ebook img

Application of Groebner bases to the cup-length of oriented Grassmann manifolds PDF

0.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Application of Groebner bases to the cup-length of oriented Grassmann manifolds

APPLICATION OF GRO¨BNER BASES TO THE CUP-LENGTH OF ORIENTED GRASSMANN MANIFOLDS 8 0 TOMOHIROFUKAYA 0 2 Abstract. For n = 2m+1 −4(m ≥ 2), wedetermine the cup-length of H∗(Gn,3;Z/2) n byfindingaGro¨bnerbasisassociatedwithacertainsubring,whereG istheoriented a n,3 e J Grassmann manifold SO(n+3)/SO(n)×SO(3). As its applications, we provide not e 5 onlyalowerbutalsoanupper bound fortheLS-categoryofGn,3. Wealsostudythe 1 immersionproblemofG . n,3 e e ] T A 1. Introduction . h t LetR be a commutative ring. The cup-length of R is defined by the greatest number a m n such that there exist x1,...,xn ∈ R\R× with x1···xn , 0. Wedenote the cup-length of R by cup(R). In particular, for a space X and a commutative ring A, the cup-length [ of X with the coefficient A,is defined by cup(H˜∗(X;A)). Wedenote itby cup (X). Itis 2 A v well-knownthatcupA(X)isalowerboundfortheLS-categoryofX. 3 Theaim of this paper isto study cup (G ), whereG isthe oriented Grassmann 3 Z/2 n,3 n,k 0 manifoldSO(n+k)/SO(n)×SO(k). NotethaetGn,k is(nk)e-dimensional. Whilethecoho- 4 mology ofG is well-known, that ofG is in vague. However, Korbasˇ [Kor06] gave . n,2 n,3 e 0 rough estimations for cup (G ) by considering the height of w ∈ H∗(G ;Z/2), 1 e Z/2 n,3 e 2 n,3 wherew isthesecondStiefel-Whitney class. 7 2 e e 0 Theauthorstudies H∗(G ;Z/2)byconsideringGro¨bnerbasesassociatedwithacer- n,3 v: tain subring of H∗(Gn,3;Ze/2). It seems that, in principle, the method of Gro¨bner bases i worksbetterinsuchcomplicatedcalculations thanthatofusualalgebraictopology. The X e author employs a computer and carries a huge amount of calculations for finding the r a aboveGro¨bnerbasesandthenhedarestoconjecture: Conjecture1.1. 2m+1 −3 when2m+1−4 ≤ n ≤ 2m+1+2m −6, cupZ/2(Gn,3)= 22mm++11 +−23m++k... wwhheennnn == 22mm++11++22mm +−·5·+·+k,20j−1≤−k2≤+2k,, e  +2j+1+2j−1 +k 0≤ k ≤ 2j−1. 2000MathematicsSubjectClassification. Primary55M30,Secondary57T15,13P10. Keywordsandphrases. Cup-length;LS-category;Gro¨bnerbases;Immersion. TheauthorissupportedbyGrant-in-AidforJSPSFellows(193177)fromJapanSocietyforthePromo- tionofScience. 1 2 TOMOHIROFUKAYA Whenn= 2m+1 −4(m ≥ 2),ourmethodworksverywellandweobtain: TheoremA. cup (G ) = n+1whenn = 2m+1−4(m ≥ 2). Z/2 n,3 Byadimensional reeason, wehave 3 (1) cat(X) ≤ n, 2 where cat(X)denotes the LS-category of aspace X normalized as cat(∗) = 0. Theorem Agivesnotonlylowerboundsforcat(G ),butalsorefinestheinequality (1). Actually n,3 weobtain: e Corollary . n+1 ≤ cat(G ) < 3nwhen n = 2m+1 −4(m ≥ 2). In particular, wehave n,3 2 cat(G ) = 5. 4,3 e Wee will give applications of Theorem A for the immersion problem of G . By the n,3 classical result of Whitney [Whi44], we know that G immerses into R6n−1. We will n,3 e show: e Theorem B. The oriented Grassmann manifold G immerses into R6n−3 but not into n,3 R3n+8 whenn = 2m+1−4(m ≥ 3)andG immerseintoR21 butnotintoR17. 4,3 e Remark: Walgenbach [Wal01]obtaeined better results onthenon-immersion ofG : n,3 G does not immerses into R4n−2m+3. On the other hand, due to R. Cohen [Coh85], n,3 e G is known tobe immersed into R6n−m+1. Then Theorem B gives a better estimation en,3 whenm = 2,3. e The organization of this paper is as follows. In section 2, we consider the double coveringmap p : G →G ,whereG istheunorientedGrassmannmanifoldO(n+ n n,3 n,3 n,3 3)/O(n)×O(3). We identify the subring Imp∗ of H∗(G ;Z/2) with a certain algebra e n n,3 Z/2[w¯ ,w¯ ]/J ,wheregeneratorsof J aregiven. Insection3,settingn = 2m+1−4(m ≥ 2 3 n n e 2), wewillgive anexplicit description of generators of the ideal J by using the binary n expansion. In section 4, we compute a Gro¨bner basis of J and obtain cup(Imp∗). In n n section5,weshowcup(Imp∗)determinescup (G )andobtainit. Asitsapplications, n Z/2 n,3 wegivesomeestimations forcat(G )andstudytheimmersionproblem ofG . n,3 e n,3 e e 2. CohomologyofG n,3 Weconsider thedoublecovering e (2) p : G →G . n n,3 n,3 It will be shown that cup (G ) caen be determined by cup(Imp∗). Then we shall Z/2 n,3 n investigate cup(Imp∗). n e Themod2cohomology of BO(3)isgivenby H∗(BO(3);Z/2) = Z/2[w ,w ,w ], 1 2 3 GROO¨BNERBASESOFORIENTEDGRASSMANNMANIFOLDS 3 where w is the i-th universal Stiefel-Whitney class. It is well-known that the canonical i map i: G → BO(3) induces an epimorphism i∗: H∗(BO(3);Z/2) → H∗(G ;Z/2). n,3 n,3 Hereafterwedenotei∗(w)bythesamesymbolw ambiguously. i i Onecaneasilyseethattheabovedouble covering(2)induces theWangsequence as: ··· −→ Hq−1(G ;Z/2) −·w→1 Hq(G ;Z/2) −p→∗n Hq(G ;Z/2) −→ ··· . n,3 n,3 n,3 Thenwehave e Imp∗ (cid:27) Z/2[w ,w ,w ] (w ,Keri∗). n 1 2 3 1 Letπ: Z/2[w ,w ,w ] → Z/2[w ,w ]betheab.stractringhomomorphismdefinedby 1 2 3 2 3 π(w ) = 0,π(w )= w andπ(w )= w . Thenitinduces theisomorphism 1 2 2 3 3 Imp∗ (cid:27) Z/2[w¯ ,w¯ ] J , n 2 3 n . whereπ(Keri∗)= J andwedenotew inH∗(G ;Z/2)byw¯ . Notethatthecommutative n i n,3 i diagram e Gn,3 pn // Gn,3 eı˜ i (cid:15)(cid:15) (cid:15)(cid:15) BSO(3) // BO(3) p∞ yields that ı˜∗(w) = w¯ for i = 2,3 and p∗ : H∗(BO(3);Z/2) → H∗(BSO(3);Z/2) is i i ∞ expressed byπ: Z/2[w ,w ,w ]→ Z/2[w ,w ]. 1 2 3 2 3 Let us give explicit generators of J . Borel [Bor53] showed that Keri∗ is generated n bythehomogeneous components ofdegreesn+1,n+2andn+3in 1 . 1+w +w +w 1 2 3 Then it follows that J is generated by the homogeneous components of degrees n+1, n n+2andn+3in 1 . 1+w¯ +w¯ 2 3 LetN betheuniqueintegerwhichsatisfies2N < n ≤ 2N+1. SincedimG < 4n ≤ 2N+3, n,3 wehave e (1+w¯ +w¯ )2N+3 = 1 2 3 in H∗(G ;Z/2). Thenitfollowsthat n,3 e 1 = (1+w¯ +w¯ )2N+3−1 1+w¯ +w¯ 2 3 2 3 andhence J isgenerated by n s (3) g = w¯3s−rw¯r−2s r 3s−r! 2 3 rX≤s≤r 3 2 forr = n+1,n+2,n+3. 4 TOMOHIROFUKAYA 3. Investigatinggeneratorsof J n In this section, we investigate generators gn+1, gn+2 and gn+3 of Jn by exploiting the binaryexpansion. Let us prepare notation for the binary expansion. To a non-negative integer x with 0 ≤ x< 2k,weassignasequence ǫ (x) = (x ,...,x )∈ {0,1}k k k−1 0 suchthat k−1 (4) x= x2i. i Xi=0 (4) is, of course, the binary expansion of x. We denote 1−a by a with a ∈ {0,1}. For example,wehave ǫ (2k −1) = (1,...,1) k and ǫ (2k −1− x) = (x ,...,x ) k k−1 0 forǫ(x) = (x ,...,x ). Weoftendenote(x ,...,x )∈ {0,1}k byx . k−1 0 k 0 k Tocalculate s modulo2,weusethefollowingwell-knownresultfromelementary 3s−r numbertheory.(cid:16) (cid:17) Lemma3.1. Letnand k be non-negative integers such that k ≤ n ≤ 2l −1 and ǫ(n) = l (n ,...,n ),ǫ(k) = (k ,...,k ). Then wehave n ≡ 1 (mod 2)if and only if k = 1 l−1 0 l l−1 0 k i impliesn = 1foreachi. (cid:16) (cid:17) i Intherestofthispaper,weassumethat n = 2m+1−4 (m ≥ 2). ApplyingLemma3.1tothecoefficients ofgn+1,wehave: Proposition 3.2. 3s−(sn+1) isevenforallinteger swith n+31 ≤ s≤ n+21,thatisgn+1 = 0. (cid:16) (cid:17) Proof. Letǫm(s) = (sm−1,...,s0)for n+31 ≤ s≤ n+21 andletǫm+1(n+1−2s) = (tm,...,t0). Since s ≤ 2m − 2, there exists an integer i such that s = 0. Let i be the least integer i satisfying si = 0,thatis,ǫm(s) = (sm−1,...,si+1,0,1,...,1). Thenitiseasytoshowthat t = 1. HenceitfollowsfromLemma3.1that s = s ≡ 0 (mod 2). (cid:3) i 3s−(n+1) n+1−2s (cid:16) (cid:17) (cid:16) (cid:17) Next we investigate gn+2. Coefficients of gn+2 are well understood by considering theirbinaryexpansion asintheabovecaseofgn+1. Let Sk = s ∈ Z n(k3)+2 ≤ s≤ n(k2)+2,ǫk(s)= (sk−1,...,s0)satisfiesthatif sj = 0,then sj+1 = 1 , (cid:26) (cid:12) (cid:27) (cid:12) here n(k) =(cid:12)(cid:12)2k+1 − 4. Note that n(k)+2 ≤ s ≤ n(k)+2 implies that s is always equal 3 2 k−1 to 1 for each s ∈ S with ǫ (s) = (s ,...,s ). There is a one-to-one correspondence k k k−1 0 betweennon-zero coefficients ofgn+2 andSm as: GROO¨BNERBASESOFORIENTEDGRASSMANNMANIFOLDS 5 Lemma3.3. s ≡ 1 (mod 2) ifandonlyif s∈ S . 3s−(n+2)! m Proof. Letǫ (s) = (s ,...,s )for n(m)+2 ≤ s ≤ n(m)+2. Thenwehave m m−1 0 3 2 ǫm+1(n+2−2s) = (sm−1,...,s0,0) andhenceLemma3.3followsfromLemma3.1. (cid:3) Itisconvenientforcalculationsinsection4toindexcoefficientsofgn+2 byexponents ofw¯ in(3),thatis,3s−(n+2),notby s∈ S . ThenwedefineasetP by 2 m k P = {p∈ Z|p = 3s−(n(k)+2), s ∈ S }. k k P isexpressed bythebinaryexpansion as: m Proposition 3.4. Let ∆k = (pk−1,...,p0)∈ {0,1}k|If pl−1 = 1and pl = pl+1 = ··· = pl+2t = 0, then pl+2t+1 = 0 , n o hereweassumethat p = 1. Thenwehave −1 P = {p∈ Z|ǫ (p) ∈ ∆ }. m m m We list some properties of ∆ which will be useful in the following discussion. The k proofisstraightforward. Proposition 3.5. Theset∆ hasthefollowingproperties. k (a) pk ∈ ∆k implies(1,pk) ∈ ∆k+1. (b) pk ∈ ∆k implies(pk,1) ∈ ∆k+1. (c) ∆ = {(1,p ) ∈ {0,1}m|p ∈ ∆ }⊔{(0,0,p ) ∈ {0,1}m|p ∈ ∆ }. m m−1 m−1 m−1 m−2 m−2 m−2 ProofofProposition 3.4. Let s ∈ S with ǫ (s) = (s ,...,s ). If s = 0, then m m m−1 0 m−2 one has s = 1 and s = 1 by definition of S . Then one can easily see that m−1 m−3 m (s ,...,s ) ∈ S . If s = 1, then onecan see that(s ,...,s ) ∈ S aswell. m−2 0 m−3 m−2 m−2 0 m−1 Henceonehasobtained (5) S = s+2m−1 s∈ S ⊔ s+2m−1 s∈ S . m m−1 m−2 n (cid:12) o n (cid:12) o We will show Proposition 3.4 b(cid:12)y induction. We suppo(cid:12)se that it is true for m − 1 and (cid:12) (cid:12) m−2. Let s ∈ S and p = 3(s+2m−1)−(n+2). Bythehypothesis oftheinduction, m−1 ǫ (3s−(n′+2)) = p ∈ ∆ ,wheren′ = 2m −4. Since m−1 m−1 m−1 p = 3(s+2m−1)−(n+2) = 3s−2m +2+2m−1 = 3s−(n′+2)+2m−1, wehave ǫ (p) = (1,p ) ∈ ∆ . m m−1 m Similarly,let s ∈ S and p = 3(s+2m−1)−(n+2). Bythehypothesisoftheinduction, m−2 ǫ (3s−(n′′+2)) = p ∈ ∆ ,wheren′′ = 2m−1−4. Since m−2 m−2 m−2 p = 3(s+2m−1)−(n+2) = 3s−2m−1+2 = 3s−(n′′+2), 6 TOMOHIROFUKAYA wehave ǫ (p) = (0,0,p ) ∈ ∆ . m m−2 m Thus,by(5),weobtain P = p+2m−1 p ∈ P ⊔P m m−1 m−2 n (cid:12) o and,by(c)ofProposition 3.5,wehaveesta(cid:12)blished Proposition 3.4. (cid:12) (cid:3) For the last of this section, we investigate gn+3. Coefficients of gn+3 can be well understood byusingthebinaryexpansion aswellasabove. Let S′k = s′ ∈ Z n(k3)+3 ≤ s′ ≤ n(k2)+3,ǫk(s′) = (sk−1,...,s1,1)satisfiesthatif sj = 0,then sj+1 = 1 . (cid:26) (cid:12) (cid:27) (cid:12) Quitesimilarl(cid:12)ytoLemma3.3,wecansee: (cid:12) Lemma3.6. s′ ≡ 1 (mod 2)ifandonlyif s′ ∈ S′ . 3s′−(n+3)! m Wegiveanexplicitdescription oftheset P′ = p′ ∈ Z p′ = 3s′−(n(k)+3), s′ ∈ S′ k k n (cid:12) o aswell. Defineamap (cid:12) (cid:12) ι : S → S′ m−1 m byι(s)= 2s+1. Then,obviously, itisbijective. Notethat,for s′ = ι(s), 3s′−(n+3) = 3ι(s)−2m+1+1 = 6s−2m+1+4= 2(3s−(n′+2)) where n′ = 2m −4. Then we have p ∈ P if and only if p′ ∈ P′ such that ǫ (p′) = m−1 m m (p ,0)forǫ (p) = p . Hencewehaveobtained: m−1 m−1 m−1 Proposition 3.7. P′ = {p ∈ Z|ǫ (p) = (p ,0), p ∈ ∆ }. m m m−1 m−1 m−1 4. Gro¨bnerbasisandcup-length In this section, by using the result of the previous section, we search for a Gro¨bner basisof J inordertodeterminecup(Imp∗). n n 4.1. Gro¨bner bases. Wefirst recall the definition and some facts of Gro¨bner bases by restrictingtoourspecificcase. Inordertoclarifyourdiscussionandtosimplifynotation, weshallmakeaconvention ofidentifying atwovariablepolynomial ringwithacertain set as follows. Let X = {(p,q) ∈ Z2|p ≥ 0,q ≥ 0} and let P[X] denote the set of finite subset of X. By assigning F ∈ P[X] to w¯pw¯q, we can identify P[X] (p,q)∈F 2 3 withapolynomialringZ/2[w¯2,w¯3]andweshallmPakethisidentificationthroughoutthis section. This identification translates the operations in Z/2[w¯ ,w¯ ] into P[X] as: For 2 3 F,G ∈ P[X], F +G = F ∪G\F ∩G, GROO¨BNERBASESOFORIENTEDGRASSMANNMANIFOLDS 7 F ·G = (p+r,q+ s). (p,q)∈XF,(r,s)∈G Thistranslationofoperationsenablesustohandlethefollowingpolynomialcalculations easily. TheorderofXisgivenbytheusuallexicographicorder. Namely,for(p,q),(r,s) ∈ X, (p,q) ≥ (r,s)ifandonlyif p> r or p = r,q ≥ s. Byemploying thisorder,wesearchforaGro¨bnerbasisoftheideal J ⊂ P[X]. n In order to define Gro¨bner bases, we prepare some notation and terminology. The leadingtermofapolynomial F ∈ P[X]isthemonomial LT(F) = max{(p,q) ∈ F}. If there is a monomial (p,q) ∈ X such that (p,q) · LT(G) ∈ F, then the polynomial F−(p,q)·LT(G)iscalledtheremainderofF ondivisionbyG. Wedenotetheremainder R = F −(p,q)·LT(G)of F ondivision byG,by F −G−→∗ R. Choose F ,...,F ∈ P[X] and give them an arbitrary order. Then it is known that 1 s thereisanalgorithm toprovidethedecomposition of F ∈ P[X]as F = A F +···+A F +R 1 1 s s suchthat A ,...,A ∈ P[X]andRisalinearcombination ofmonomials, noneofwhich 1 s is divisible by each LT(F ),...,LT(F ). The above R is called the remainder of F on 1 s division by{F ,...,F }aswell. However,thisdecomposition depends onthechoiceof 1 s an order of F ,...,F and F ∈ (F ,...,F ) does not imply the remainder R = 0. We 1 s 1 s canovercomethisdifficultyofremainders bychoosing aGro¨bnerbasisdefinedas: Definition4.1. LetI beanidealof P[X]. AfinitesubsetG = {G ,...,G }isaGro¨bner 1 s basisofI if ({LT(F)|F ∈ I})= (LT(G ),...,LT(G )). 1 s Theorem 4.2. Let I be an ideal of P[X] and let {G ,...,G } be a Gro¨bner basis of I. 1 s Thentheremainder ofF ∈ I ondivision by{G ,...,G }iszero. 1 s Buchberger [CLO97]gave acriterion foraset ofpolynomials being aGro¨bner basis oftheidealgenerated byitasfollows. ForF,G ∈ P[X],theleastcommonmultipleofF andGisthemonomial LCM(F,G) = (max{p,r},max{q,s}), whereLT(F) = (p,q)andLT(G) = (r,s). TheS-polynomial ofF andG ∈ P[X]is LCM(F,G) LCM(F,G) S(F,G)= F + G. LT(F) LT(G) 8 TOMOHIROFUKAYA Theorem 4.3 ([CLO97]). The set of polynomials {G ,...,G } ⊂ P[X] is a Gro¨bner 1 s basis of the ideal (G ,...,G ) if and only if the remainder of S(G,G ) on division by 1 s i j {G ,...,G }iszeroforeachi , j. 1 s 4.2. Search for a Gro¨bner basis of J . The author found the following polynomials n experimentally byacomputer calculation. Fornon-negative integersi,t witht−2(2m − 2i) ≡ 0 (mod 3),wedefineapolynomial P(t,i)by i P(t,i) = p, t−2p ∈ Xǫ (p) = (p ,0,...,0), p ∈ ∆ , ( 3 (cid:12) m m−i m−i m−i) (cid:16) (cid:17) (cid:12)(cid:12) z }| { P = P(2i+n+1,i)(cid:12)(cid:12). i (cid:12) Weshallprovethat{P ,...,P }isaGro¨bnerbasisof J . 0 m n In order to investigate P, we define the following sets which will be useful for ex- i pression. Let∆(i, j,l)and∆¯(i,l)be l i ∆(i, j,l) = (p ,p ,1,...,1,0,...,0) ∈ {0,1}m (p ,p )∈ ∆ , p , (1,...,1) , m−j j−i−l m−j j−i−l m−i−l j−i−l n z }| { z }| { (cid:12)(cid:12) o l i (cid:12) (cid:12) ∆¯(i,l) = (p ,0,0,1,...,1,0,...,0)∈ {0,1}m p ∈ ∆ . m−i−l−2 m−i−l−2 m−i−l n z }| { z }| { (cid:12)(cid:12) o Itiseasytocheck: (cid:12) (cid:12) Lemma4.4. ∆(i, j,l) = ∆¯(i,l)⊔∆(i, j,l+1). Letusbegininvestigating P. Itiseasytoverifythat i (6) LT(P)= (2m −2i,2i−1). i Proposition 4.5. Wehave P0,...,Pm ∈ Jn. Inparticular P0 = gn+2,P1 = gn+3. Proof. By Proposition 3.4 and Proposition 3.7, one has P0 = gn+2 and P1 = gn+3. For i < j,itfollowsfrom(6)that S(P,P ) =(0,2j −2i)·P +(2j−2i,0)·P i j i j i = p,q ∈ X ǫ (p) = (p ,p ,0,...,0), (p ,p ) ∈ ∆ i,j m m−j j−i m−j j−i m−i ( ) (cid:16) (cid:17) (cid:12)(cid:12) z }| { (cid:12) (cid:12) j−i i + p,q ∈ X ǫ (p) = (p ,1,...,1,0,...,0), p ∈ ∆ i,j m m−j m−j m−j ( ) (cid:16) (cid:17) (cid:12)(cid:12) z }| { z }| { (cid:12) = p,q (p) ∈ X(cid:12) ǫ (p) ∈ ∆(i, j,0) , i,j m (cid:26)(cid:16) (cid:17) (cid:12)(cid:12) (cid:27) where (cid:12) (cid:12) 3·2j−2·2i +n+1−2p q (p) = . i,j 3 GROO¨BNERBASESOFORIENTEDGRASSMANNMANIFOLDS 9 By the definition of ∆ , one can easily see that ∆(i,0,i+1) = ∆ . Then it follows k m−i−2 thatS(Pi,Pi+1) = Pi+2 andhencewehaveestablished Proposition 4.5. (cid:3) Wecalculate theremainders ofS(P,P )ondivisionby{P ,...,P }. i j 0 m Lemma4.6. TheremainderofQ = p,q (p) ∈ X ǫ (p) ∈ ∆(i, j,l) ondivisionby i,j,l i,j m Pi+l+2 is Qi,j,l+1. (cid:26)(cid:16) (cid:17) (cid:12)(cid:12)(cid:12) (cid:27) (cid:12) m − i−l− 2 l i Proof. Let p(i,l)beǫ (p(i,l)) = (1,...,1,0,0,1,...,1,0,...,0). Thenitiseasytosee m z }| { z }| { z }| { LT(Q(i, j,l)) = p(i,l),q (p(i,l)) i,j (cid:16) (cid:17) anditfollowsfrom(6)that LT(Pi+l+2)= p(i+l,0),qi+j+2,i+j+2(p(i+l,0)) . (cid:16) (cid:17) Hencewehave (2i+l −2i,2j −2i+l+1)·LT(Pi+l+2)= Q(i, j,l). Ontheotherhand,onecaneasilycheckthat (2i+l −2i,2j−2i+l+1)·Pi+l+2 = p,qi,j(p) ∈ X ǫm(p) ∈ ∆¯(i,l) (cid:26)(cid:16) (cid:17) (cid:12)(cid:12) (cid:27) andthenitfollowsfromLemma4.4that (cid:12) (cid:12) Q(i, j,l) −−P−i+−l+−→2∗ Q(i, j,l)+(2i+l −2i,2j−2i+l+1)·Pi+l+2 = Q(i, j,l+1). (cid:3) Theorem4.7. Theset{P ,...,P }isaGro¨bnerbasisof J . 0 m n Proof. By Proposition 4.5, we have J = (P ,...,P ). As in the proof of Proposition n 0 m 4.5,wehaveS(P,P )= Q(i, j,0)andthenitfollowsfromLemma4.6that,fori< j, i j S(P,P ) = Q(i, j,0) −−P−i+−→2∗ Q(i, j,1) −−P−i+−3→∗ ··· −P−→j∗ Q(i, j, j−i−1) −−P−j+−→1∗ 0. i j (cid:3) 4.3. Cup-lengthofImp∗. Inordertodeterminecup(Imp∗),letusintroduce newpoly- n n nomials. Fornon-negative integers i, j,swith s−2m+1 +2i+1 ≡ 0 (mod 3),wedefinea polynomial Pˆ(s,i, j)by Pˆ(s,i, j)= p, s−2p ∈ X ǫ(p) ∈ ∆¯(i, j) . 3 (cid:26)(cid:16) (cid:17) (cid:12)(cid:12) (cid:27) Thenwehave (cid:12) (cid:12) (7) LT(P) = P(2i+n+1,i)+P(2i+n+1,i+2)+ Pˆ(2i+n+1,i, j). i 1≤j≤Xm−i−2 In order to investigate cup(Imp∗), we shall calculate min{p|(p,0)·LT(P) ∈ J } for n i n eachiasfollows. 10 TOMOHIROFUKAYA Lemma4.8. Letα = min{α|(α,0)·P(t,i)∈ J }fornon-negative integers i,twith i n 2i−2 +n+1 ≤ t < 2i +n+1, t−2(2m −2i)≡ 0 (mod 3). Thenwehaveα = 2m−2i−1.Inparticular, α isindependent fromtasabove. i i Proof. Notethat (2i−1,0)·P(t,i) =((cid:18)p, t+2i3−2p(cid:19) ∈ X(cid:12)(cid:12)ǫm(p) = (pm−i1,0,...,0) ∈ {0,1}m, (pm−i,1) ∈ ∆m−i+1), (cid:12) (cid:12) (cid:16)0, t+2i−13−n−1(cid:17)·Pi−1 =((cid:18)p, t+2i3−2p(cid:19) ∈ X(cid:12)(cid:12)(cid:12)ǫm(p) = (pm−i+1,0,...,0) ∈ {0,1}m, pm−i+1 ∈ ∆m−i+1). (cid:12) ByProposition 3.5,wehave (cid:12)(cid:12) (2i−1,0)·P(t,i)+ 0, t+2i−1−n−1 ·P = P(t+2i,i+1) 3 i−1 (cid:16) (cid:17) andhence (2i−1,0)·P(t,i)−−P−i−−→1∗ P(t+2i,i+1). Thenweobtain (2i−1,0)·P(t,i) −−P−i−−→1∗ P(t+2i,i+1), (2i,0)·P(t+2i,i+1) −P−→i∗ P(t+2i +2i+1,i+2), . . . (2m−1,0)·P(t+2i+···+2m−1,m) −P−m−−−1→∗ 0 andthiscompletes theproofofLemma4.8. (cid:3) Lemma4.9. Letα beasinLemma4.8. Thenwehave(α,0)·Pˆ(s,i, j) ∈ J . i i n Proof. QuitesimilarlytotheproofofLemma4.8,onehas (2j+i +2i,0)·Pˆ(s,i, j)+ 0, s+2i3+1+1 ·Pj+i+1 = P(s+2j+i+1 +2i+1, j+i+3). (cid:16) (cid:17) ByLemma4.8,wehave2j+i+2i+αj+i+3 < αiandthenLemma4.9isaccomplished. (cid:3) ItfollowsfromLemma4.8andLemma4.9that: Proposition 4.10. Let αi be as in Lemma 4.8. Then we have αi+1 = min{α|(α,0) · LT(P)∈ J }. i n Corollary4.11. Letχ beafixedintegersuchthat2m+1−2i+1−2i+2 ≤ χ < 2m+1−2i− 1 1 2i+1 andletχ = max{z|(χ ,z) < J }. Thenwehaveχ = 2i−1. 2 1 n 2 Proof. Let(p,q) = LT(P). Then,by(6)andLemma4.8,wehave i i i ··· > pi−1 +αi+1 > pi+αi+2 > pi+1+αi+3··· , ··· < qi−1 < qi < qi+1 < ··· . Hence, by Theorem 4.2 and Theorem 4.7, we have established that, for pi+1 + αi+3 = 2m+1−2i+1−2i+2 ≤ χ1 < 2m+1−2i−2i+1 = pi+αi+2,onehasχ2 = qi+1−1 = 2i+1−2. (cid:3)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.