APPLICATION OF AIRBORNE LASER SCANNER - AERIAL NAVIGATION A dissertation presented to the faculty of the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology In partial fulfillment of the requirements for the degree Doctor of Philosophy Jacob L. Campbell February 24, 2006 This dissertation entitled APPLICATION OF AIRBORNE LASER SCANNER- AERIAL NAVIGATION BY JACOB L. CAMPBELL has been approved for the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology by Maarten Uijt de Haag Associate Professor of Electrical Engineering and Computer Science Frank van Graas Russ Professor of Electrical Engineering and Computer Science Dennis Irwin Dean, Russ College of Engineering and Technology CAMPBELL, JACOB L. Ph.D. February 24, 2006. Electrical Engineering and Computer Science Application of Airborne Laser Scanner- Aerial Navigation (### pp.) Directors of Dissertation: Maarten Uijt de Haag, Frank van Graas This dissertation explores the use of an Airborne Laser Scanner (ALS) for various types of aircraft Terrain-Referenced Navigation (TRN) techniques. Using the methods explored, an ALS- based TERRain Aided Inertial Navigator (TERRAIN) was developed, flight tested, and shown capable of providing meter-level positioning accuracy in real-time. The ALS-based TRN techniques discussed are constrained to the information found in the terrain shape domain. The techniques used and position solution characteristics of ALS TRN can vary significantly from traditional radar altimeter-based TRN; these variations are primarily due to two differences in the information contained ALS TRN verses traditional radar altimeter-based TRN. The first difference being that traditional radar altimeter-based TRN sense the terrain contours traversed in the along-track direction, whereas ALS TRN measures in the along-track and in the cross-track direction. The second difference is that the ALS’s narrow laser beamwidth (typically less than a milli-radian) has resolution sufficient to identify not only the ground, but objects on the ground such as buildings; whereas, a the radar altimeter’s relatively large beamwidth (anywhere between 3 degrees to 90 degrees) primarily senses the terrain. These differences increase the spectral content of the ground measurement data in the ALS-based system thus permitting high-accuracy position estimates. The ALS TRN navigation techniques explored include a method which estimates the position based on the best match between ALS data and a high resolution/accuracy terrain database. Variations on this technique are discussed include a method to classify non-terrain and terrain features from the ALS data, allowing for the use of features with large gradients (sharp edges), such as buildings. Also explored is the certification path for a ALS-based landing system. Approved by: Maarten Uijt de Haag Associate Professor of Electrical Engineering and Computer Science and: Frank van Graas Russ Professor of Electrical Engineering and Computer Science Acronyms.........................................................................................................................................9 Acknowledgements........................................................................................................................13 1. Introduction............................................................................................................................14 2. Background............................................................................................................................17 2.1. Terrain-Referenced Navigation History.......................................................................18 2.1.1. The Early Years, Analog Systems............................................................................18 2.1.2. Digital Age of Terrain Navigation...........................................................................20 2.1.3. Bayesian Approaches to Terrain-Referenced Navigation Research........................22 2.1.4. Beyond ‘Traditional’ Radar Altimeter Terrain-Referenced Navigation..................22 2.2. Survey of Terrain-Based Navigation Systems..............................................................25 2.2.1. ATRAN – Automatic Terrain Recognition And Navigation...................................25 2.2.2. TERCOM – TERrain COntour Matching................................................................26 2.2.3. SITAN – Sandia Inertial Terrain-Aided Navigation................................................28 2.2.4. SPARTAN – StockPot Algorithm Robust Terrain-Aided Navigation.....................29 2.2.5. TERPROM® – TERrain PROfile Matching.............................................................30 2.2.6. APALS® - Autonomous Precision Approach and Landing System.........................31 2.2.7. PTAN® - Precision Terrain Aided Navigation.........................................................31 2.3. Summary of Survey of Terrain-Based Navigation Systems.........................................33 2.4. System Characteristics: GPS, WAAS, INS, GPS-Aided INS, Calibrated-Coasting INS 34 2.4.1. GPS..........................................................................................................................34 2.4.2. WAAS......................................................................................................................35 2.4.3. Inertial Navigation...................................................................................................35 2.4.4. GPS-Aided Inertial Calibration................................................................................36 3. Airborne Laser Scanner & LIght Detection And Ranging (LIDAR) Mapping Systems.......40 3.1. ALS Characteristics and Operation..............................................................................40 3.1.1. ALS Laser Rangers..................................................................................................40 3.1.2. ALS Scanning mechanisms......................................................................................42 3.1.3. ALS Pointing Accuracy Characteristics...................................................................46 3.2. ALS in a LIDAR mapping System...............................................................................47 3.2.1. Laser Scanner Sensor Errors....................................................................................48 3.2.2. Kinematic GPS Sensor Errors..................................................................................49 3.2.3. GPS/IMU Orientation Sensor Errors........................................................................49 3.2.4. Total LIDAR mapping system Vertical & Horizontal System Errors.....................49 3.3. LIDAR Generated DSM...............................................................................................50 3.3.1. Reno, NV LIDAR Data............................................................................................53 3.3.2. Braxton County Data................................................................................................54 3.4. Laser Safety..................................................................................................................54 4. Airborne Laser Scanner-Based Terrain-Referenced Position Estimation..............................56 4.1. Vertical-based Agreement Metric................................................................................57 4.1.1. Radar Altimeter-Based Disparity Calculation..........................................................58 4.1.2. ALS-Based Disparity Calculation............................................................................59 4.2. ALS-Based Position Estimation...................................................................................60 4.2.1. Exhaustive Grid Search Position Estimation...........................................................62 4.2.2. Gradient-Based Search Position Estimation............................................................64 4.3. ALS Positioning over Reno, NV..................................................................................66 4.3.1. Initial Positioning Results........................................................................................69 5. Real-Time TERRAIN Approach System...............................................................................72 5.1. Characteristics of the TERRAIN Approach System....................................................74 5.1.1. TERRAIN Approach System Integrity....................................................................74 5.1.2. TERRAIN Approach System Availability...............................................................76 5.1.3. TERRAIN Approach System Continuity.................................................................78 5.2. Terrain-Referenced Position Solutions.........................................................................78 5.3. Inertial Velocity Error Estimation Using Integrated GPS Carrier Phase......................80 5.4. Proof-of-Concept Real-time TERRAIN Approach System Hardware Description.....82 5.4.1. NovAtel OEM 4/WAAS GPS Receiver...................................................................83 5.4.2. Honeywell HG1150 Navigation Grade Inertial Reference Unit (IRU)....................83 5.4.3. Riegl LMS-Q140i Airborne Laser Scanner.............................................................84 5.4.4. Data Collection/Distribution Computer...................................................................86 5.4.5. Navigation Computer...............................................................................................86 5.4.6. Display Computer....................................................................................................87 5.5. Flight Test Location and Test Plan...............................................................................88 5.6. TERRAIN Precision Approach System Performance..................................................90 6. Conclusions and Future Work...............................................................................................96 7. References..............................................................................................................................99 Appendix A- Reno, Nevada LIDAR Data Metadata...................................................................107 Appendix B.- Glimer County LIDAR Data Metadata.................................................................121 List of Tables Table 1, Summary of ALS Position Estimates (1-s updates).........................................................70 Table 2, Summary of TERRAIN Position Accuracy on Approach, 900 ft HAT to DH, Eight Approaches, Nine Minutes of Data................................................................................................94 Table 3, Summary of TERRAIN Position Accuracy at 50 ft DH, Eight Approaches (5323 measurements)...............................................................................................................................94 List of Figures Figure 2-1, British H2S Air-to-Surface Radar, Image used with permission from http://www.doramusic.com/Radar.htm, May 2005........................................................................19 Figure 2-2, A. H2S Scan Pattern, Image used with permission from http://www.doramusic.com/Radar.htm, May 2005........................................................................19 Figure 2-3, Example of a Lissajous Laser Scan Pattern, X angle frequency = 6 Hz, Y angle frequency = 7 Hz, PRF = 1500 pulse/sec.......................................................................................24 Figure 2-4, TERCOM System, figure adapted from [35]..............................................................27 Figure 2-5, SITAN System, figure adapted from [35]...................................................................28 Figure 2-6, feed-forward navigator design used in the implementation of the prototype real-time TERRAIN approach system described in Chapter 5.....................................................................38 Figure 2-7, Kalman filter mechanization, figure adapted from [71] pp 219.................................39 Figure 3-1, Scan Pattern of an Oscillating Mirror Airborne Laser Scanner..................................43 Figure 3-2, Scan Pattern of a Rotating Mirror Airborne Laser Scanner........................................44 Figure 3-3, Scan Pattern of a Nutating Mirror Airborne Laser Scanner........................................45 Figure 3-4, Scan Pattern of a Nutating Mirror / Fiber Steered Airborne Laser Scanner...............45 Figure 3-5, Perspective View of Reno, NV, LIDAR Data; LIDAR Data Height Mapped to Point Color, LIDAR Data Intensity Mapped to Point Brightness. Image Created in QT Viewer™ software..........................................................................................................................................51 Figure 3-6, Range Plot Generated by Laser Scanner of the Inside of Ohio University AEC’s Hanger, Color Index: Blue < 3 m, and Red > 25 m. (Note: Dark blue on wings and nose indicates all laser energy absorbed, no range measurement available)..........................................52 Figure 3-7, Intensity Plot Generated from Laser Scanner of the Inside of Ohio University AEC’s Hanger, Color Axis: Red = High Intensity Return, Blue = Low Intensity Return.........................53 Figure 3-8, Perspective View of Reno, NV, LIDAR Data; LIDAR Data Height Mapped to Point Color, LIDAR Data Intensity Mapped to Point Brightness. Image Created in QT Viewer™ software..........................................................................................................................................54 Figure 4-1, Parameters of a Radar Altimeter-Based Terrain Navigator........................................59 Figure 4-2, Parameters of an ALS-Based Terrain Navigator.........................................................60 Figure 4-3, SSE Surface for GPS time 314246 s of week 1229....................................................62 Figure 4-4, SSE Surface for GPS time 314246 s of week 1229....................................................63 Figure 4-5, Gradient Search for Minimum Error on the Sum of Squared Error Surface...............66 Figure 4-6, NASA Dryden DC-8 Flying Laboratory, Photo courtesy of NASA Dryden..............67 Figure 4-7, NASA Dryden DC-8 Cargo Bay LIDAR Installation.................................................68 Figure 4-8, Flight Path of an Approach into KRNO......................................................................68 Figure 4-9, Flight Trajectories during Laser Data Collection at KRNO........................................69 Figure 4-10, ALS Horizontal Position Estimate Error...................................................................70 Figure 5-1, TERRAIN Precision Approach System Position Estimator........................................73 Figure 5-2, Approach into St. Maarten Island. Approach over water would make the TERRAIN approach system not available.......................................................................................................75 Figure 5-3, Theoretical probability density curve of a weather condition of severity x occurring, the area of the shaded region represents probability of a landing guidance system not available.77 Figure 5-4, TERRAIN Precision Approach Hardware Diagram...................................................83 Figure 5-5, Honeywell HG1150 IRU installed just aft of right-seat pilot in the DC-3..................84 Figure 5-6, Scanning Parameters for LMS-Q140i with Average PRF = 10 kHz...........................85 Figure 5-7, DC-3Research Computer Rack...................................................................................87 Figure 5-8, DC-3 Cockpit with DELPHINS Guidance Display....................................................88 Figure 5-9, DC-3 on Short Final to Runway 19, K48I.................................................................89 Figure 5-10, trajectories flown to K48I on January 14, 2005 during the flight testing of the real- time TERRAIN approach system: Left- perspective view, Right- plan view with North up.......90 Figure 5-11, TERRAIN position – KGPS for one approach, HAT: Height Above Threshold.....91 Figure 5-12, Histogram of error in the TERRAIN approach system navigator output in the East direction with best fit normal distribution overlay.........................................................................92 Figure 5-13, Histogram of error in the TERRAIN approach system navigator output in the North direction with best fit normal distribution overlay.........................................................................93 Figure 5-14, Histogram of error in the TERRAIN approach system navigator output in the Up direction with best fit normal distribution overlay.........................................................................93 Acronyms AEC – Avionics Engineering Center (at Ohio University) AFTI – Advanced Fighter Technology Integration AGL – Above Ground Level ALS – Airborne Laser Scanner ALTM – Airborne Laser Terrain Mapper (Optech System) APALS – Autonomous Precision Approach and Landing System APD – Avalanche Photodiode ATRAN – Automatic Terrain Recognition And Navigation AWRS – Average Weighted Residual Squared CAROTE – Correlation And Recognition Of Terrain Elevation CEP – Circular Error Probability CVN – Continuous Visual Navigation DCD – Data Collection and Distribution computer DCT – Discrete Cosine Transform DURIP – Defense University Research Instrumentation Program DME – Distance Measurement Equipment DME-P – Precision Distance Measurement Equipment DOP – Dilution Of Precision DSM – Digital Surface Map DSMAC – Digital Scene-Mapping Area Correlator DTED – Digital Terrain Elevation Database DTM – Digital Terrain Map EGPWS – Enhanced Ground Proximity Warning System ENU – East North Up FAA – Federal Aviation Administration FLOD – Forward Looking Obstacle Detection FM-CW – Frequency Modulated Carrier Wave GCAS – Ground Collision Avoidance System GIS – Geographical Information System GPS – Global Positioning System HAT – Height Above Threshold HDD – Heads Down Display IAF – Initial Approach Fix ILS – Instrument Landing System IMU – Inertial Measurement Unit INS – Inertial Navigation System IRS – Inertial Reference System IRU – Inertial Reference Unit K48I – Braxton County Airport in West Virginia KGPS – Kinematic Global Positioning System KRNO – Reno, NV Airport KUNI – Ohio University Airport in Albany Ohio LAAS – Local Area Augmentation System LADAR – LAser Detection And Ranging – or – Laser Radar LaRC – NASA Langley Research Center LCD – Liquid Crystal Display LEP – Linear Error Probability LIDAR – LIght Detection And Ranging LLH – Latitude, Longitude, Height LOS – Line Of Sight LSO – Laser Scanner Origin MAD – Mean Absolute Difference MCMC – Monte Carlo Markov Chain MSD – Mean Squared Difference MSL – Mean Sea Level MWx – Modified X-band Weather Radar MLS – Microwave Landing System NAV – NAVigation computer NGS – National Geodetic Survey POS – Position and Orientation System PPI – Plan Position Indicator PPS – Pulse Per Second PRF – Pulse Repetition Frequency PTAN – Precision Terrain Aided Navigation RAM – Random Access Memory RLG – Ring Laser Gyro
Description: