APPLICATION OF FUNCTIONALLY GRADED MATERIALS IN AIRCRACT STRUCTURES THESIS William G. Cooley, Captain, USAF AFIT/GAE/ENY/05-M04 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government. AFIT/GAE/ENY/05-M04 APPLICATION OF FUNCTIONALLY GRADED MATERIALS IN AIRCRACT STRUCTURES THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineering William G. Cooley, BS Captain, USAF March 2005 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GAE/ENY/05-M04 APPLICATION OF FUNCTIONALLY GRADED MATERIALS IN AIRCRACT STRUCTURES William G. Cooley, BS Captain, USAF Approved: ____________//signed//_____________ ________ Dr. Anthony Palazotto (Chairman) Date ____________//signed//_____________ ________ Dr. Robert Canfield (Member) Date ____________//signed//_____________ ________ Dr. Richard Cobb (Member) Date AFIT/GAE/ENY/05-M04 Abstract Functionally Graded Materials (FGM) have continuous variation of material properties from one surface to another unlike a composite which has stepped (or discontinuous) material properties. The gradation of properties in an FGM reduces the thermal stresses, residual stresses, and stress concentrations found in traditional composites. An FGM’s gradation in material properties allows the designer to tailor material response to meet design criteria. For example, the Space Shuttle utilizes ceramic tiles as thermal protection from heat generated during re-entry into the Earth’s atmosphere. However, these tiles are prone to cracking at the tile / superstructure interface due to differences in thermal expansion coefficients. An FGM made of ceramic and metal can provide the thermal protection and load carrying capability in one material thus eliminating the problem of cracked tiles found on the Space Shuttle. This thesis will explore analysis of FGM flat plates and shell panels, and their applications to real-world structural problems. FGMs are first characterized as flat plates under pressure and thermal loading in order to understand the effect variation of material properties has on structural response. Next, FGM shell panels under thermal loading are analyzed. In addition, results are compared to published results in order to show the accuracy of modeling FGMs using ABAQUS software. Conclusions drawn from FGM characterization are used to develop a patch to retrofit a cracked aircraft exhaust wash structure and reduce thermally induced cracking. iv Acknowledgments I would like to express my sincere appreciation to my faculty advisor, Dr. Anthony Palazotto, for his guidance and support throughout the course of this thesis effort. The insight and experience was certainly appreciated. I would, also, like to thank my sponsor, Dr. Ravinder Chona, from the Air Force Research Laboratory for both the support and latitude provided to me in this endeavor. William G. Cooley v Table of Contents Page Abstract..............................................................................................................................iv Acknowledgments................................................................................................................v Table of Contents...............................................................................................................vi List of Figures....................................................................................................................ix List of Tables..................................................................................................................xvii I. Introduction.....................................................................................................................1 Background...................................................................................................................1 Research Focus.............................................................................................................3 Research Outline..........................................................................................................4 II. Methodology..................................................................................................................6 Chapter Overview.........................................................................................................6 Research Focus and Development................................................................................6 Theoretical Formulation of FGM.................................................................................8 Physical Creation of FGMs........................................................................................12 Finite Element Modeling Technique..........................................................................13 Finite Element: Heat Transfer Methodology and Element Discussion......................15 Finite Element: Structural Analysis Methodology and Shell Element Discussion....25 Non-Linearity Background and Analysis...................................................................27 Finite Element Software, Pre-Processor, and Post-Processor....................................31 Flat Plate Coordinate Systems and Boundary Conditions..........................................33 Curved Panel Coordinate Systems and Boundary Conditions...................................35 Exhaust Wash Structure Coordinate Systems and Boundary Conditions..................35 Summary.....................................................................................................................36 vi Page III. Analysis and Results...................................................................................................37 Chapter Overview.......................................................................................................37 Flat Plate under Thermal Loading..............................................................................37 Flat Plate under Distributed Pressure Loading...........................................................46 Curved Panel under Concentrated Force Loading......................................................53 Curved Panel under Thermal Loading.......................................................................55 Exhaust Wash Structure under Thermal Loading (Structure Only)...........................59 Exhaust Wash Structure under Thermal Loading (Structure and Patch)...................66 Exhaust Wash Panel made of Zi-Ti FGM................................................................111 Summary...................................................................................................................113 IV. Conclusions and Recommendations.........................................................................116 Chapter Overview.....................................................................................................116 Conclusions of FGM Plate and Shell Research........................................................116 Conclusions of Exhaust Wash Panel Research........................................................117 Conclusions of Exhaust Wash Panel with FGM Patch Research.............................117 Recommendations for Action...................................................................................118 Recommendations for Future Research....................................................................119 Summary...................................................................................................................121 Appendix A. Flow Chart of Matlab & ABAQUS Coupling...........................................122 Appendix B. Sample ABAQUS Input File (Thermal Analysis).....................................123 Appendix C. Sample ABAQUS Input File (Structural Analysis)...................................126 Appendix D. Summarized Exhaust Wash Model Data (Stress and Deflection)..............130 Appendix E. Non-Linear Solution Example....................................................................166 Bibliography....................................................................................................................169 vii Page Vita...................................................................................................................................170 viii List of Figures Page Figure 1. Thermal Protection...............................................................................................2 Figure 2. Variation of Volume Fraction..............................................................................9 Figure 3. Graphical Representation of n=0.2.....................................................................10 Figure 4. Graphical Representation of n=0.5.....................................................................11 Figure 5. Graphical Representation of n=1.0.....................................................................11 Figure 6. Graphical Representation of n=2.0.....................................................................12 Figure 7. Diagram Depicting FGM Gradation..................................................................13 Figure 8. SEM Picture of a YSZ / NiCoCrAlY FGM.......................................................13 Figure 9. Origin of Z-Axis.................................................................................................14 Figure 10. Conductive Heat Transfer Diagram..................................................................16 Figure 11. ABAQUS Shell Section Orientation (Photo Courtesy of ABAQUS [6])........19 Figure 12. Diagram of Thermal Stress-Displacement Analysis........................................20 Figure 13. Heat Transfer Element (DS4)...........................................................................21 Figure 14. Convective Heat Transfer Diagram..................................................................22 Figure 15. Structural Element S4.......................................................................................25 Figure 16. Plate Deflection Diagram.................................................................................27 Figure 17. SS1 Plate Boundary Condition.........................................................................34 Figure 18. SS2 Plate Boundary Condition.........................................................................34 Figure 19. SS3 Plate Boundary Condition.........................................................................34 Figure 20. SS4 Plate Boundary Condition.........................................................................34 ix
Description: