik and Pal [10, 11] introduced the notions of intuitionistic neutrosophic sets and relations. Kauffman[16]definedfuzzygraphonthebasisofZadeh’sfuzzyrelations[30]. Rosen- feld [21] investigated fuzzy analogue of various graph-theoretic ideas in 1975. Later on,Bhattacharyagavesomeremarksonfuzzygraphin1987. BhutaniandRosenfeld discussed M-strong fuzzy graphs with their properties in [12]. In 2011, Dinesh and Ramakrishnan [15] put forward fuzzy graph structures and investigated its prop- erties. In 2016, Akram and Akmal [1] proposed the notion of bipolar fuzzy graph structures. Broumi et al. [13] portrayed single-valued neutrosophic graphs. Akram andShahzadi[2]introducedthenotionofneutrosophicsoftgraphswithapplications. Akram and Shahzadi [4] highlighted some flaws in the definitions of Broumi et al. [13] and Shah-Hussain [22]. Akram et al. [5] also introduced the single-valued neu- trosophic hypergraphs. Representation of graphs using intuitionistic neutrosophic soft sets was discussed in [3]. In this paper, we present concept of intuitionistic neutrosophicgraphstructures. Weintroducethecertainoperationsonintuitionistic neutrosophic graphstructures and elaborate them with suitable examples. Further, we investigate some remarkable properties of these operators. Moreover,we discuss a highly worthwhile real-life application of intuitionistic neutrosophic graph struc- tures in decision-making. Lastly, we elaborate general procedure of our application by designing an algorithm. We have used standard definitions and terminologies in this paper. For other no- tations, terminologies and applications not mentioned in the paper, the readers are referred to [3,6, 7, 9, 13, 14, 17, 18, 20, 22, 23, 25, 28, 30]. 2. Intuitionistic Neutrosophic Graph Structures Definition 2.1. ([23]). Let Gˇ = (P,P ,P ,...,P ) and Gˇ = (P′,P′,P′,...,P′) 1 1 2 r 2 1 2 r be two GSs, Cartesian product of Gˇ and Gˇ is defined as: 1 1 Gˇ ×Gˇ =(P ×P′,P ×P′,P ×P′,...,P ×P′), 1 2 1 1 2 2 r r where P ×P′ = {(k l)(k l) | l ∈ P′, k k ∈ P }∪{(kl )(kl ) | k ∈ p,l l ∈ P′}, h h 1 2 1 2 h 1 2 1 2 h h=(1,2,...,r). Definition 2.2. ([23]). Let Gˇ = (P,P ,P ,...,P ) and Gˇ = (P′,P′,P′,...,P′) 1 1 2 n 2 1 2 r be two GSs, cross product of Gˇ and Gˇ is defined as: 1 2 Gˇ ∗Gˇ =(P ∗P′,P ∗P′,P ∗P′,...,P ∗P′), 1 2 1 1 2 2 r r 2 MuhammadAkrametal./Ann. FuzzyMath. Inform. 14(2017),No. 1,1–27 where P ∗P′ = {(k l )(k l )|k k ∈P , l l ∈P′}, h=(1,2,...,r). h h 1 1 2 2 1 2 h 1 2 h Definition 2.3. ([23]). Let Gˇ = (P,P ,P ,...,P ) and Gˇ = (P′,P′,P′,...,P′) 1 1 2 r 2 1 2 r be two GSs, lexicographic product of Gˇ and Gˇ is defined as: 1 2 Gˇ •Gˇ =(P •P′,P •P′,P •P′,...,P •P′), 1 2 1 1 2 2 r r whereP •P′ ={(kl )(kl )|k ∈P,l l ∈P′}∪{(k l )(k l )|k k ∈P ,l l ∈P′}, h h 1 2 1 2 h 1 1 2 2 1 2 h 1 2 h h=(1,2,...,r). Definition 2.4. ([23]). Let Gˇ = (P,P ,P ,...,P ) and Gˇ = (P′,P′,P′,...,P′) 1 1 2 r 2 1 2 r be two GSs, strong product of Gˇ and Gˇ is defined as: 1 2 Gˇ ⊠Gˇ =(P ⊠P′,P ⊠P′,P ⊠P′,...,P ⊠P′), 1 2 1 1 2 2 r r where P ⊠P′ = {(k l)(k l)|l ∈P′, k k ∈P }∪{(kl )(kl )|k ∈P,l l ∈P′} ∪ h h 1 2 1 2 h 1 2 1 2 h {(k l )(k l )|k k ∈P , l l ∈P′}, h=(1,2,...,r). 1 1 2 2 1 2 h 1 2 h Definition 2.5. ([23]). Let Gˇ = (P,P ,P ,...,P ) and Gˇ = (P′,P′,P′,...,P′) 1 1 2 r 2 1 2 n be two GSs, composition of Gˇ and Gˇ is defined as: 1 2 Gˇ ◦Gˇ =(P ◦P′,P ◦P′,P ◦P′,...,P ◦P′), 1 2 1 1 2 2 r r where P ◦P′ = {(k l)(k l)| l ∈P′, k k ∈P }∪{(kl )(kl ) | k ∈P,l l ∈ P′} ∪ h h 1 2 1 2 h 1 2 1 2 h {(k l )(k l )|k k ∈P , l ,l ∈P′ such that l 6=l }, h=(1,2,...,r). 1 1 2 2 1 2 h 1 2 1 2 Definition 2.6. ([23]). Let Gˇ = (P,P ,P ,...,P ) and Gˇ = (P′,P′,P′,...,P′) 1 1 2 r 2 1 2 r be two GSs, union of Gˇ and Gˇ is defined as: 1 2 Gˇ ∪Gˇ =(P ∪P′,P ∪P′,P ∪P′,...,P ∪P′). 1 2 1 1 2 2 r r Definition 2.7. ([23]). Let Gˇ = (P,P ,P ,...,P ) and Gˇ = (P′,P′,P′,...,P′) 1 1 2 r 2 1 2 r be two GSs, join of Gˇ and Gˇ is defined as: 1 2 Gˇ +Gˇ =(P +P′,P +P′,P +P′,...,P +P′), 1 2 1 1 2 2 r r where P +P′ = P ∪P′, P +P′ = P ∪P′ ∪P′′ for h = (1,2,...,r). P′′ consists h h h h h h of all those edges which join the vertices of P and P′. Definition 2.8. ([19]). LetV beafixedset. Ageneralizedintuitionistic fuzzysetI of V is an object having the form I={(v,µ (v),ν (v))|v ∈ V}, where the functions I I µ : V → [0,1] and ν : V → [0,1] define the degree of membership and degree of I I nonmembership of an element v ∈V, respectively, such that min{µ (v),ν (v)}≤0.5, for all v ∈V. I I This condition is called the generalized intuitionistic condition. Definition 2.9. ([10, 11]). A set I ={T (v),I (v),F (v) : v ∈V} is said to be an I I I intuitionistic neutrosophic (IN)set, if (i) {T (v)∧I (v)}≤0.5, {I (v)∧F (v)}≤0.5, {F (v)∧T (v)}≤0.5, I I I I I I (ii) 0≤T (v)+I (v)+F (v)≤2. I I I Definition 2.10. An intuitionistic neutrosophic graph is a pair G = (A,B) with underlying set V, where T , F , I : V → [0,1] denote the truth, falsity and A A A indeterminacy membershipvalues of the vertices in V andT , F , I : E ⊆V ×V B B B →[0,1]denote the truth, falsity andindeterminacy membershipvalues ofthe edges kl∈E such that 3 MuhammadAkrametal./Ann. FuzzyMath. Inform. 14(2017),No. 1,1–27 (i) T (kl)≤T (k)∧T (l), F (kl)≤F (k)∨F (l), I (kl)≤I (k)∧I (l), B A A B A A B A A (ii) T (kl)∧I (kl)≤0.5, T (kl)∧F (kl)≤0.5, I (kl)∧F (lk)≤0.5, B B B B B B (iii) 0≤T (kl)+F (kl)+I (kl)≤2, ∀ k,l∈V. B B B Definition 2.11. Gˇ = (O,O ,O ,...,O ) is said to be an intuitionistic neutro- i 1 2 r sophic graph structure(INGS) of graph structure Gˇ = (P,P ,P ,...,P ), if O = 1 2 r <k,T(k),I(k),F(k)>andO =<kl,T (kl),I (kl),F (kl)>aretheintuitionistic h h h h neutrosophic(IN) sets on the sets P and P , respectively such that h (i) T (kl)≤T(k)∧T(l), I (kl)≤I(k)∧I(l), F (kl)≤F(k)∨F(l), h h h (ii) T (kl)∧I (kl)≤0.5, T (kl)∧F (kl)≤0.5, I (kl)∧F (kl)≤0.5, h h h h h h (iii) 0≤T (kl)+I (kl)+F (kl)≤2, for all kl∈O , h∈{1,2,...,r}, h h h h where,OandO areunderlyingvertexandh-edgesetsofINGSGˇ ,h∈{1,2,...,r}. h i Example 2.12. An intuitionistic neutrosophic graph structure is represented in Fig. 1. k.,.(0,2.0504)2b OOk2O17(((20(00.02...27,1,0,,.0003...,k322,01,,.0(4.000)5...)553,))O03O.b(420,(.0b01..,2O5,0).011.(,1,00..04.2)6,)0O.4O3(,10(0.01..6,5k,0)6.04.(,02,b0.2.05.b,)60)Ok.O48O2,3((01(0(00.0.6...525)1,,,,0000...3.424,,,0,00..06.5.)6)6)) bk.,.,(0.60405)5 k3(0.5,0.4,b0O.33)(0.2,0.1,0.3k)4(0.b2,0.2,0.5) Figure 1. An intuitionistic neutrosophic graph structure Now we define the operations on INGSs. Definition2.13. LetGˇ =(O ,O ,O ,...,O )andGˇ =(O ,O ,O ,...,Q ) i1 1 11 12 1r i2 2 21 22 2r be INGSs of GSs Gˇ = (P ,P ,P ,...,P ) and Gˇ = (P ,P ,P ,...,P ), re- 1 1 11 12 1r 2 2 21 22 2r spectively. Cartesian product of Gˇ and Gˇ , denoted by i1 i2 Gˇ ×Gˇ = (O ×O ,O ×O ,O ×O ,...,O ×O ), i1 i2 1 2 11 21 12 22 1r 2r is defined as:  T(O1×O2)(kl)=(TO1 ×TO2)(kl)=TO1(k)∧TO2(l) (i)  I(O1×O2)(kl)=(IO1 ×IO2)(kl)=IO1(k)∧IO2(l) F(O1×O2)(kl)=(FO1 ×FO2)(kl)=FO1(k)∨FO2(l) for all kl∈P ×P , 1 2  T(O1h×O2h)(kl1)(kl2)=(TO1h ×TO2h)(kl1)(kl2)=TO1(k)∧TO2h(l1l2) (ii)  I(O1h×O2h)(kl1)(kl2)=(IO1h ×IO2h)(kl1)(kl2)=IO1(k)∧IO2h(l1l2) F(O1h×O2h)(kl1)(kl2)=(FO1h ×FO2h)(kl1)(kl2)=FO1(k)∨FO2h(l1l2) for all k ∈P , l l ∈P , 1 1 2 2h 4 MuhammadAkrametal./Ann. FuzzyMath. Inform. 14(2017),No. 1,1–27  T(O1h×O2h)(k1l)(k2l)=(TO1h ×TO2h)(k1l)(k2l)=TO2(l)∧TO1h(k1k2) (iii)  I(O1h×O2h)(k1l)(k2l)=(IO1h ×IO2h)(k1l)(k2l)=IO2(l)∧IO2h(k1k2) F(O1h×O2h)(k1l)(q2l)=(FO1h ×FO2h)(k1l)(k2l)=FO2(l)∨FO2h(k1k2) for all l∈P , k k ∈P . 2 1 2 1h Example 2.14. Consider Gˇ = (O ,O ,O ) and Gˇ = (O ,O ,O ) are two i1 1 11 12 i2 2 21 22 INGSsofGSsGˇ =(P ,P ,P )andGˇ =(P ,P ,P )respectively,asrepresented 1 1 11 12 2 2 21 22 in Fig. 2, where P ={k k }, P ={k k }, P ={l l }, P ={l l }. 11 1 2 12 3 4 21 1 2 22 2 3 k1(0.5,0.2,0.6) k3(0.4,0.3,0.4) l1(0.2,0b.2,0.3) l3(0.5,0b.4,0.5) b b )4 OO1121((00..45,,00..32,,00..68)) .,.,.O02020(12 O22(0.3,0.3,0.5) k4(0.5,0b .3,0.6) k2(0.5,b0.3,0.8) l2(0.3,b0.3,0.4) Gˇi1=(O1,O11,O12) Gˇi2=(O2,O21,O22) Figure 2. Two INGSs Gˇ and Gˇ i1 i2 CartesianproductofGˇ andGˇ definedasGˇ ×Gˇ ={O ×O ,O ×O ,O × i1 i2 i1 i2 1 2 11 21 12 O } is represented in Fig. 3. 22 k1l2(0.3,0.2,0.6) k2l2(0.3,0.3,0.8) bO11×O21(0.3,0.2,0.8) b k1l1(0.2b,0.2,O0.161)× O21(0.2,0.2,0.6O)12×k1Obl223(0.(30,0..52,,0.06).2,0.6) k2l1(0.2,0.2O1,1×O021(0..2,08.2b,0).8) O12×O22(0.3,0.3,0.8)k2l3(0.5,b0.3,0.8) O11×O21(0.2,0.2,0.8) O11×O21(0.5,0.2,0.8) 5 MuhammadAkrametal./Ann. FuzzyMath. Inform. 14(2017),No. 1,1–27 k3l2(0.3,0.2,0.4) k4l2(0.3,0.3,0.6) bO12×O22(0.3,0.3,0.6) b k3l1(0.2b,0.2,O0.141)× O21(0.2,0.2,0.4O)12×k3Obl223(0.(3,00..42,0,.50).3,0.5) k4l1(0.2,0.2O,11×O021(0..2,06.2b,0).6) O12×O22(0.3,0.3,0.6)k4l3(0.5,b0.3,0.6) O12×O22(0.2,0.2,0.6) O12×O22(0.4,0.3,0.6) Figure 3. Gˇ ×Gˇ i1 i2 Theorem2.15. CartesianproductGˇ ×Gˇ =(O ×O ,O ×O ,O ×O ,...,O × i1 i2 1 2 11 21 12 22 1r O ) of two INGSs of GSs Gˇ and Gˇ is an INGS of Gˇ ×Gˇ . 2r 1 2 1 2 Proof. We consider two cases: Case 1: For k ∈P , l l ∈P 1 1 2 2h T(O1h×O2h)((kl1)(kl2))=TO1(k)∧TO2h(l1l2) ≤T (k)∧[T (l )∧T (l )] O1 O2 1 O2 2 =[T (k)∧T (l )]∧[T (k)∧T (l )] O1 O2 1 O1 O2 2 =T(O1×O2)(kl1)∧T(O1×O2)(kl2), I(O1h×O2h)((kl1)(kl2))=IO1(k)∧IO2h(l1l2) ≤I (k)∧[I (l )∧I (l )] O1 O2 1 O2 2 =[I (k)∧I (l )]∧[I (k)∧I (l )] O1 O2 1 O1 O2 2 =I(O1×O2)(kl1)∧I(O1×O2)(kl2), F(O1h×O2h)((kl1)(kl2))=FO1(k)∨FO2h(l1l2) ≤F (k)∨[F (l )∨F (l )] O1 O2 1 O2 2 =[F (k)∨F (l )]∨[F (k)∨F (l )] O1 O2 1 O1 O2 2 =F(O1×O2)(kl1)∨F(O1×O2)(kl2), for kl ,kl ∈P ×P . 1 2 1 2 Case 2: For k ∈P , l l ∈P 2 1 2 1h T(O1h×O2h)((l1k)(l2k))=TO2(k)∧TO1h(l1l2) ≤T (k)∧[T (l )∧T (l )] O2 O1 1 O1 2 =[T (k)∧T (l )]∧[T (k)∧T (l )] O2 O1 1 O2 O1 2 =T(O1×O2)(l1k)∧T(O1×O2)(l2k), 6 MuhammadAkrametal./Ann. FuzzyMath. Inform. 14(2017),No. 1,1–27 I(O1h×O2h)((l1k)(l2k))=IO2(k)∧IO1h(l1l2) ≤I (k)∧[I (l )∧I (l )] O2 O1 1 O1 2 =[I (k)∧I (l )]∧[I (k)∧I (l )] O2 O1 1 O2 O1 2 =I(O1×O2)(l1k)∧I(O1×O2)(l2k), F(O1h×O2h)((l1k)(l2k))=FO2(k)∨FO1h(l1l2) ≤F (k)∨[F (l )∨F (l )] O2 O1 1 O1 2 =[F (k)∨F (l )]∨[F (k)∨F (l )] O2 O1 1 O2 O1 2 =F(O1×O2)(l1k)∨F(O1×O2)(l2k), for l k,l k ∈P ×P . 1 2 1 2 Both cases exists ∀h∈{1,2,...,r}. This completes the proof. (cid:3) Definition2.16. LetGˇ =(O ,O ,O ,...,Q )andGˇ =(O ,O ,O ,...,Q ) i1 1 11 12 1r i2 2 21 22 2r be INGSs of GSs Gˇ = (P ,P ,P ,...,P ) and Gˇ = (P ,P ,P ,...,P ), re- 1 1 11 12 1r 2 2 21 22 2r spectively. Cross product of Gˇ and Gˇ , denoted by i1 i2 Gˇ ∗Gˇ = (O ∗O ,O ∗O ,O ∗O ,...,O ∗O ), i1 i2 1 2 11 21 12 22 1r 2r is defined as:  T(O1∗O2)(kl)=(TO1 ∗TO2)(kl)=TO1(k)∧TO2(l) (i)  I(O1∗O2)(kl)=(IO1 ∗IO2)(kl)=IO1(k)∧IO2(l) F(O1∗O2)(kl)=(FO1 ∗FO2)(kl)=FO1(k)∨FO2(l) for all kl∈P ×P , 1 2  T(O1h∗O2h)(k1l1)(k2l2)=(TO1h ∗TO2h)(k1l1)(k2l2)=TO1h(k1k2)∧TO2h(l1l2) (ii)  I(O1h∗O2h)(k1l1)(k2l2)=(IO1h ∗IO2h)(k1l1)(k2l2)=IO1h(k1k2)∧IO2h(l1l2) F(O1h∗O2h)(k1l1)(k2l2)=(FO1h ∗FO2h)(k1l1)(k2l2)=FO1h(k1k2)∨FO2h(l1l2) for all k k ∈P , l l ∈P . 1 2 1h 1 2 2h Example 2.17. Cross product of INGSs Gˇ and Gˇ shown in Fig. 2 is defined as i1 i2 Gˇ ∗Gˇ = {O ∗O ,O ∗O ,O ∗O } and is represented in Fig. 4. i1 i2 1 2 11 21 12 22 k2l1(0.2,0.2,0.8) k4l3(0.5,0.3,0.6)k3l3(0.4,0.3,0.5) k2l2(0.3,0.3,0.8) b O11∗O21(0.2,0.2,k01.8l)3(0.5,0b.2,0.6) O12∗O22(0.3,0.3,0.6) b b O12∗O22(0.3,0.3k,04.6l1)(0.2,0b.2,0.6O)11∗O21(0.2,0.2,0.8) b k2l3(0.5,0.3,0.8) k3l1(0.2,0.2,0.4) k1l2(0.3,0.2,0.b6)kb3l2(0.3,0.3,0.4) b b k4l2(0.3,0.3,0.6b) bk1l1(0.2,0.2,0.6) Figure 4. Gˇ ∗Gˇ i1 i2 Theorem2.18. CrossproductGˇ ∗Gˇ =(O ∗O ,O ∗O ,O ∗O ,...,O ∗O ) i1 i2 1 2 11 21 12 22 1r 2r of two INGSs of GSs Gˇ and Gˇ is an INGS of Gˇ ∗Gˇ . 1 2 1 2 7 MuhammadAkrametal./Ann. FuzzyMath. Inform. 14(2017),No. 1,1–27 Proof. For all k l ,k l ∈P ∗P 1 1 2 2 1 2 T(O1h∗O2h)((k1l1)(k2l2))=TO1h(k1k2)∧TO2h(l1l2) ≤[T (k )∧T (k )]∧[T (l )∧T (l )] O1 1 O1 2 O2 1 O2 2 =[T (k )∧T (l )]∧[T (k )∧T (l )] O1 1 O2 1 O1 2 O2 2 =T(O1∗O2)(k1l1)∧T(O1∗O2)(k2l2), I(O1h∗O2h)((k1l1)(k2l2))=IO1h(k1k2)∧IO2hl1l2) ≤[I (k )∧I (k )]∧[I (l )∧I (l )] O1 1 O1 2 O2 1 O2 2 =[I (k )∧I (l )]∧[I (k )∧I (l )] O1 1 O2 1 O1 2 O2 2 =I(O1∗O2)(k1l1)∧I(O1∗O2)(k2l2), F(O1h∗O2h)((k1l1)(k2l2))=FO1h(k1k2)∨FO2h(l1l2) ≤[F (k )∨F (k )]∨[F (l )∨F (l )] O1 1 O1 2 O2 1 O2 2 =[F (k )∨F (l )]∨[F (k )∨F (l )] O1 1 O2 1 O1 2 O2 2 =F(O1∗O2)(k1l1)∨F(O1∗O2)(k2l2), for h∈{1,2,...,r}. This completes the proof. (cid:3) Definition2.19. LetGˇ =(O ,O ,O ,...,O )andGˇ =(O ,O ,O ,...,O ) i1 1 11 12 1r i2 2 21 22 2r be INGSs of GSs Gˇ = (P ,P ,P ,...,P ) and Gˇ = (P ,P ,P ,...,P ), re- 1 1 11 12 1r 2 2 21 22 2r spectively. Lexicographic product of Gˇ and Gˇ , denoted by i1 i2 Gˇ •Gˇ = (O •O ,O •O ,O •O ,...,O •O ), i1 i2 1 2 11 21 12 22 1r 2r is defined as:  T(O1•O2)(kl)=(TO1 •TO2)(kl)=TO1(k)∧TO2(l) (i)  I(O1•O2)(kl)=(IO1 •IO2)(kl)=IO1(k)∧IO2(l) F(O1•O2)(kl)=(FO1 •FO2)(kl)=FO1(k)∨FO2(l) for all kl∈P ×P 1 2  T(O1h•O2h)(kl1)(kl2)=(TO1h •TO2h)(kl1)(kl2)=TO1(k)∧TO2h(l1l2) (ii)  I(O1h•O2h)(kl1)(kl2)=(IO1h •IO2h)(kl1)(kl2)=IO1(k)∧IO2h(l1l2) F(O1h•O2h)(kl1)(kl2)=(FO1h •FO2h)(kl1)(kl2)=FO1(k)∨FO2h(l1l2) for all k ∈P , l l ∈P , 1 1 2 2h  T(O1h•O2h)(k1l1)(k2l2)=(TO1h •TO2h)(k1l1)(k2l2)=TO1h(k1k2)∧TO2h(l1l2) (iii)  I(O1h•O2h)(k1l1)(k2l2)=(IO1h •IO2h)(k1l1)(k2l2)=IO1h(k1k2)∧IO2h(l1l2) F(O1h•O2h)(k1l1)(k2l2)=(FO1h •FO2h)(k1l1)(k2l2)=FO1h(k1k2)∨FO2h(l1l2) for all k k ∈P , l l ∈P . 1 2 1h 1 2 2h Example 2.20. Lexicographic product of INGSs Gˇ and Gˇ shown in Fig. 2 is i1 i2 defined as Gˇ •Gˇ = {O •O ,O •O ,O •O } and is represented in Fig. 5. i1 i2 1 2 11 21 12 22 8 MuhammadAkrametal./Ann. FuzzyMath. Inform. 14(2017),No. 1,1–27 k1l1(0.2,0.2,0.6) k2l1(0.2,0.2,0.8) k2l3(0.5,0.3,0.8) •OO.,(0.121,0.22016)bb O1O1•11O•2O1(201.(20,.20.,20,.20.,b08b)80)20.2,0(..,.O12O118•) O12• O22(0.3,0.3,0.8) bb k1l2(0.3,0.2,0.6) O12•O22(0k.23l,20(0.2.3,0,0.6.3),0.8) k1l3(0.5,0.2,0.6) O11•O21(0.2,0.2,0.6) kk34ll11((00..22,,00..22,,00..46))bb O11• O21(0.2,0.2,0.4) )50k3.0,3.0,(.2O22O1•3lkb3b3(l02.(40,.03.,30,.02.,50).6O)O121•2•OO222(20(.03.,3,0.03.,3,0.06bb.6))603030(.,.,.OO2221)•kk44ll32((00..53,,00..33,,00..66)) Figure 5. Gˇ •Gˇ i1 i2 Theorem2.21. LexicographicproductGˇ •Gˇ =(O •O ,O •O ,O •O ,...,O • i1 i2 1 2 11 21 12 22 1r O ) of two INGSs of the GSs Gˇ and Gˇ is an INGS of Gˇ •Gˇ . 2r 1 2 1 2 Proof. We consider two cases: Case 1: For k ∈P , l l ∈P 1 1 2 2h T(O1h•O2h)((kl1)(kl2))=TO1(k)∧TO2h(l1l2) ≤T (k)∧[T (l )∧T (l )] O1 O2 1 O2 2 =[T (k)∧T (l )]∧[T (k)∧T (l )] O1 O2 1 O1 O2 2 =T(O1•O2)(kl1)∧T(O1•O2)(kl2), I(O1h•O2i)((kl1)(kl2))=IO1(k)∧IO2h(l1l2) ≤I (k)∧[I (l )∧I (l )] O1 O2 1 O2 2 =[I (k)∧I (l )]∧[I (k)∧I (l )] O1 O2 1 O1 O2 2 =I(O1•O2)(kl1)∧I(O1•O2)(kl2), F(O1h•O2i)((kl1)(kl2))=FO1(k)∨FO2h(l1l2) ≤F (k)∨[F (l )∨F (l )] O1 O2 1 O2 2 =[F (k)∨F (l )]∨[F (k)∨F (l )] O1 O2 1 O1 O2 2 =F(O1•O2)(kl1)∨F(O1•O2)(kl2), for kl ,kl ∈P •P . 1 2 1 2 9 MuhammadAkrametal./Ann. FuzzyMath. Inform. 14(2017),No. 1,1–27 Case 2: For k k ∈P ,l l ∈P 1 2 1h 1 2 2h T(O1h•O2h)((k1l1)(k2l2))=TO1h(k1k2)∧TO2h(l1l2) ≤[T (k )∧T (k )]∧[T (l )∧T (l )] O1 1 O1 2 O2 1 O2 2 =[T (k )∧T (l )]∧[T (k )∧T (l )] O1 1 O2 1 O1 2 O2 2 =T(O1•O2)(k1l1)∧T(O1•O2)(k2l2), I(O1h•O2h)((k1l1)(k2l2))=IO1h(k1k2)∧IO2h(l1l2) ≤[I (k )∧I (k )]∧[I (l )∧I (l )] O1 1 O1 2 O2 1 O2 2 =[I (k )∧I (l )]∧[I (k )∧I (l )] O1 1 O2 1 O1 2 O2 2 =I(O1•O2)(k1l1)∧I(O1•O2)(k2l2), F(O1h•O2h)((k1l1)(k2l2))=FO1h(k1k2)∨FO2h(l1l2) ≤[F (k )∨F (k )]∨[F (l )∨F (l )] O1 1 O1 2 O2 1 O2 2 =[F (k )∨F (l )]∨[F (k )∨F (l )] O1 1 O2 1 O1 2 O2 2 =F(O1•O2)(k1l1)∨F(O1•O2)(k2l2), for k l ,k l ∈P •P . 1 1 2 2 1 2 Both cases hold for h∈{1,2,...,r}. This completes the proof. (cid:3) Definition2.22. LetGˇ =(O ,O ,O ,...,O )andGˇ =(O ,O ,O ,...,O ) i1 1 11 12 1r i2 2 21 22 2r be INGSs of GSs Gˇ = (P ,P ,P ,...,P ) and Gˇ = (P ,P ,P ,...,P ), re- 1 1 11 12 1r 2 2 21 22 2r spectively. Strong product of Gˇ and Gˇ , denoted by i1 i2 Gˇ ⊠Gˇ = (O ⊠O ,O ⊠O ,O ⊠O ,...,O ⊠O ), i1 i2 1 2 11 21 12 22 1r 2r is defined as: (i)  IT((OO11⊠⊠OO22))((kkll))==((ITOO11⊠⊠ITOO2)2()k(kl)l)==IOTO1(1k()k)∧∧IOT2O(2l)(l) F(O1⊠O2)(kl)=(FO1 ⊠FO2)(kl)=FO1(k)∨FO2(l) for all kl∈P ×P , 1 2 (ii)  IT((OO11hh⊠⊠OO22hh))((kkll11))((kkll22))==((ITOO11hh⊠⊠ITOO2h2h)()k(kl1l1)()k(kl2l2))==IOTO1(1k()k)∧∧IOT2Oh2(hl1(ll12l)2) F(O1h⊠O2h)(kl1)(kl2)=(FO1h ⊠FO2h)(kl1)(kl2)=FO1(k)∨FO2h(l1l2) for all k ∈P , l l ∈P , 1 1 2 2h (iii)  IT((OO11hh⊠⊠OO22hh))((kk11ll))((kk22ll))==((ITOO11hh⊠⊠ITOO2h2h)()k(k11l)l()k(k22l)l)==ITOO2(2l()l)∧∧IOT2Oh1(hk(1kk12k)2) F(O1h⊠O2h)(k1l)(k2l)=(FO1h ⊠FO2h)(k1l)(k2l)=FO2(l)∨FO2h(k1k2) for all l∈P , k k ∈P , 2 1 2 1h (iv)  TI((OO11hh⊠⊠OO22hh))((kk11ll11))((kk22ll22))==((ITOO11hh⊠⊠ITOO2h2h)()k(k11l1l1)()k(k22l2l2))==ITOO1h1(hk(1kk12k)2)∧∧IOT2Oh2(hl1(ll12l)2) F(O1h⊠O2h)(k1l1)(k2l2)=(FO1h ⊠FO2h)(k1l1)(k2l2)=FO1h(k1k2)∨FO2h(l1l2) for all k k ∈P , l l ∈P . 1 2 1h 1 2 2h Example 2.23. Strong product of INGSs Gˇ and Gˇ shown in Fig. 2 is defined i1 i2 as Gˇ ⊠Gˇ = {O ⊠O ,O ⊠O ,O ⊠O } and is represented in Fig. 6. i1 i2 1 2 11 21 12 22 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.