Klaus Gürlebeck Klaus Habetha Wolfgang Sprößig Application of Holomorphic Functions in Two and Higher Dimensions Klaus Gürlebeck • Klaus Habetha • Wolfgang Sprößig Application of Holomorphic Functions in Two and Higher Dimensions Klaus Gürlebeck Klaus Habetha Bauhaus-U niversität Weimar R WTH Aac hen Weimar, Germany Aachen, Germany Wolfgang Sprößig TU Bergakademie Freiberg Freiberg, Germany ISBN 9 78-3-0348-0962-7 ISBN 9 78-3-0348-0964-1 (eBook) D OI 10.1007/978-3-0348-0964-1 Library of Congress Control Number: 2016942573 Mathematics Subject Classification 2010: 30AXX, 30CXX, 30GXX, 33CXX, 35CXX, 35JXX, 35FXX, 35KXX, 43AXX, 62PXX, 74BXX, 76-XX, 78-XX © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This book is published under the trade name Birkhäuser. The registered company is Springer International Publishing AG Switzerland (www.birkhauser-science.com) Contents Preface xi 1 Basic properties of holomorphic functions 1 1.1 Number systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Real Clifford numbers . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Quaternion algebra . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 On rotations . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.4 Complex quaternions. . . . . . . . . . . . . . . . . . . . . . 7 1.1.5 Clifford’s geometric algebra . . . . . . . . . . . . . . . . . . 7 1.1.6 The ± split with respect to two square roots of −1 . . . . . 11 1.1.7 Bicomplex numbers . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Classical function spaces in quaternions . . . . . . . . . . . . . . . 16 1.3 New types of holomorphic functions . . . . . . . . . . . . . . . . . 18 1.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.2 Construction of holomorphic functions . . . . . . . . . . . . 21 1.4 Integral theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4.1 General integral theorems . . . . . . . . . . . . . . . . . . . 23 1.4.2 Integral theorems for holomorphic functions . . . . . . . . . 25 1.5 Polynomial systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5.1 Fueter polynomials . . . . . . . . . . . . . . . . . . . . . . . 29 1.5.2 Holomorphic Appell polynomials . . . . . . . . . . . . . . . 33 1.5.3 Holomorphic polynomials for the Riesz system . . . . . . . 34 1.5.4 Orthogonal polynomials in H . . . . . . . . . . . . . . . . . 39 1.5.5 Series expansions . . . . . . . . . . . . . . . . . . . . . . . . 39 2 Conformal and quasi-conformal mappings 43 2.1 Mo¨bius transformations . . . . . . . . . . . . . . . . . . . . . . . . 43 2.1.1 Schwarzian derivative . . . . . . . . . . . . . . . . . . . . . 44 2.2 Conformal mappings . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.1 Conformal mappings in the plane . . . . . . . . . . . . . . 46 2.2.2 Conformal mappings in space . . . . . . . . . . . . . . . . . 47 2.2.3 Mercator projection . . . . . . . . . . . . . . . . . . . . . . 52 v vi Contents 2.3 Quasi-conformal mappings . . . . . . . . . . . . . . . . . . . . . . . 53 2.3.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . 53 2.3.2 Quaternionic quasi-conformal mappings . . . . . . . . . . . 56 2.4 M-conformal mappings . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.4.1 Characterization of M-conformal mappings . . . . . . . . . 60 2.4.2 M-conformal mappings in a plane. . . . . . . . . . . . . . . 70 2.4.3 M-conformal mappings of curves on the unit sphere . . . . 72 3 Function theoretic function spaces 75 3.1 Q -spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 p 3.2 Properties of Q -spaces . . . . . . . . . . . . . . . . . . . . . . . . 78 p 3.3 Another characterization of Q -spaces . . . . . . . . . . . . . . . . 82 p 3.4 Bergman and Hardy spaces . . . . . . . . . . . . . . . . . . . . . . 89 3.4.1 Bergman space . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.4.2 Hardy space. . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.5 Riesz potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4 Operator calculus 95 4.1 Teodorescu transform and its left inverse . . . . . . . . . . . . . . . 95 4.1.1 Historical prologue . . . . . . . . . . . . . . . . . . . . . . . 95 4.1.2 Borel–Pompeiu formula . . . . . . . . . . . . . . . . . . . . 96 4.2 On generalized Π-operators . . . . . . . . . . . . . . . . . . . . . . 100 4.2.1 The complex Π-operator . . . . . . . . . . . . . . . . . . . . 100 4.2.2 Shevchenko’s generalization . . . . . . . . . . . . . . . . . . 102 4.2.3 A generalization via the Teodorescu transform . . . . . . . 103 4.2.4 The second generalization of the Π-operator . . . . . . . . . 111 4.2.5 The third generalization of the Π-operator . . . . . . . . . . 114 4.2.6 The special case of quaternions . . . . . . . . . . . . . . . . 117 4.3 A general operator approach to holomorphy . . . . . . . . . . . . . 119 4.3.1 A general holomorphy . . . . . . . . . . . . . . . . . . . . . 120 4.3.2 Types of L-holomorphy . . . . . . . . . . . . . . . . . . . . 122 4.3.3 Taylor type formula . . . . . . . . . . . . . . . . . . . . . . 128 4.3.4 Taylor–Gontcharov formula for generalized Dirac operators of higher order . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.4 A modified operator calculus in the plane . . . . . . . . . . . . . . 131 4.4.1 Modified Borel–Pompeiu type formulas . . . . . . . . . . . 132 4.4.2 Modified Plemelj–Sokhotski formulas . . . . . . . . . . . . . 134 4.4.3 A modified Dirichlet problem . . . . . . . . . . . . . . . . . 135 4.4.4 A norm estimate for the modified Teodorescu transform . . 137 4.5 Modified operator calculus in space . . . . . . . . . . . . . . . . . . 139 4.5.1 Modified fundamental solutions . . . . . . . . . . . . . . . . 139 4.5.2 A modified Borel–Pompeiu formula. . . . . . . . . . . . . . 142 4.6 Operator calculus on the sphere . . . . . . . . . . . . . . . . . . . . 144 4.6.1 Gegenbauer functions . . . . . . . . . . . . . . . . . . . . . 144 Contents vii 4.6.2 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . 145 4.6.3 Borel–Pompeiu formula . . . . . . . . . . . . . . . . . . . . 149 5 Decompositions 151 5.1 Vector fields in Euclidean space . . . . . . . . . . . . . . . . . . . . 151 5.1.1 Helmholtz decomposition . . . . . . . . . . . . . . . . . . . 151 5.1.2 Associated boundary value problems . . . . . . . . . . . . . 154 5.1.3 Original Hodge decomposition theorem . . . . . . . . . . . 155 5.2 Bergman–Hodge decompositions . . . . . . . . . . . . . . . . . . . 156 5.2.1 Suitable fundamental solutions . . . . . . . . . . . . . . . . 157 5.2.2 An orthogonal decomposition formula with complex potential159 5.2.3 Generalized Bergman–Hodge decomposition . . . . . . . . . 162 5.2.4 Decompositions in domains on the unit sphere . . . . . . . 162 5.3 Representations of functions by holomorphic generators . . . . . . 164 5.3.1 Almansi decomposition . . . . . . . . . . . . . . . . . . . . 164 5.3.2 Fischer decomposition . . . . . . . . . . . . . . . . . . . . . 166 6 Some first-order systems of partial differential equations 169 6.1 Maxwell equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.1.1 A brief historical review . . . . . . . . . . . . . . . . . . . . 169 6.1.2 Stationary Maxwell equations . . . . . . . . . . . . . . . . . 172 6.1.3 Stationary Maxwell equations with variable permitivities . 173 6.2 Bers-Vekua systems . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.2.1 History of the Vekua equation. . . . . . . . . . . . . . . . . 175 6.2.2 Pseudoanalytic functions . . . . . . . . . . . . . . . . . . . 177 6.2.3 Generating sequences and formal powers . . . . . . . . . . . 179 6.2.4 An important special case . . . . . . . . . . . . . . . . . . . 181 6.2.5 Orthogonal coordinates and explicit generating sequences . 182 6.2.6 Completeness of the systems of formal powers . . . . . . . . 184 6.2.7 Factorization of second-order operators in the plane . . . . 185 6.2.8 CompletesystemsofsolutionsforthestationarySchro¨dinger equation and their applications . . . . . . . . . . . . . . . . 188 6.2.9 The Riccati equation in two dimensions . . . . . . . . . . . 190 6.2.10 On the solution of the Riccati equation . . . . . . . . . . . 191 6.2.11 Factorization in the hyperbolic case . . . . . . . . . . . . . 194 6.3 Biquaternions and factorization of spatial models . . . . . . . . . . 195 6.3.1 Biquaternionic Vekua-type equations from physics . . . . . 195 6.3.2 Factorization of the 3D-Schro¨dinger operator and the main biquaternionic Vekua equation . . . . . . . . . . . . . . . . 197 7 Boundary value problems for second-order partial differential equations 203 7.1 p-harmonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 7.1.1 Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . 203 7.1.2 p-harmonic functions . . . . . . . . . . . . . . . . . . . . . . 207 viii Contents 7.2 A class of non-linear boundary value problems . . . . . . . . . . . 208 7.3 Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 7.3.1 Motivation and historical note . . . . . . . . . . . . . . . . 210 7.3.2 Square roots of the Helmholtz operator . . . . . . . . . . . 212 7.4 Yukawa’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 7.4.1 An operator theory . . . . . . . . . . . . . . . . . . . . . . . 219 7.5 Equations of linear elasticity. . . . . . . . . . . . . . . . . . . . . . 222 7.5.1 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 7.5.2 Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . 226 7.5.3 Solution theory for the stationary problem. . . . . . . . . . 230 7.5.4 Kolosov-Muskhelishvili formulas . . . . . . . . . . . . . . . 232 7.5.5 Fundamentals of the linear theory of elasticity . . . . . . . 234 7.5.6 General solution of Papkovic-Neuber . . . . . . . . . . . . . 236 7.5.7 The representation theorem of Goursat in H. . . . . . . . . 237 7.5.8 Spatial Kolosov-Muskhelishvili formulas in H . . . . . . . . 239 7.5.9 Generalized Kolosov-Muskhelishvili formulas for stresses . . 241 7.6 Transmission problems in linear elasticity . . . . . . . . . . . . . . 247 7.6.1 Boundary value problems in multiply connected domains . 248 7.6.2 Solution of the transmission problem . . . . . . . . . . . . . 250 7.6.3 Transmission problems for the Lam´e system . . . . . . . . . 254 7.7 Stationary fluid flow problems . . . . . . . . . . . . . . . . . . . . . 254 7.7.1 A brief history of fluid dynamics . . . . . . . . . . . . . . . 254 7.7.2 Stationary linear Stokes problem . . . . . . . . . . . . . . . 255 7.7.3 Non-linear Stokes equations . . . . . . . . . . . . . . . . . . 256 7.7.4 Stationary Navier-Stokes problem . . . . . . . . . . . . . . 257 7.7.5 Stationary equations of thermo-fluid dynamics . . . . . . . 258 7.7.6 Stationary magneto-hydromechanics . . . . . . . . . . . . . 259 8 Some initial-boundary value problems 265 8.1 Rothe’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 8.2 Stokes equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 8.3 Galpern-Sobolev equations. . . . . . . . . . . . . . . . . . . . . . . 269 8.3.1 Description of the problem . . . . . . . . . . . . . . . . . . 270 8.3.2 Quaternionic integral operators . . . . . . . . . . . . . . . . 273 8.3.3 A representation formula . . . . . . . . . . . . . . . . . . . 274 8.4 The Poisson-Stokes problem . . . . . . . . . . . . . . . . . . . . . . 276 8.4.1 Semi–discretization . . . . . . . . . . . . . . . . . . . . . . . 278 8.4.2 Operator decomposition . . . . . . . . . . . . . . . . . . . . 280 8.4.3 Representation formulas . . . . . . . . . . . . . . . . . . . . 280 8.5 Higher dimensional versions of Korteweg-de Vries’ and Burgers’ equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 8.5.1 Multidimensional version of Burgers equation . . . . . . . . 282 8.5.2 Airy’s equation . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.5.3 A quaternionic Korteweg-de Vries-Burgers equation . . . . 287 Contents ix 8.6 Solving the Maxwell equations . . . . . . . . . . . . . . . . . . . . 288 8.7 Alternative treatment of parabolic problems . . . . . . . . . . . . . 290 8.7.1 The Witt basis approach . . . . . . . . . . . . . . . . . . . 290 8.7.2 Harmonic extension method . . . . . . . . . . . . . . . . . . 292 8.8 Fluid flow through porous media . . . . . . . . . . . . . . . . . . . 294 8.8.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . 294 8.8.2 Representation in a quaternionic operator calculus . . . . . 295 8.8.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 300 9 Riemann-Hilbert problems 303 9.1 Riemann-Hilbert problem in the plane . . . . . . . . . . . . . . . . 303 9.2 Riemann-Hilbert problems in C(cid:2)(3,0) . . . . . . . . . . . . . . . . 307 9.2.1 Plemelj formula for functions with a parameter . . . . . . . 308 9.2.2 Riemann boundary value problem for harmonic functions . 316 9.2.3 Riemann boundary value problem for biharmonic functions 317 10 Initial-boundary value problems on the sphere 319 10.1 Forecasting equations . . . . . . . . . . . . . . . . . . . . . . . . . 319 10.1.1 Forecasting equations – a physical description . . . . . . . . 319 10.1.2 Toroidal flows on the sphere . . . . . . . . . . . . . . . . . . 321 10.1.3 Tangential derivatives . . . . . . . . . . . . . . . . . . . . . 322 10.1.4 Oseen’s problem on the sphere . . . . . . . . . . . . . . . . 323 10.1.5 Forecasting equations in a ball shell . . . . . . . . . . . . . 325 10.2 Viscous shallow water equations. . . . . . . . . . . . . . . . . . . . 326 11 Fourier transforms 329 11.1 Hypercomplex Fourier transforms . . . . . . . . . . . . . . . . . . . 329 11.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 329 11.1.2 General two-sided Clifford Fourier transforms . . . . . . . . 330 11.1.3 Properties of the general two-sided CFT . . . . . . . . . . . 331 11.1.4 Fourier transforms in quaternions . . . . . . . . . . . . . . . 334 11.1.5 Clifford Fourier-Mellin transform . . . . . . . . . . . . . . . 340 11.1.6 Clifford–Fourier transforms with pseudoscalar square roots of −1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 11.1.7 Spacetime Fourier transform . . . . . . . . . . . . . . . . . 343 11.1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 11.2 Fractional Fourier transform . . . . . . . . . . . . . . . . . . . . . . 346 11.2.1 Exponentials of the Dirac operator . . . . . . . . . . . . . . 346 11.2.2 Fourier transform of fractional order . . . . . . . . . . . . . 348 11.3 Radon transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 11.3.1 A basic problem . . . . . . . . . . . . . . . . . . . . . . . . 351 11.3.2 At the very beginning . . . . . . . . . . . . . . . . . . . . . 351 11.3.3 Passing to higher dimensions . . . . . . . . . . . . . . . . . 352 11.3.4 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 352