ebook img

Application Of Dsm Theory For Sar Image Change Detection PDF

2009·0.48 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Application Of Dsm Theory For Sar Image Change Detection

APPLICATIONOFDSM THEORYFORSARIMAGECHANGEDETECTION S.HachichaandF.Chaabane URISALaboratory SUP’COM, RoutedeRaouedKm 3.5,2083Ariana,Tunisie. ABSTRACT Recent workshaveproventhat thestatistics ofSAR im- agescanbewellmodelledbytheprobabilitydistributionfam- SyntheticApertureRadar(SAR)dataenablesdirectobserva- ilyknownasGammadistribution[1].Otherstudiesintroduce tionoflandsurfaceatrepetitiveintervalsandthereforeallows somesigni(cid:383)cantstatisticalmeasuresforthechangedetection temporal detection and monitoring of land changes. How- purpose [2]. In the same context, an interesting approach ever,theproblemofradarautomaticchangedetectionismade using statistical change measures between two SAR images more dif(cid:383)cult, mainly with the presence of speckle noise. havebeenintroducedin[3].Theoriginalityofthisworkisthe ThispaperpresentsanewmethodforSARimagechangede- fusionofchangesignaturescomputedontwoSARimagesus- tectionusingtheDezert-SmarandacheTheory(DSmT).First, ingDezert-Smarandachetheory.Thispaperextendsthiswork a Gamma distribution function is used to characterize glob- and proposes two main contributions. First, SAR texture is allytheradartexturedataandallowsmassassignmentthrow modelledbyaGammadistributioninsteadofaGaussianone. Kullback-Leibler distance. Then, local pixel measurements Then,inadditiontoclassdistributionsignaturesweintroduce areintroducedtore(cid:383)nethemassattributionandtakeintoac- localchangeattributestakingintoaccountthecontextinfor- countthe contextinformation. Finally, DSmT is carried out mation. bycomparingthemodellingresultsbetweentemporalimages. The paper is organised as follows. Section 2 presents The originality of the proposed method is on the one hand, somepre-processingtoolsappliedinordertoestimateGamma the use of DSmT which achieve a plausible and paradoxi- distribution parameters for each class of a temporal image. calreasoningcomparingtoclassicalDempster-ShaferTheory Section 3 exposes global and local measures introduced to (DST). On the other hand, the given approach characterizes characterizechangesignatures. InSection4,abriefdescrip- the radar texture data with a Gamma distribution which al- tion of DST and DSmT is presented. The second part of lowsabetterrepresentationofthespeckle. Theradartexture this section shows the mass belief assignment used to com- is being usually modeled by a Gaussian model in previous pare two images for the change detection purpose. Section DSTandDSmTfusionworks. 5 presentsexperimentalresults obtainedusing two temporal IndexTerms— SARimagechangedetection,Kullback- Envisatimages.ConclusionsaregiveninSection6. Leiblerdistance,DSTandDSmTfusiontheories 2. DISTRIBUTIONPARAMETERSESTIMATION 1. INTRODUCTION This section provides an investigation to ascertain the most Changedetection from imagescoveringthe same scene and appropriatepre-processingtoolswhichcouldbeusedforim- taken at different times is of widespread interest for a large ageclassi(cid:383)cationinordertoestimateGammadistributionpa- numberofapplications,especiallyintheremotesensingdo- rameters.Thetemporalradarimagesare(cid:383)rst(cid:383)lteredwithout main. SAR images are very useful tools to surface change altering SAR texture features and then classi(cid:383)ed. For each detection especially in regions where optical data are rarely class ofeach image, the Gammadistribution parametersare available.Inmanyareas,moreandmoreimagesareacquired estimated.Wecannoticeherethatthe(cid:383)lteringprocesswhich onrepeatedorbitsthankstotherepetitivityofradarsatellites isadelicatepre-processingstepisusedonlyfortheclassi(cid:383)- suchasERS1,ERS2andEnvisat.However,somedif(cid:383)culties cation purpose. Parameter estimation is applied on original areassociatedwithSARimageschangeanalysis:thespeckle images. noise,whichdisturbsautomaticchangedetection.Indeed,the speckle imposing a granular texture to radar images makes 2.1. GammaDistribution verydif(cid:383)culttheuseoftheseimagesevenwithslightlydiffer- ent acquisition angles. Nevertheless, despite the complexity In thecase ofradarimages, previousworksshowed thatthe ofdataprocessing,SARsensorshaveimportantpropertiesat Gammadistribution is moreaccuratethan the Gaussian dis- anoperationallevel,sincetheyareabletoacquiredatainall tribution to model the real SAR intensity [4]. The Gamma weatherconditions. distributionPGammaisgivenby: 978-1-4244-5654-3/09/$26.00 ©2009 IEEE 3733 ICIP 2009 pixel. A pixel will be considered as having changed if its 1 PGamma(x;α;β)= βαΓ(α)xα−1e−x/β (1) sIntatoisrdtiecraltodiqsutraibnutitfiyonthcihsacnhgaensgfer,owmeonneeedimaagmeetaosutrheewothhiecrh. where α is the(cid:2)shape parameter and β is the scale parame- mapstheestimatedstatisticaldistributionsforeachpixeltoa terandΓ(z)= ∞e−ttz−1dt,z >0istheGammafunction. scalarindexofchange. 0 Then,eachclasswillbecharacterizedbythetwoGammadis- Inthiswork,wechoosetheGammaKullback-Leiblerdi- tributionparametersαandβ. vergenceintroduced in [6]. The proposed texture similarity measurebetween two Gammadistributionsoftwo imageI1 2.2. Parameterestimation andI2 canthenbegivenby: 2.2.1. Pre-processing Speckle, a form of multiplicative, locally correlated noise, DKLGamma(I1,I2)=logΓ(α(I1))+α(I1)logβ(I1) plagues imaging applications. For images that contain speckle, a goal of enhancement is to remove the speckle −α(I1)(Ψ(α(I2))+logβ(I2))+ α(I2)β(I2). (2) without destroying important image features. The reducing β(I1) (cid:383)lters have originated mainly from the synthetic aperture Forsimplicity,thedistributionvalueIk(i,j)forthepixel radar(SAR)community. Themostwidelycitedandapplied (i,j)oftheimageIk,k =1,2,isnotedIk intheaboveequa- (cid:383)lters in this category include the Lee, Frost, Kuan, and tion. Thefactorsα(Ik) andβ(Ik),aretheshapeandthescale GammaMAP(cid:383)lters. parametersassociatedwithdistributionIk,k =1,2. Morerecently,anewPartialDifferentialEquation(PDE) approach to speckle removal was introduced and called Speckle Reducing Anisotropic Diffusion (SRAD) [5]. The 3.2. Localpixelmeasures PDE-based speckle removalapproach allows the generation Thecontrastmeasuretakescareofthepixelrealizationsfrom of an image scale space (a set of (cid:383)ltered images that vary astochasticpointofview. Tohighlightcontrastinformation, from (cid:383)ne to coarse) without bias due to (cid:383)lter window size the conventionalPixel by Pixel Ratio Measure (PPRM) be- andshape.SRADnotonlypreservesedgesbutalsoenhances tween two SAR images is exploited. This detector is well- thembyinhibitingdiffusionacrossedgesandallowingdiffu- knownandwidelyusedinSARimagerydueto itsabilityto siononeithersideoftheedge. greatlyreducethespecklein(cid:384)uenceonthechangemap. The TheaimofSRAD(cid:383)lteringistoameliorateimageclassi(cid:383)- cationresultsinordertoperformabetterGammadistribution PPRM ofa pixelbetween two imageI1 and I2 is computed and normalized on a small window through a contrast mea- parametersestimation.AfterSARimage(cid:383)ltering,aK-means clustering technique is applied to classify the pixels into k surer(i,j)de(cid:383)nedby: and k(cid:3) classes for both temporal images. The combination (cid:3) (cid:3) betweentheSRAD(cid:383)lterandtheK-meansalgorithmprovides I1(k,l) I2(k,l) averysuf(cid:383)cientclassi(cid:383)cation. (k,l)∈v (k,l)∈v r(i,j)=log(max( (cid:3) , (cid:3) )) (3) 2.2.2. ML-estimation I2(k,l) I1(k,l) (k,l)∈v (k,l)∈v After applying pre-processing steps in order to carry out an appropriateclassi(cid:383)cation imagemask for both temporalim- where v is the pixel (i,j) neighborhoodde(cid:383)ned by a given ages, we estimate statistical Gamma distribution parameters window. for each class. Maximum likelihood estimators are used to Moreover,we de(cid:383)nea signi(cid:383)cancemeasureas a criteria extractradartextureparameters. dedicatedtoreducetheambiguityofthepixelbehaviour.The signi(cid:383)cance measure of a pixel (i,j) for images I1 and I2 3. CHANGEMEASURES maybede(cid:383)nedby: Mostoftherelevantchangedetectiontechniquesarebasedon (cid:3) (cid:3) thedifferenceorratiooperatorswhenusingradarimages. In s(i,j)= I1(k,l)∗ I2(k,l) (4) ourcase, we introducetwo measuresto characterizechange (k,l)∈v (k,l)∈v signatures. The(cid:383)rstonehasaglobalbehavioursinceitoper- atesonclassesandthesecondoneiscalculatedlocallyfora Wecannoticethatthecontrastandthesigni(cid:383)cancemeasures pixelneighbourhood. are calculated for a pixel neighbourhoodand not for a class distribution. Besides, those measures characterize the evo- 3.1. GammaKullback-Leiberdistance lution of each pixel and are not necessary linked to ground change but give potential candidates to ground evolution. Thechangedetectionalgorithmisbasedonthemodi(cid:383)cation That is why those indicators are to be considered into an of the statistics between the two acquisition dates of each evidentialandparadoxicalreasoning. 3734 4. THEDEZERT-SMARANDACHETHEORY 4.2.1. De(cid:383)nition The Dezert-Smarandache Theory (DSmT) [7] is a general- Let Θ = {θ1,θ2,...,θN} be a set of N elements which ization of the classical Dempster-Shafer Theory (DST) [8], can potentially overlap. We consider in our example Θ = which allows formal combining of rational, uncertain and {θch,θnoch} involving only two elementary hypotheses paradoxicalsources. TheDSmTisabletosolvecomplexfu- ’change’and ’no change’. The hyper-power set DΘ is de- sionproblemswherethe DST usuallyfails, especiallywhen (cid:383)nedasthesetofallcompositehypothesesobtainedfromΘ con(cid:384)ictsbetween sources becomelarge. In this section, we with∩and∪operatorssuchthat: will (cid:383)rst review the principle of the DST before discussing thefundamentalaspectsoftheDSmT. i. ∅,θ ,θ ,...,θ ∈DΘ 1 2 N 4.1. Dempster-ShaferTheoryprinciple ii. IfA,B ∈DΘthen(A∩B)∈DΘand(A∪B)∈DΘ. The DST makes inferences from incomplete and uncertain iii. Noother elementsbelongtoDΘexceptthosede(cid:383)nedin knowledge by combining sources of con(cid:383)dence, even in i.andii. the process of partially contradictory sensors. In the DST, there is a (cid:383)xed set of mutually exclusive and exhaustive elements, called the frame of discernment, which is sym- bolized by the set of N elements potentially overlapped Wede(cid:383)neDΘinourexamplebyDΘ ={∅,θch,θnoch,θch∩ Θ = {θ1,θ2,...,θN}. The frame of discernment Θ de(cid:383)nes θnoch,θch∪θnoch}. thepropositionsnotedAi forwhichthesourcescanprovide AsintheDST,theDSmTde(cid:383)nesamapm(.):DΘ →[0,1]. con(cid:383)dence. Information sources can distribute mass values Thismapde(cid:383)nesthecon(cid:383)dencelevelthateachsensorasso- on subsets of the frame of discernment, Ai ∈ 2Θ. If an ciateswiththeelementofDΘ.Thismapsupportsparadoxical informationsourcecannotdistinguishbetweentwoproposi- informationandwehavethiscondition: tionsAi andAj, itassignsamassvaluetothesetincluding (cid:3) both hypotheses (Ai ∪ Aj). The mass distribution for all m(A)=1. (6) hypotheseshastoful(cid:383)llthefollowingconditions A∈DΘ i. 0≤m(Ai)≤1. Thebeliefandplausibilityfunctionsarede(cid:383)nedinthesame ii. m(∅)=0. wayasfortheDST.TheDSmTruleofcombinationofcon- (cid:4) (cid:384)ictinganduncertainsourcesisgivenbytheaboveequation: iii. Ai∈2Θm(Ai)=1. (cid:3) (cid:5)d Massdistributionsfromddifferentsourcesarecombinedwith m(A)= mi(Ai). (7) Dempster’sorthogonalrule. A1,A2,...,Ad∈DΘi=1 A1∩...∩Ad=A (cid:3) (cid:5)d m(A)=(1−K)−1 mi(Ai) (5) 4.2.2. Massbeliefassignment A1∩...∩Ad=Ai=1 (cid:4) (cid:6) twiohnerefaKctor=measAu1r∩in..g.∩Athde=∅condi(cid:384)=i1ctmbi(eAtwi)eeins athneorsmouarlcizeas-. KChuallnbgaecsk-mLaeyibbeeredxipsteacntceedfDorKaLpGiaxmelm(ai,(Ij1),wI2h)e,ntthheecGoanmtrmasat Two functions can be evaluated to characterize the uncer- measurer(i,j) and thesigni(cid:383)cance measures(i,j)become t(cid:4)ainty about the hypotheses. The belief functionBel(A) = signi(cid:383)cant. Furthermore, the decision may be taken when rweh(cid:384)Aeeirc⊆etasAst,mhteh(emApail)xaiummseiubamisluituryensfcuetnhrtceatiimnotniynPivmal(luuAme).u=nc(cid:4)ertAaii∩nAty(cid:8)=a∅bmou(tAAi), twbhyeerapenriosappaopscreoonpintrriaaTdtaeibclcteioom1nbtbhienetawtmieoaensnsotfhasecshitghanrnemgeeeinnstidgwinchaatitocuhrrse.sis.TdhToehnnee, decision is taken through the maximum of credibility with 4.2. TheDezert-SmarandacheTheory(DSmT) BeliefonchangeBel(θch). WhiletheDSTconsidersΘasasetofexclusiveelements,the DSmTrelaxesthisconditionandallowsforoverlappingand Hypothesis Massbeliefassignment intersectinghypotheses. Thisallowsforquantifyingthecon- ∅ 0 (cid:384)ictthatmightarisebetweenthedifferentsourcesthroughout θch r(i,j)∗DKLGamma(I1,I2)∗s(i,j) theassignmentofnon-nullcon(cid:383)dencevaluestotheintersec- θnoch (1−r(i,j))∗(1−DKLGamma(I1,I2))∗(1−s(i,j)) tionofdistincthypotheses. θch∪θnoch r(i,j)∗(1−DKLGamma(I1,I2))∗s(i,j) θch∩θnoch 1−(m(∅)+m(θch)+m(θnoch)+m(θch∪θnoch)) Table1.MassBeliefAssignementforimagefusion. 3735 Distance Kullback Leiber Image Contrast Image Significance Image 50 50 50 50 50 100 100 100 100 100 150 150 150 150 150 200 200 200 200 200 250 250 250 250 250 300 50 100 150 200 250 300 300 50 100 150 200 250 300 300 50 100 150 200 250 300 300 50 100 150 200 250 300 300 50 100 150 200 250 300 Fig.1.OriginalEnvisatSARimages. Fig.2. Changemeasuresresultsgivenrespectively(fromleft to right) by Kullback-Leiber distance, contrast and signi(cid:383)- cancemeasure. 5. RESULTS Change detection by DST Change detection by DSmT 1 ROC plots(red:DST blue:DSmT yellow:KLGamma green:r black:s) 0.9 The proposedmethodhas beenappliedon two temporal 50 50 0.8 100 100 0.7 ENnovrtihsaAtSfrAicRai(mseaegFesigc.ov1e).rinTgheth(cid:383)erssatmoneereigsiaocnqoufirTeduniins2C0i0ty5, 125000 125000 sensitivity0000....3456 whereasthesecondoneisacquiredin2007. Aconsiderable 250 250 00..12 amountofurbanchangesoccurredbetweenthesetwo dates. 300 50 100 150 200 250 300 300 50 100 150 200 250 300 00 0.2 0.41 (cid:358) specificity0.6 0.8 1 Thesetwoimagesarealreadyregistered. Fig.3. Changedetectionresults. (Left)DSTChanges(Mid- Fig. 2showsacomparisonbetweenthechangemeasures dle)DSmTChanges(Right)ROCplotscomparisonbetween results obtained respectively with the KL distance, the con- Contrast,signi(cid:383)ance,KLGamma,DSTandDSmTchangede- trast and the signi(cid:383)cance measures. As we can see, some tectionmeasures. changeregionsarehighlightedbythethreesignatures. How- ever,othersareenhancedonlybyoneortwomeasureswhich 7. REFERENCES underlinethecomplementaritiesoftheseattributes. [1] F. Chatelain, J.-Y. Tourneret, and J. Inglada, “Change Fig. 3 shows decision results obtained by maximizing detection in multisensor SAR images using bivariate the belief change function exposed previously. Even if this Gammadistributions,”IEEETGRS,vol.17,pp.249–258, method takes a strong decision, it is possible to analyse the March2008. beliefresponseortheinterval[credibility,plausibility]toin- troduceacon(cid:383)dentintervalintothedecision.Thisdecisionis [2] J. Inglada and G. Mercier, “A New Statistical Similar- madeunderDSTandDSmT. ityMeasureforChangeDetectioninMultitemporalSAR ChangesdetectedbyDSmTprocessing(seeFig. 3(Mid- Images and Its Extension to Multiscale-Change Analy- dle) shows that this approach provides better performances sis,” IEEETGRS,vol.45,pp.1432–1446,May2007. than the classical DST one (see Fig. 3 (Left)). Comparing these results to original images presented in Fig. 1, we can [3] G. MercierandS. Derrode, “SAR imagechangedetec- noticethatthe proposedmethoddetects themost signi(cid:383)cant tionusing distancebetweendistributionsof classes,” in changeswithaveryfewfalsealarms.So,takingintoaccount IGARSS.IEEE,2004,pp.3872–3875. con(cid:384)ictbetweenthedifferentsourcesenhancesconsiderably [4] B. Dong, Y.and Forster and A. Milne, “Evaluation of the change detection results. Fig. 3 (Right) gives a quanti- radarimagesegmentationbyMarkovrandom(cid:383)eldmodel tativeevaluation(ROCplots)oftheresultsusingtheground with GaussiandistributionandGammadistribution,” in truth. It shows the performances of all used measures and IGARSS.IEEE,1998,pp.1617–1619. itcon(cid:383)rmsthatDSmT(blue)is moreaccuratecomparingto DST(red)andalltheotherindicators. [5] Y. Yu and S. T. Acton, “Speckle ReducingAnisotropic Diffusion,”IEEETransactionsonImageProcessing,vol. 6. CONCLUSION 11,pp.1260–1270,November2002. Changedetectioninmulti-temporalSARimagesrequiresthe [6] J. Inglada, “Change detection on SAR images by us- computation of speci(cid:383)c measures which have to be sensi- ing a parametric estimation of the Kullback-Leibler di- tivetovariouskindsofchangesandrobusttospeckleeffects. vergence,” inIGARSS.IEEE,2003,pp.4104–4106. ThosemeasuresarecombinedandusedbyDSmTtotakeinto accountcon(cid:384)ictsbetweensourceswhichenhancechangede- [7] F.SmarandacheandJ.J.Dezert, “ApplicationsandAd- tection results. The performanceof the proposed technique vances of DSmT for InformationFusion,” in American is very suffcient comparingto DST results and original im- ResearchPress,vol1andvol2,2006. ages.Infutureworks,wecantakethebene(cid:383)tfromtheDSmT hybridmodelandintroducethemultiscaleinformationinthe [8] G. Shafer, “A mathematical theory of evidence,” in proposedchangedetectionapproach. This will allow detec- PrincetonUniversityPress,1976. tionofchangeswithvarioussizes. 3736 VViieeww ppuubblliiccaattiioonn ssttaattss

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.