ebook img

Appetitive Pavlovian-instrumental Transfer PDF

20 Pages·2016·2.94 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Appetitive Pavlovian-instrumental Transfer

NeuroscienceandBiobehavioralReviews71(2016)829–848 ContentslistsavailableatScienceDirect Neuroscience and Biobehavioral Reviews journal homepage: www.elsevier.com/locate/neubiorev Reviewarticle Appetitive Pavlovian-instrumental Transfer: A review EmilioCartonia,b,∗,BernardBalleinec,GianlucaBaldassarreb aDipartimentodiPsicologia,UniversitàdiRoma“LaSapienza”,Rome,Italy bLaboratoryof Co mputation alEmbodie dN euros cien ce,Institut eofCo gnitiveSciencesandTechnologies,NationalResearchCouncilofItaly,Rome,Italy cBehavioura lN euroscienceLab oratory,B rain&MindCe ntre,Un ive rsityofSy dney,NS W,A ustralia a r t i c l e i n f o a b s t r a c t Articlehistory: Reward-relatedcuesareanimportantpartofourdailylifeastheyofteninfluenceandguideouractions. Receiv ed7February2016 Thispaperrevie wso neo ft heexperim enta lp ara digm sus ed tost udyth eeffects ofcu es,th ePa vlovian R23ecSeeivpetedm inb ererv2i0se1d6 f orm to In strum ental Tra nsfe r p arad igm. In this p aradigm, c ues as so ciated wit h rewa rds thro ugh Pavlovian conditioningaltermotivationandchoiceofinstrumentalactions.Thefirsttransferexperimentsdate Accepted23September2016 backtothe1940s,butonlyinthelastdecadehasitbeenfullyrecognisedthattherearetwotypesof Availableonline28September2016 transfer,specificandgeneral.Thispaperpresentsasystematicreviewofboththeneuralsubstratesand thebehavioralfactorsaffectingbothtypesoftransfer.Italsoexaminestherecentapplicationofthe Keywords: paradigmtostudytheeffectofcuesonhumanparticipants,bothinnormalandpathologicalconditions, Pavlovianconditioning TInrsatnrsufmeren tal conditioning aonfdtr tahnes fienrtetroacbtuioilnds aonf torvaenrsaflelrp wicittuhr edroufgsth oef pabhuesneo.m Fiennaollny,, ftrhoem paepaerlry atnhaelyosreiess thtoe rtehceeonrtethiciearl aarscpheicctasl PIT accounts. Review ©2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/). Contents 1. Introduction...........................................................................................................................................830 1.1. Scopeandpurposeofthereview..............................................................................................................831 2. Thetransferparadigm.................................................................................................................................831 3. Behavioralresults–variablesinfluencingtransfer...................................................................................................833 3.1. Pavlovianfactors...............................................................................................................................833 3.2. Instrumentalfactors...........................................................................................................................834 3.3. Otherfactorsandresults.......................................................................................................................835 4. Neuralsubstrates......................................................................................................................................835 4.1. Amygdalaandnucleusaccumbens............................................................................................................835 4.2. Molecularprocessesinnucleusaccumbens...................................................................................................836 4.3. Dorsalstriatum................................................................................................................................837 4.4. Midbrainstructures............................................................................................................................837 4.4.1. Dopamine............................................................................................................................837 4.5. Prefrontalcortex...............................................................................................................................838 4.6. Neuralcorrelates...............................................................................................................................838 5. Interactionwithdrugsofabuse.......................................................................................................................838 6. Humantransfer........................................................................................................................................840 7. Theoreticalaspectsoftransfer........................................................................................................................841 8. Conclusionsandfuturedirections.....................................................................................................................844 References.............................................................................................................................................845 ∗ Correspondingauthorat:LaboratoryofComputationalEmbodiedNeuroscience,InstituteofCognitiveSciencesandTechnologies,NationalResearchCouncilofItaly, ViaS.MartinodellaBattaglia44,00185,Rome,Italy. E-mailaddress:[email protected](E.Cartoni). http://dx.doi.org/10.1016/j.neubiorev.2016.09.020 0149-7634/©2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4. 0/). 830 E.Cartonietal./NeuroscienceandBiobehavioralReviews71(2016)829–848 toshockavoidancebutdecreaseactionsleadingtofood(Rescorla Glossary andSolomon,1967). Ourunderstandingoftransferhasnaturallydevelopedwithour Pavlovian conditioning: During Pavlovian conditioning a understandingofPavlovianandinstrumentalconditioning.Atthe neutralstimulus,suchasasound,becomesacondi- sametime,studyingtheinteractionofPavlovianandinstrumental tionedstimulus(CS)bypairingitsoccurrencewith conditioninghasoftenyieldednewinsightsintotheseindividual anunconditionedstimulus(US)thatnaturallyelic- processes.Atthetimeoftheearlieststudies,forexample,itwas itssomeresponse.Forexample,asound(CS)might not clear if Pavlovian and instrumental conditioning constituted be paired with food (US) by delivering food only differentformsoflearning.Gradually,however,two-processtheo- whenthesoundispresent.Attheendoftraining, riesemergedthatseparatedPavlovianandinstrumentalprocesses theanimal/participantwillhavelearnedthattheCS (see Rescorla and Solomon (1967) for a review). Transfer effects predictstheUSandsoitwillapproachthesiteof were,atthatstage,understoodastheresultofPavloviancuesgen- fooddeliverywhenithearsthesounds. eratinggeneralappetitiveoraversiveemotionalstatesand,indeed, Instrumental conditioning: During instrumental condition- thetransferparadigmwastypicallyusedtostudytheinfluenceof ing an animal/participant is trained to make a conditioned emotional responses (Rescorla and Solomon, 1967). response by delivering an attractive outcome. For Subsequent studies refined this general emotional state finding example,ahungryratmightbetrainedtopressa that,inmanyconditions,transferwasbettercharacterisedascon- lever that delivers food. This training can lead to trolledbyprimarymotivationalprocessesthanemotionalstates. two kinds of instrumental behavior: habits, con- So,forexample,Dickinsonandcolleaguesdemonstratedinstud- trolledbyantecedentstimulithroughtheformation iesofthesocalledirrelevantincentiveeffectthatacuepredicting of stimulus-response (S-R) associations or goal- sugarsolutionwouldenhanceinstrumentalactionsbothwhenrats directedactions,controlledbytheconsequencesof were hungry and when they were thirsty whereas a cue associ- theactionthroughtheformationofaction-outcome atedwithdryfoodpelletswouldonlyelevateperformancewhen (A-O)associations. hungry. These effects were generally interpreted as suggesting Devaluation: Outcomedevaluationisaprocedurewherethe thatprimarymotivationalprocessescouldmodulatetheproduc- USortheoutcome(O)valueisaltered.Forexample, tionofconditionedemotionalstates,muchassuggestedbyBindra thevalueofacertainfoodmightbealteredbyfeed- (DickinsonandDawson,1987;Balleine,1994;Bindra,1974).How- ingittosatiationorbypairingitwithillness(the ever,noneoftheseaccountsexplainedtheinfluencesofPavlovian latterinducedbylithium-clorideinjections). cuesonchoice:i.e.,howPavloviancuescouldsometimesbefound Extinction: A training session where the US predicted by a toenhanceactionstiedtoaspecificoutcome,e.g.howaCSassoci- CSortheoutcome(O)predictedbyanactionisno atedwithgrainpelletsenhancedleverpressingforgrainpelletsbut longerdelivered,thuspromotingtheextinctionof notforotherfoodoutcomes(suchassugar).Onepossibilityisthat the Pavlovian conditioned response or the instru- bothPavlovianandinstrumentalconditioningleadtotheforma- mentalaction. tion of associations: stimulus-outcome associations (S-O) in one case and response-outcome associations in the other case (R-O), andthatthecommonoutcomemediatestheinteraction(Trapold 1. Introduction and Overmier, 1972). In the 1980s and 90s much experimental workwasdevotedtoestablishingthatinstrumentalconditioning Predictivecuesareanimportantpartofourlifethatcontinu- could be subdivided into two types: habitual actions, controlled ouslyinfluenceandguideouractions.Hearingthesoundofahorn bystimulus-response(S-R)associations,andgoal-directedactions, makes us stop before we attempt to cross the street. Seeing an controlledbyresponse-outcome(R-O)associations(Balleineand advertisementforfastfoodmightmakeushungryandleadusto Dickinson,1998).Inparallel,aseriesofarticlesexaminedtheabil- seekoutaspecifictypeandsourceoffood.Ingeneral,cuescanboth ity of Pavlovian cues tied to a specific outcome to bias choice promptustowardsorstopusfromengaginginacertaincourseof betweenspecificactions(ColwillandRescorla,1988;Colwilland action.Theycanbeadaptive(savingourlifeincrossingthestreet) Motzkin,1994;Rescorla,1991,1994a,b;Delamater,1995,1996). ormaladaptive,leadingtosuboptimalchoices,e.g.makinguseat At the beginning of the century, investigationof the neural sub- whenwearenotreallyhungry(ColagiuriandLovibond,2015).In stratesoftransferbegan:someinitiallycontrastingresultsledat extremecasestheycanevenplayapartinpathologiessuchasin thatstagetotherealisationthattransfereffectscomeintwodif- addiction,wheredrugassociatedcuesproducecravingandprovoke ferent forms and so had to be subdivided as well. These studies relapse(Belinetal.,2009). dividedthephenomenonintospecificandgeneraltransfer,each Oneparticularparadigmusedtostudytheeffectofsuchcuesis characterizedbyadifferentneuralsubstrate(CorbitandBalleine, thePavloviantoInstrumentalTransferparadigm.Inthisparadigm, 2005,2011,seeSection4).Specifictransferreferstotheabilityof Pavlovianpredictionsandinstrumentalactionsarefirsttrainedin cuestoenhancespecificactionsassociatedwiththesameoutcome separateexperimentalphases.Theinstrumentalactionsarethen asthecue,whereasgeneraltransferreferstotheabilityofcuesto testedinboththepresenceandtheabsenceofthePavloviancues enhancealsoactionspairedwithdifferentoutcomes. toasse ss thee ffec tofthelat tero nth eforme r. Most data on tra nsfer c ome from ani mal studies,1 however The first Pavlovian to instrumental transfer studies date back in recent years the transfer paradigm has also been adapted for tothe1940s,reportingthatstimulipairedwithfoodwereableto humanparticipants.Ingeneral,humanstudieshaveproducedsim- augment instrumental actions directed towards food (Estes and ilarresultstoanimalstudiesbothintermsofthebehavioralfactors Skinner, 1941; Walker, 1942; Estes, 1943). Transfer effects can either promote or discourage actions, with the presence of cues increasing/decreasingthefrequencyofanactionorbiasingchoice in favour of certain actions. Amongst other factors, the type of 1 Studiesmostlyinvolvedrats,howeverotherspecieshavebeenusedaswell, effect obtained depends on the valence of the Pavlovian US, i.e., suchasmice(seeLederleetal.,2011indifferentmicestrains),monkeys(Stebbins whetheritisappetitiveoraversive.Forexample,aPavloviancue andSmith,1964),dogs(RescorlaandLoLordo,1965),pigeons(MorseandSkinner, associate d wi thanaver siv eshockm igh tpromote a ctionslead ing 195 8)ande venho rses (Lansadee tal. ,2013). E.Cartonietal./NeuroscienceandBiobehavioralReviews71(2016)829–848 831 Fig.1. Articlesreferencedinthisreview,groupedin5yearsbins.Lettersindicatelandmarkeventsintransferresearch.Thelastdecadehasseenamarkedincreaseinthe investigationoftransfer.(a)Firstexperimentsinthe1940s.(b)RescorlaandSolomon(1967)reviewtheoriesofPavlovianandinstrumentalconditioningandtheirinteraction, advocatingatwo-processtheory.(c)Duringthe1980sand90sinstrumentalconditioningwasclearlysubdividedintohabitual(S-R)andgoal-directed(A-O)actions.Around 1990,RescorlaandcolleaguesproduceaseriesofstudiesexamininghowPavloviancuesaffectinstrumentalrespondinginanoutcome-specificmanner.(d)Attheturnof thecenturyinvestigationoftheneuralsubstratesoftransferbegins,leadingtothesubdivisionofgeneralandspecifictransfereachwithitsseparateneuralsubstrate.(e)The transferparadigmisadaptedtohumanparticipantsandneuralsubstratesareinvestigatedusingfMRI. andtheneuralsubstrates(e.g.,Brayetal.,2008;Talmietal.,2008; conditioninginsteadwillalwaysbereferredtoas‘Pavloviancondi- Watsonetal.,2014,seeSection6)controllingtransfereffects. tionedresponses’,‘conditionedresponses’orsimplyas‘responses’. 1.1. Scopeandpurposeofthereview 2. Thetransferparadigm In the last decade there has been an increasing number and There are many variations of the transfer paradigm but it is rangeofstudiesontransfer,bothinanimalsandhumans,examin- alwayscomposedofthreephases:Pavloviantraining,instrumental ingtransferunderbothnormalandpathologicalconditions(Corbit trainingandthetransfertest.Thetwotrainingphasescanbecon- etal.,2007;CorbitandBalleine,2011;Laurentetal.,2015;Ostlund ductedinanyorder(eitherPavlovianorinstrumentalfirst)with etal.,2014b;Nadleretal.,2011;Morrisetal.,2015;Colagiuriand nochangeintheeffect(butseeHolmesetal.,2010,wherelength- Lovibond,2015;Garbusowetal.,2016).Althoughtherehasbeena eningthefirstorsecondphasevariedtheamountoftransfer).In relativelyrecentreviewonthetopic(Holmesetal.,2010)thelit- thePavlovianphaseoneormorestimuli(usuallyauditorycues)are eratureontransferhasessentiallydoubledinsizeoverthelast5 pairedwiththedeliveryofrewardssuchasfoodpelletsorsucrose yearsprovidingconsiderablenewinformationonmodelsandthe (seeFig.2).Pairingstimuliwithanaversiveeventtodevelopan neuralbasesofthetransfereffectacrossspecies.Inparticular,we aversive transfer paradigm has also been conducted (e.g., Lewis willfocusonappetitivetransferwhichisthesubjectofthelarge etal.,2013;Rigolietal.,2012;Campeseetal.,2013). majorityoftheserecentstudies.Fig.1summarisesourcoverage Duringtheinstrumentaltraining,acontingencyisestablished ofresearchandshowssomelandmarksintheinvestigationofthe betweenoneormoreactionsandthedeliveryofoneormoreout- transfereffect.Inourreviewweincludedonlyarticleswhichfollow comes–usuallyinvolvingpairingleverpressingwithfooddelivery. thestandardtransferparadigms:i.e.wherethePavloviancondi- Usingoneormoreactions(e.g.oneortwoleverspairedwithdif- tioningandinstrumentalconditioningareconductedinseparate ferentfoods)leadstocriticaldifferencesinwhatismeasuredinthe sessions. finaltest(seebelow). The review is structured as follows: Section 2 describes the Inthelastphase,theanimal/participantcanagainperformthe transferparadigmanditsvariants;Section3thenreviewsbehav- instrumental actions, but this time the conditioned stimuli (CS) ioral factors influencing the transfer effect; Section 4 describes trainedinthePavlovianphasearepresentedduringthesession.The the neural mechanisms underlying transfer; Section 5 reviews effectofpresentingtheCSontheinstrumentalresponse(thetrans- studies of the interaction between transfer and drugs of abuse; fereffect)isthenassessedbycomparinginstrumentalresponding Section6reviewstransferstudieswithhumanparticipants;Sec- during periods when no CS is presented (baseline) with periods tion7reviewstheoreticalaspectsoftransfer;Section8thendraws whenaCSispresented,or,iftwoCS’sarepresented,bycomparing overallconclusions.Wherepossiblewewillseparateexperimental respondingduringthepresentationofthedifferentCSs(e.g.,one findings from their theoretical interpretation using procedural pairedwiththesamefoodastheleverandanotheronepairedwith ratherthantheoreticaldescriptionsordefinitions.Inthisregard, adifferentfood).TheCSsareneverpresentedinthepresenceofthe weclarifyhereouruseofwhatmaybeseenasatheoreticallyladen instrumentalmanipulandabeforethetest,sonoexplicittraining term‘action’.Weuse‘instrumentalaction’orjust‘action’torefer ofarelationshipbetweentheCSandtheinstrumentalactiontakes to measures in the instrumental conditioning phase of transfer place.Whenmultipleactionsareused,thetestmayinvolveachoice studies, whether the experiments were designed to encourage betweentwoleverspresentedatthesametime(e.g.,Ostlundand the development of goal-directed instrumental actions or of Balleine, 2008) or separate tests of each instrumental action habitual instrumental actions. Measures taken from Pavlovian (e.g., Corbit et al., 2001). Test sessions are usually conducted in 832 E.Cartonietal./NeuroscienceandBiobehavioralReviews71(2016)829–848 Fig.2. Transferparadigms.Weillustratethreepossibleexperimentalsetups(“Transferparadigms”)thathavebeenusedtotestthetransfereffect.Ontheleft(“Single-lever paradigm”),onlyoneCSandoneleveraretrainedwitharewardandanunpairedCSisusedascontrol.Thisfirstparadigmusuallyleadstotheexpressionofgeneraltransfer. Inthecentre(“Specifictransferparadigm”),twoCS+andtwoleversaretrained,usingtworewards.EachCS+isassociatedwitharewardusedforonlyonelever,thusenabling theexpressionofspecifictransfer.Ontheright(“Fulltransferparadigm”),thespecificparadigmisenhancedbyaddinganadditionalCS+.ThislastCS+isassociatedwitha thirdoutcomethatisnotusedforinstrumentaltraining.UsingthisthirdCS+duringthetestphaseprovidesatestofgeneraltransfer.Theparadigmontherightisthusa“full transferparadigm”inthesensethatitcantestbothspecificandgeneraltransfer.Thebottomrowprovidesschematicgraphsthatexemplifytypicalresultsobtainedinthe threeparadigms. extinction,i.e.,nooutcomesaredeliveredeitherafterthestimuli the Pavlovian phase and in the test phase cannot behaviorally oraftertheactions,toavoidchangesinperformanceduetonew distinguish between the specific and general transfer effects. learning. Thisisbecausebothgeneralandspecifictransfereffectsenhance In all cases, what is generally found is that a CS paired with instrumental performance, something that could be because the an appetitive outcome (CS+) enhances instrumental responding action shares the same outcome as the CS or through a general com paredtoa nunpaire dCS( CS−).Usua llytheCS+al soincreases effect of the cue (e.g. m otivatio nal ). Fo r s imp licity, th ro ughout instrumentalresponsescomparedtothebaseline(CS-freeperiod), this review we will call these studies “single lever studies” (see however,ins omecases, difference sb etw eentheC S+andC S−have Fig. 2).Itmu stb enot edt hatwh ileitisn otposs ibleto behavio rally emerged but with no difference between the CS+ and baseline, distinguishbetweenspecificandgeneraltransferina“singlelever producing instead a reduction of CS-induced response suppres- study”,lesionsexperimentssuggestthatusingasingleleverusu- sion. Furthermore, in the two action case, although typically the allyelicitsonlygeneraltransfer.AswewillseeinSection4,studies ‘same’ CS elevates performance of the action delivering the out- investigatingtheneuralbasisoftransferhavefounddistinctneural come predicted by the CS relative to both the other action and substrates for specific and general transfer (Corbit and Balleine, to baseline performance,it has sometimes been found that both 2005,2011),andtransferin“singlelever”studiesisimpairedby CSsreduceleverpressingcomparedtothebaselinebutthattheCS lesionstargetinggeneraltransfersubstratesandsparedbythose sharingthesameoutcomeastheinstrumentalactionreducesper- targetingspecifictransfersubstrates(Halletal.,2001;Hollandand formancelessthanaCSassociatedwithadifferentoutcome.This Gallagher, 2003). It is not known why the “single lever” studies reduction with respect to the baseline could be due to response elicitgeneraltransferandnotspecifictransfer(asmultiplelever competition between instrumental and Pavlovian responses. For studiesdo).Ithasbeensuggestedthatthedifferenttypeoftransfer example, if the CS prompts considerable magazine approach, it elicitedbysingleanddoubleleverproceduresmightbecausedby will reduce the time spent pressing the lever (see also next themoreorlessdetailedrepresentationoftheoutcome(Holland, section). 2004). Procedures with multiple levers (and reinforcers) favour As we mentioned in the introduction, there are two kinds of thecreationofamoredetailedandsensory-specificrepresentation transfer:specifictransferandgeneraltransfer.Inspecifictransfer, of the reinforcers used, which in turn may lead to the transfer theCSenhancesactionsassociatedwiththesameoutcomeasthat effect being specific. A single-lever lever procedure does not pairedwiththeCSwhereas,ingeneraltransfer,aCScanenhance needadetailedrepresentationoftheoutcome,sointhiscasethe actionsdirectedtootheroutcomesaswell.Studiesusingasingle transfereffectmightbeconveyedbythemore“general”appetitive lever paired with food usually also use one single paired CS in characteristicsoftheoutcome. E.Cartonietal./NeuroscienceandBiobehavioralReviews71(2016)829–848 833 Anothercategoryofstudiesusestwolevers,eachpairedwith OntherelationshipbetweentransferandPavlovianextinction,we different outcomes (e.g. food pellet vs. sucrose) and usually two alsonotethatinasingle-leverhumantransferparadigmLovibond CSseachpairedwithoneoftheseoutcomes.Inthiscase,duringthe etal.(2015)found,incontrasttotheanimalstudies,thatPavlo- testphase,eachCSusuallyonlyenhancesleverpressingassociated vianextinctionoftheCSaffectedtransfer.AlthoughthePavlovian withthesameoutcomeastheCS.Wewillcallthisvariantthe“spe- extinctiondidnotcompletelyeliminatethetransfereffect,itseffi- cifictransferparadigm”(seeFig.2).Inthisparadigm,whentesting cacycontrastedwiththeresultsobtainedinanimalsbyDelamater transferoneleveratatime,theCSpresentationscanbedivided (1996).Lovibondetal.(2015)suggestedthatoneofthecriticaldif- into two conditions: in the same condition the CS and the lever ferencesmightlieinthefactthattheyfocusedonabsoluteresponse sharethesameoutcomewhereasinthedifferentordiffcondition rate(usingasingle-leverparadigm)whereasinDelamater’s(1996) theCSpredictsadifferentfoodcomparedtotheoneassociatedwith studythetransfertestinvolvedaresponsechoice(specific-transfer thelever.UsuallythedifferentCSdoesnotenhanceleverpressing paradigm). This suggestion predicts that Delamater’s extinction relative to the baseline or it does so to a lesser extent than the procedurewouldhavebeeneffectiveifhehadtestedhisactions specific transfer effect in the same condition (see Fig. 2, bottom individuallyratherthaninachoicetest.However,giventhatsingle- graphs). It is still unclear why the different lever is not equally leverparadigmsseemtoevokegeneraltransfer,itremainspossible enhanced through a general transfer effect, especially when, in thatCSextinctiondifferentiallyaffectsspecificandgeneraltransfer. experimentalsituationsabletoexpressboththespecificandgen- And,ofcourse,thesameislikelytobetrueofconflictbetweenthe eraltransfereffects,thetwoeffectstendtohaveacomparablesize CRandtheinstrumentalaction;suchconflictcoulddirectlyalter (seeFig.2). responsevigorandsothesizeofanygeneraltransfereffectbuthas This last category of experiments is usually conducted using difficultyexplainingvariationsinspecifictransferbecauseanygen- two levers, each delivering a different outcome, and with three eraleffectonperformanceshouldhavesimilareffectsacrossboth CSs,twopairedwiththeoutcomesdeliveredbytheleversandone actions. paired with a third outcome. During the test, this paradigm has The duration and timing of the CS can also affect transfer; beenreportedtoshowboththespecificandthegeneraltransfer Crombag et al. (2008a) found in mice that a CS+ lasting 10s effects.ThetwoCSspairedwiththesameoutcomesasthelevers (with reward delivered during the last 5s of the stimulus) pro- enhancerespondingontheleversharingthesameoutcome(spe- ducedstrongconditionedreinforcementbutnotransfer,whereas cific transfer). Again we note that the CS+ paired with the food a CS+ lasting 2min (with rewards delivered randomly during associated with one lever does not enhance responding on the the interval) produced robust transfer but no conditioned rein- other lever although the third CS, paired with an outcome that forcement. Delamater and Holland (2008) also examined the wasnotusedintheinstrumentaltraining,enhancespressingon effects of varying the CS-US interval: results confirmed that both levers (general transfer). We will call this the “full transfer sensory-specificstimulus-outcomeassociations(i.e.,thoseunder- paradigm”. lyingspecifictransfer)wereestablishedoverawiderangeoflong butnotshortintervals.Theseresultsarealsoconsistentwitholder studies, e.g. Meltzer and Brahlek (1970) where a long CS (120s) 3. Behavioralresults–variablesinfluencingtransfer ledtopositivetransferwheareasashortCSledtosuppressionof responding, althought in that case the CS’s were trained during There are many behavioral factors affecting transfer effects. instrumentalconditioningandsoitwasnotacanonicaltransfer These are analysed in detail in this section. designasdefi nedhere.2De lam ate ra ndH olla nd (2008)al sofound that conditioned responses (magazine approach) had an inverse 3.1. Pavlovianfactors relationshiptotheCS–USinterval,withlongerintervalsleadingto alowermagazineapproachperformance.Assuch,measuresofcon- ResponsecompetitionbetweenPavlovianresponsesandinstru- ditionedrespondingsuchasmagazineapproachdonotnecessarily mental responding can make transfer effects harder to detect correlatewithmeasuresofspecifictransfer.Thishasalsobeencon- (Lovibond,1983).Aswenotedintheprevioussection,aCS+usu- firmedbythefindingthatitispossibletohaveaCSwhichreduces allyenhancesinstrumentalrespondingcomparedtothebaseline. magazineapproachbutstillincreasesinstrumentalactions,aswe However,thePavlovianresponseselicitedbytheCS,suchasmag- will see below (Shiflett, 2012). Delamater and Oakeshott (2007) azine approach, can compete with lever pressing and lead to a furnishesadditionalsupportforadissociationbetweenmagazine reduction of lever pressing compared to the baseline. Using dis- approach and transfer. In a specific transfer paradigm they gave crete(e.g.alightcue)vs.diffuse(asound)cuesastheCScanfavour ratsdifferentamountsofPavloviantraining,rangingfrom4to112 thedevelopmentofcompetingsign-trackingresponses(e.g.appro- presentationsofa60sCS.Duringthetestsessions,theamountof achingtheCS)whichcancompetewithinstrumentalresponses,or magazine approach varied greatly between the different groups, favour them if the cue is located near the manipulanda (Tomie, with more training leading to more magazine approach. Also, a 1996).ThedegreeofsimilaritybetweenPavlovianandinstrumen- tendency to concentrate approaching during the last part of the talresponsesmightalsohelporhinderthetransfereffect(Baxter CS(whentheUSwaspreviouslydelivered)onlydevelopedforthe andZamble,1982).Holmesetal.(2010)showedthatextinguish- group with most Pavlovian training. In contrast, the amount of ingPavlovianresponsescanenhancetransferinasubsequenttest. transfer displayed was less influenced by length of training and This result might be seen to conflict with previous experiments theincreaseinleverpressingwasmorepronouncedtowardsthe byDelamater(1996)inwhichthetransfereffectwasshowntobe endoftheCSforallbuttheshortesttraininggroup.Soboththe unalteredaftervarioustypesofCSextinctionsuchasnonreinforce- amountandtimingofmagazineapproachandtransferappearto ment,pairingwithanalternativeoutcomeandexposuretorandom developduringtrainingatdifferentrates. orexplicitlyunpairedS-Ocontingencies.Thedifferencemightlie Backward conditioning, in which the US precedes the CS, inthelengthofpreviousCStraining,whichinthecaseofHolmes can also support transfer (Delamater et al., 2003; Shiflett, 2012; etal.(2010)wasdeliberatelyextendedtocreatestrongPavlovian Cohen-Hatton et al., 2013); however depending on the US-CS approachresponses.Inotherwords,Pavlovianextinctionmightbe beneficialtothetransfereffectonlywhenthePavloviantraining issufficientlystrongthatitinterfereswithinstrumentalrespon- 2 ButseealsoVanDyne(1971)orLovibond(1981)forshortCSleadingtosup- ding (in the ways described above) but has no effect otherwise. pression. 834 E.Cartonietal./NeuroscienceandBiobehavioralReviews71(2016)829–848 interval, backward conditioning can produce either Pavlovian Lastly,wenotethatvandenBosetal.(2004)triedtovarythe excitorsorPavlovianinhibitors,i.e.CSsthat,respectively,enhance amountofrewardassociatedwiththeCS(1or3pellets)butfound orsuppressPavlovianresponsessuchasconditionedapproach.As noeffectofrewardmagnitudeontransfer. aconsequence,theinfluenceofbackwardconditioningontransfer is complex and its application in a transfer paradigm can result 3.2. Instrumentalfactors in either positive (Shiflett, 2012; Cohen-Hatton et al., 2013) or ‘negative’transfereffects(Delamateretal.,2003).Thelattereffects, The amount of training and type of reinforcement schedule observedinoutcomespecifictransfer,oftenreflecttheoppositeof canaltertheamountoftransferattest.Testingdifferentvariable- thestandardexcitatoryspecifictransfer;i.e.,ratherthanelevating interval(VI)schedulesMeltzerandHamm(1974)foundthatVI’s theactionthatdeliveredthesameoutcomeasthatpredictedby withlongerintervals,whichleadtolowerresponserates,produced thestimulus,abackwardlypairedCScanbiaschoicetowardsother strongertransfereffects.Thismightbeduetotransferbeingeasier actionsthatanimalshavelearneddonotdeliverthebackwardly todetectonalowerbaselineandindeedmanytransferexperiments pairedUS.ThiswasexplicitlyinvestigatedbyLaurentandBalleine includeaperiodofinstrumentalextinctionpriortothetestonthe (2015)whocomparedtheeffectofazerodelayandofa10-sdelay viewthatitmakespositivetransfereasertodetect(Dickinsonetal., between US and CS finding standard specific transfer with the 2000). Lovibond (1981) used discrimination training on a single formerandthe‘negative’orreversedtransfereffectwiththelatter. leverinwhichanimalshadtodiscriminatebetweentwoalternating Sucheffectssuggest,therefore,thatitistheinformationconveyed periodsofreinforcement(onaVR15scheduleS+,chamberfanson) by th e back wardly p aired CS t hat is im por tant for the direction andnon -r einforcement( S−,c h ambe rfansoff ).D uringthe tran sfer ofchoice;i.e.,thattheCScanprovidebothinformationaboutthe test,thepresenceoftheCSsuppressedrespondingintheS+period lik elihood ofa forth com in gou tcomefo ruse inactionsele ction, but whe area sduring the S− pe riodtheCS producedp os itiv etr ansfer canalsoprovokedirectchangesinconditionedreflexesandthat whichlastedbeyondthedurationoftheCSitself(10s).Thisiscon- thes ene ednotbe thesa me;inde ed itisimporta nttono tein this sistent witht heabov erep ortedfin di ngs bec ause the S− peri od was context that the effect of backward conditioning on transfer can indeedaperiodwithlowerbaseline.Lovibond(1981)alsoverified be dissociated from its effects on conditioned approach. Shiflett thattheenhancementofleverpressingoccurredwhenthebaseline (2012) managed to train a backward CS that exhibited positive wasloweredbyothermeans.Inasecondexperiment,hetestedthe transfer but suppressed conditioned approach responses (i.e., CS after rats had achieved a low baseline due to satiety: in this CS presentation increased lever pressing but reduced magazine case, the CS tended to suppress responding rather than enhance approach compared to baseline). Interestingly, in Laurent et al. it. This result tells us that it was probably not a lower baseline (2015) and in Laurent and Balleine (2015) a backward condi- per se that produced the stronger transfer effects but rather the tioningprocedurewasusedtoobtainoutcome-specificPavlovian interactionbetweentheexpectancyoffoodgeneratedbytheCS inhibitorsfortwodifferentrewards.Whentestingspecifictransfer, andtheexpectancyoffoodcontrolledbytheinstrumentalsched- thesebackward-CSsdidnotreducepressingontheleversharing ule(Lovibond,1981).Inotherwords,theCSismoreeffectiveon the same reward as the CS, instead, they increased pressing on anextinguishedbaselinebecauseitbringsanexpectationoffood theleverpairedwiththeotherreward.ThiswasusedinLaurent when the current expectation is low. The reduction in transfer and Balleine (2015) to demonstrate that rats can engage in a observedwhentestingundersatietycanalsobeseenasconsistent formof“counterfactualreasoning”,meaningthattheycanusethe with subsequent results by Corbit et al. (2007) and Aitken et al. informationaboutanabsentreward(furnishedbythebackwardly (2016)whichshowedthatsatietycanabolishgeneraltransfer(see paired CS) to promote the selection of actions associated with nextsection). other outcomes (in this case increasing responding on the other Beyond this, Holland (2004) showed that longer training on lever).Oneimportantaspectofthesestudieswasthefindingthat a VI schedule leads to an increase in the transfer effect when specific inhibitory predictions mirrored the effects of excitatory assessedinasingle-leverparadigm.Subsequently,Wiltgenetal. predictions and altered action selection quite specifically away (2012) showed that mice trained under a VI schedule exhibited fromtheactiondeliveringtheoutcomethattheinhibitorystim- moretransferthanthosetrainedunderarandom-ratio(RR)sched- ulus predicted would be withheld. To confirm that this effect of uleusinganoutcomespecifictransferdesign.However,although backwardly pairing of CS and US was due to inhibition, Laurent thegrouptrainedontheRRscheduleswassensitivetodevalua- and Balleine (2015) went on to assess the effects of conditioned tion–whereasagrouptrainedontheVIscheduleswasnot–both inhibitorsestablishedusingothermethods;i.e.,afeature-negative groupsshowedsimilarratesofperformanceduringtraining.This procedureandanoverexpectationprocedure.Bothofthesepro- isunusual;itiscommonlyfoundthatratioschedulespromotefar ceduresproducedidenticaleffectstothoseinducedbybackward higher rates of responding than interval schedules (see Dawson conditioning; i.e., whereas the conditioned excitors elevated andDickinson,1990)suggestingthat,forsomeunspecifiedreason, performance of the action with which they shared an outcome, themiceintheRRgroupmayhavefailedtodetectthefullimpact theconditionedinhibitorsproducedashiftawayfromthespecific oftheratiocontingency.Furthermore,whattransferWiltgenetal. action delivering the outcome the inhibitor predicted would be (2012)reportedwasclearlynotspecifictransfer;boththesameand withheld. In summary, excitatory and inhibitory conditioning differentactionswereelevatedrelativetobaselinebutdidnotdif- exertsymmetricallyopposingeffectsonspecifictransfer;biasing ferfromeachother.Theauthorsconcludedthatrespondingthatis choicetowardsorawayfromanactionbasedontheinformation insensitivetodevaluation,andsohabitual,mightbemoresensitive providedbythecuesregardingtherelativelikelihoodofearning totransfereffectsthangoal-directedactionsand,whilethiscould somespecificoutcomeorother.Inhumans,AlarcónandBonardi bethecase,itisimportanttoqualifythisstatement;theevidence (2016)usedaspecifictransferparadigminwhichtheyalsotrained suggeststhathabitualactionsaremoresensitivetogeneraltrans- aPavlo vian in hibitor usingaf eature-neg at ivedes ign( i.e.A →O1, ferthang oal- directed actions. Ift hisist rue,this eff ectwou ldalso A X→∅,wit hXbeing thes ti mulustrainedas aninhi bitor ). W hen exp lain Holland’s(200 4)result s, inw hi chtra nsfe rcorr elatedw ith theinhibitorwaspairedwithanotherCSassociatedwiththeinhib- theamountofVItraining,withtheeffectgrowinglargerasinstru- itedoutcomeduringthetransfertest,itabolishedspecifictransfer mentalperformanceshiftedfromgoal-directedtohabitualcontrol. andtheparticipantsinsteadshowedatendencytorespondonthe Furthermore,inanumberofstudies,Balleineandcolleagueshave otheravailableresponse,parallelingLaurentandBalleine’s(2015) trained rats using ratio schedules and found very clear evidence results. ofspecifictransfer(CorbitandBalleine,2005,2011;Laurentetal., E.Cartonietal./NeuroscienceandBiobehavioralReviews71(2016)829–848 835 2012,2014;LaurentandBalleine,2015).Assuch,Wiltgenetal.’s speculated that the differential training reduced the effect of CS (2012)resultsmaybeanomalous,resultingfromaneffectspecific presentation by making the contexts more informative and thus toinstrumentaltrainingratherthantothetransfertestperse,or renderingthecuesredundant.Wewilldiscussthisresultfurtherin mayreflectaneffectongeneralasopposedtospecifictransfer.On Section7. balanceitseemsmorelikelythatthelatteristhecorrectconclusion. Somestudieshaveexploredtherelationshipbetweentransfer andstressbothacuteandchronic,andbetweentransferandstress- 3.3. Otherfactorsandresults relatedmoleculessuchascorticotropinereleasingfactor(CRF)or glucocorticoids. Zorawski and Killcross (2003) tested the effects Inameta-analysisof30transferstudies,Holmesetal.(2010) ofdexamethasone,aglucocorticoidreceptoragonist,inaspecific foundacorrelationbetweenthedegreeoftransferandtheamount transferparadigm.Theyfoundthatadministeringdexamethasone ofphase1andphase2training,regardlessofwhetherthePavlo- at the end of Pavlovian sessions impaired the ability of the CS vianorInstrumentaltrainingwasconductedfirst.Increasingphase trainedduringthosesessionstoevokespecifictransfer.Asimilar 1 training seems to increase transfer, whereas increasing phase resultwasalsofoundbyPielocketal.,2013b.In2006,Pecin˜aetal. 2 training seems to decrease it. It is not clear why this training examined the effects of CRF microinjections in medial shell and effectemergedbut,presumably,ithassomethingtodowiththe foundthatthehighestdoseof500ngCRF(butnotthe250ngdose) stabilisation of Pavlovian and instrumental learning and, there- enhancedtransferinasingle-leverparadigm.Later,Morgadoetal. fore,therela tiv elyconsiste ntim pactoftheo utcomep redic tionon (2012)has foundt ha tc hronicstres s3canred ucesp ecifictran sf er. instrumentalperformance.Perhapswithlesstrainingtheassocia- Astress-freeperiodreversedtheeffect.Inahumantransferstudy tivestrengthoftheCSisstillbelowasymptoteanditsassociative (Pooletal.,2014)acutestresswasalsofoundtoenhancetransfer statusrelativelyambiguouscomparedtobettertrainedCS’s.Spe- althoughPielocketal.(2013a)failedtofindaneffectofacutestress cifictransferhasbeenshowntobeimmunetodevaluation:thatis, ontransferinrodents,withboththesestudiesusing“singlelever” pairingafoodoutcomewithillness(LiCl-induced)priortothetest paradigms.Soares-Cunhaetal.(2014)alsofoundthatinuteroexpo- doesnotreducethesizeoftheeffectinasubsequenttest(Holland, suretoelevatedlevelsofglucocorticoidsimpairedbothspecificand 2004;seealsoRescorla,1994busingdiscriminativestimuli).How- generaltransferinrats.Reducedlevelsofdopaminewereobserved ever,Corbitetal.(2007)foundthatdevaluationbysatiationwas inprefontralandorbitofrontalcorticesandnormalizationofthese able to eliminate general transfer while sparing specific trans- levels(usingeitherL-DOPAoraD2/3agonist,butnotaD1ago- fer. This is in accord with earlier results that found no effect of nist)restoredtransfer.Inhumans,Quailetal.(2016)examinedthe devaluationonspecifictransfer(Holland,2004)butapparentlyin relationshipbetweenscoresontheDepressionAnxietyandStress contrast with Holland’s (2004) results in which devaluation did Scale(DASS)andtransfer,usingafulltransferparadigmwhichalso not appear to affect transfer in a single-lever paradigm. Never- includedafourthcueassociatedwithnoreward.Participantswith theless, as suggested above, it is difficult to distinguish specific higher scores on the Anxiety and Stress subscale showed higher andgeneraltransferusingthiskindofdesignandsothisfailure cue-drivenresponsevigour,meaningthattheyshowedincreased tofindaneffectcouldbeduetoanyspecifictransfercomponent instrumental responding even in the presence of the fourth cue engagedbyHolland’stask.Itisalsopossiblethatthisdiscrepancy associatedwithnoreward.Highanxietyparticipantsalsoseemed isduetothedevaluationmethodused(satiationvsillness)orper- toshowasomewhatbluntedspecifictransfer,withthecuespaired haps other variables. More recently Dailey et al. (2016) failed to withthetwoinstrumentalrewardsenhancingboththesameand detecttransferinasingle-leverparadigmwiththetestconducted differentinstrumentalactionstoasimilardegree,albeitthistrend undersatiety.Conversely,transferwasobservedundersatietyafter comparedtolowanxietyparticipantswasnotstastisticallysignif- administation of an antagonist of ghrelin, a peptide related to icant. appetitesignalling.Aitkenetal.(2016)usingasingle-leverdesign withdifferentfoodsforthePavlovianandinstrumentaltraining, 4. Neuralsubstrates alsoconfirmedthatsatietycanabolishgeneraltransfer. CorbitandBalleine(2003a)showedthattransfercandifferen- 4.1. Amygdalaandnucleusaccumbens tially affect components of an instrumental chain. In particular, theyemployedaparadigmwherepressingaleverledtotheappear- Starting from the beginning of this century, lesion studies on anceofasecondleverandpressingthislatterleverdeliveredthe ratshavebeguntouncovertheneuralbasisofthevarioustrans- foodreward.Devaluationandtransferdifferentiallyaffectedres- fer effects, reporting that both nucleus accumbens (Hall et al., pondingonthesetwolevers.Transferonlyenhancedresponding 2001;Corbitetal.,2001;deBorchgraveetal.,2002)andamygdala to the proximal lever (i.e., the lever closest to reward delivery) (Blundelletal.,2001;Halletal.,2001;HollandandGallagher,2003) whereas devaluation depressed responding on the more distal arenecessaryforittotakeplace.Duringthefirststudies:aninitial lever. disagreementaroseaboutwhichpartsofamygdala(BLAorCeA) Inarecentexperiment,Gilroyetal.(2014)demonstratedthat andwhichpartsofnucleusaccumbenswereinvolved(NaccCore specifictransfercanbeaffectedbytestcontext.Theytrainedrats orShell).ItwasreportedthatCeAandCore,butnotBLAorShell topresstwoleversfortwodifferentfoodsusingtwodifferentcon- wereinvolvedintransfer(Halletal.,2001;HollandandGallagher, texts. In one group of rats (Group Differential), each lever-food 2003)andalsotheoppositepatternofresults(Blundelletal.,2001; pairingwastrainedinaspecificcontext,whereasintheothergroup Corbitetal.,2001).ThesedatawerelaterreconciledwhenCorbit (GroupNon-Differential)bothlever-foodpairingsweretrainedin and Balleine (2005) introduced the full transfer paradigm which bothcontexts(alternatingcontextsindifferenttrainingsessions). wasabletodistinguishspecifictransferfromgeneraltransfer.Spe- Pavloviantrainingwasconductedinathirdcontextforbothgroups. cifictransferisabolishedbyBLAandShelllesionswhereasgeneral Whentestedfortransferineachofthethreecontexts,groupNon- transferisabolishedbyCeAandCorelesions(CorbitandBalleine, differential always showed specific transfer. In contrast, Group 2005,2011).Muscimol-inducedinactivationofcoreandshellhave DifferentialfailedtoshowspecifictransferinthePavloviantrain- ingcontextbut,whentestedintheinstrumentalcontexts,showed specific transfer when the CS and the context where not associ- 3 Usingachronicunpredictablestressparadigm,composedofdailyexposuresof atedwiththesamefoodreward.Thus,GroupDifferentialexhibited 1htoonethefollowingstressors:coldwater,vibration,restraint,overcrowding, lessspecifictransferoverallthanGroupNon-differential.Itcanbe an d a hota irst ream. 836 E.Cartonietal./NeuroscienceandBiobehavioralReviews71(2016)829–848 similareffectsaslesionsofthesestructures(CorbitandBalleine, withtheabsolutesizeofthetransfereffect.Interestingly,byusing 2011).Asafurtherconfirmation,ShiflettandBalleine(2010)used adisconnectionprocedureLeungandBalleine(2015)thendemon- adisconnectionprocedurebetweenBLAandeithermedialshellor strated that disrupting the VP-m to VTA pathway reduced the coreandfoundthatonlythedisconnectioninvolvingshellabol- overall rate of responding (similar to a finding by Corbit et al. ishedspecifictransfer.LingawiandBalleine(2012)foundthatboth (2007) following VTA inactivation) whereas disconnecting the anteriorandposteriorCeAlesionsabolishedtransferinasingle- VP-mtoMDpathwayremovedthebiasofthespecificpredictive lever paradigm (therefore presumably general transfer). Human cuesonchoice(i.e.,thespecifictransfereffect).InthislatterVP-m fMRIstudieshavealsoconfirmedtheinvolvementofamygdalaand to MD pathway disconnection, the CS elevated the performance ventralstriatumintransfer(Talmietal.,2008;Brayetal.,2008; of both actions; i.e. both the lever delivering the same outcome Prévostetal.,2012;Mendelsohnetal.,2014). asthestimulusandthedifferentaction,suggestingthattheVTA Studiesinvestigatingtheroleofglutamatereceptorsarealsoin mediatesthemotivationalcomponentofspecifictransfer(overall line with the dissociation of neural substrates involved in single rate of lever press performance) whereas the MD mediates the and two-lever studies and furnish some details on the mecha- cognitivecomponent(theeffectofpredictivelearningonchoice). nismsworkinginsideamygdalathatmediatetransfer.Meadand Stephens(2003a,b)usedasingle-leverparadigmtoinvestigatethe 4.2. Molecularprocessesinnucleusaccumbens effects of AMPA receptor subunits GluR1 and GluR2 deletion in mice.NeitherdeletionimpairedPavlovianorinstrumentaltrain- A series of studies has attempted to uncover the molecular ing,howeverGluR1deletionimpairedconditionedreinforcement underpinnings of transfer. Remus and Thiels (2012) investigated (usageofCS+asreinforcers)leavingtransferintact,wheareasGluR2 ERKkinaseactivationduringtransferincoreandshell.Theyfound deletion impaired transfer while leaving conditioned reinforce- thatCSpresentationscausedasignificantincreaseinERKactiva- mentintact.Theauthorssuggestedthatthisdissociationmightbe tioninbothsubregions,withtheeffectbeingslightlymorerobust explainedbyGluR1andGluR2deletionimpactinglearninginBLA inthecorethantheshell.Anin-depthreviewofmolecularmecha- andCeArespectively,asthebehavioralconsequencesofthesedele- nismsinvolvingERKintransferandinstrumentalconditioningcan tionsmimickedtheeffectsoflesionsonthesestructures(Meadand be found in Shiflett and Balleine (2011). Lex and Hauber (2008) Stephens,2003b).Thishypothesiswassupportedbyalaterfinding examined instead the effects of D1 and D2 receptor antagonism byJohnsonetal.(2007)whofoundthatGluR1deletionimpaired usingSCH-23390andracloprideinjections,respectively,intoboth specifictransfer.InparticulartheyfoundthatmicewithoutGluR1 coreandshell.BothcoreandshellD1antagonismabolishedtrans- expressednonselectivetransferwhentrainedinaspecifictransfer ferinasingle-leverparadigm,withD2antagonismalsoreducing paradigm: i.e. they increased pressing on both levers to simi- transferbuttoalesserextent.SimilarlyPecin˜aandBerridge(2013) lar degree when presented with a CS paired with the outcome testedtheabilityofdopaminestimulation(amphetaminemicroin- del iveredb yone oftheleve rs,wh e are aswild -type mic eshowed jection ) ve rsus (cid:2) -o pioid stim ulation (DA MGO microinje ction) in specifictransfer.Alltheseresultsarethusconsistentwiththeview either core or shell to amplify transfer. Both amphetamine and thatsingle-leverstudiesevokegeneraltransfer(mediatedbyCeA) DAMGOaugmentedthetransfereffectinasingle-leverdesignand wheareas the specific transfer in two-lever studies is mediated didsowheninfusedinbothcoreandmedialshell,excludingonly byBLA,withoutthenecessarypresenceofCeA.However,subse- a small far-rostral strip of shell. Consistently with this result, in qu ently Cromba g et al. (2008b ) found t ha t mu tations on GluR1 W ebere tal.(2016 )adm ini sterin ga(cid:2)-opioid antag onist (naltre x- phosphorylationsitescanabolishsingle-levertransferinmice.This one)reducedtransferinhumans.IncontrasttotheeffectsofLex isatoddswithpreviousresultsanditmaybeduetoGluR1dele- and Hauber (2008), Laurent et al. (2014) found that SCH-23390, tiontriggeringdifferentcompensatoryeffectstothoseinducedby but not raclopride, injections specifically in the Nacc shell abol- alteratingphosphorylationsitesinCrombagetal.(2008b). ished transfer in a specific transfer paradigm. Furthermore, in a Malvaez et al. (2015) further characterized specific transfer complexseriesofexperiments,Laurentetal.(2014)showedthat processes in the BLA. They monitored glutamate concentrations delta-opiod receptors (DORs) on cholinergic interneurons (CINs) duringthetransfertestandfoundthatglutamatetransientswere mediate specific transfer in Nacc shell by altering CIN firing and time-lockedtoandcorrelatedwithonlytheinstrumentalpressing theireffectonD1-expressingmedium-spinyneurons(MSNs).First, directedtotheleversharingthesameoutcomeastheCS(i.e.,in theyconfirmedtheinvolvementofshellD1-expressingMSNsby aspecifictransfertest).Inaddition,localblockadeofAMPArecep- measuringERKphosphorylation(pERK)afterthetransfertestand tors,butnotNMDAreceptors,abolishedspecifictransfer.Related byinfusionofSCH-23390andraclopride.Resultsshowedenhanced results were also obtained by George et al. (2009) who showed pERKinD1butnotinD2-expressingMSNsconfirmingtheeffect thattheselectivemGluR5antagonist2-methyl-6-(phenylethynyl)- of SCH-23390 relative to raclopride. They then provided data to pyridine (MPEP) reduced transfer in a single-lever study and by support the interaction between processes involving DORs and Murschall and Hauber (2005) who did not detect any impact on D1Rsusingasymmetricalinfusionsintheshell.Theresultsshowed single-levertransferusingsystemicAMPA/KAandNMDAblockade. thatratswithinfusionsofSCH-23390inonehemisphereandnal- LeungandBalleine(2013)characterizedthecircuitdownstream trindole (a DOR antagonist) in the other, exhibited no specific fromtheN acc shellby investi gatingoneofi tsm ainpro jections,the transfer. 4 In add ition, electr oph ysio logical recording s of CINs in medialventralpallidum(VP-m).Ratsexposedtoaspecifictransfer Naccshellslicestakenafterthetransfertestconfirmedalterations testshowedhigherexpressionofthecellularactivitymarkerc-fos intheirfiringpatternswhenexposedtodeltorphin(DORendoge- in both shell and VP-m compared to controls. Also, both VP-m nousligand)comparedtoCINsinslicestakenfromratsexposedto inactivation and shell-VP-m disconnection procedures abolished non-contingentCStraining.Itwashypothesizedthattheeffectof specifictransfer.Inapreviousstudy,lesionsofmediodorsalthala- DORonCINfiringalteredacetylcholinereleaseandthatchanges mus(MD),whichisfurtherdownstreamasitreceivessVPoutputs, inacetylcholingreleaseaffectedtheactivityofD1neurons.With werefoundtoimpairspecifictransfer(OstlundandBalleine,2008). regardtothislattereffect,itwasfurtherhypothesizedthatacetyl- Asaconsequence,LeungandBalleine(2015)examinedthefunc- cholinealtersD1MSNactivitythroughtheactivityofGi-coupled tionalcontributionsofbothMDandVTA,whichisanothertargetof VP-m.ResultsshowedthatVP-mneuronsprojectingtoMDwere moreactive(c-fos)duringthetransfertestthanthoseprojectingto 4 InLaurentetal.(2015)naltrindoleinfusionsintoshellwerealsoshownto VTA,butitwastheactivationoftheselatterneuronsthatcorrelated abolish the reversed specific transfer induced by backward conditioning E.Cartonietal./NeuroscienceandBiobehavioralReviews71(2016)829–848 837 dopamine release in Nacc core. In particular, they showed that muscarinicreceptorantagonismsuppressesbothtransferandcue- evoked dopamine release, while nicotinic receptor antagonism augmentstransferandcue-evokeddopaminerelease.Thediscrep- ancybetweentheselatterresultsandOstlundetal.’s(2014a)results inwhichbothscopolamineandmecamylamineimpairedtransfer maybeeitherduetothetypeofinfusions(systemicvs.local)or duetotheparadigmused(specifictransfervs.single-lever). 4.3. Dorsalstriatum CorbitandJanak(2007b)foundthatinactivationofeitherdor- somedial(DMS)ordorsolateral(DLS)striatuminaspecifictransfer paradigmhaddifferenteffectsontransferexpression:DLSinacti- vationabolishedspecifictransferwhereasDMSrenderedtransfer non-specific,withtheCSincreasingperformanceonboththesame and different outcome lever. In a later study (Corbit and Janak, 2010),DLS,anteriorDMS(aDMS)orposteriorDMS(pDMS)were inactivated during Pavlovian and instrumental training: inacti- vation of DLS and pDMS appeared to impair the acquisition of stimulus-outcome (S-O) associations whereas aDMS and pDMS inactivation impaired response-outcome (R-O) associations, as revealedbyPavlovianandinstrumentaldevaluationtestsrespec- tively.Inalloftheinactivationgroups–aDMS,pDMS,andDLS– specifictransferwasimpairedinasubsequenttransfertest.This wasexpectedbecausespecifictransferrequirestheintegrationof Fig.3. Modelofthecomplexinteractionsofopioid,cholinergicanddopaminesys- tem si ntheN ac csh elldurin gspecifictr an sfer,fro mLaurent eta l.(2014). DOR bothS-O(Pavlovian)andR-O(instrumental)associationsandany recep tor son CINc ellbo diesar eactivat edbyEN K.ENK alterst he firi ngpatte rnof loss of th ese should, quit e na turally, be pre dicted to im pair this CINs,lead ing toa low erAch rele ase.Lowe rA chre lease leads tol essac tivation of inte gra tivepr ocess. M4re ceptors on D 1R-ex press ingneu rons.In turn ,thelow erac tiv ityo fM4perm its Incontrast,Pielocketal.(2011)examinedtheeffectsof6-OHDA cAMPpathwaysignalling,increasedD1neuronactivityandsoincreasedspecific inducedDAdepletioninaDMSandpDMSontransferusingasin- tRreapnrsifnetre edxwpritehsspioernm. Sisesei otnex.t for details of the experiments leading to this model. glelever tra nsferparad ig m.Nei ther deplet ion hadany effect in the single-lever transfer paradigm. Furthermore, in a second experi- mentthatusedthespecifictransferparadigm,aDMS6-OHDAagain M4 receptors recently found to be uniquely expressed on post- hadnoeffectwhereasinthepDMSithadonlyaminor,ifany,effect, synapticD1MSNs.IncreasedactivityattheM4receptorhasbeen suggestingthatthedopamineinnervationofdorsalstriatumisnot found to inhibit D1 activity and reduced M4 binding to increase necessaryfortransfer. D1activity.IfDORactivityinhibitsacetylcholinereleaseandnal- trindoleblocksthatreductionthenareadyexplanationforLaurent 4.4. Midbrainstructures etal’sresultscouldbeprovided.Totestthis,Laurentetal.(2014) soughttoblockspecifictransferusingperipherallyadministered In a single-lever paradigm, Murschall and Hauber (2006) naltrindoleandthentoreleasethatblockadebyinfusingtheM4 found that ventral tegmental area (VTA) inactivation by antagonist MT3 into the Nacc shell. Although MT3 had no effect baclofen/muscimol can abolish transfer (supposedly general onitsown,itsinfusionrescuedspecifictransferafteritwasabol- transfer). However, Corbit et al. (2007) using the same dose ishedbynatrindole,Tosummarize,Laurentetal.(2014)suggest effectiveinMurschallandHauber(2006)foundinthefulltransfer that,intheNaccshell,specifictransferismediatedbyacomplex paradigm that VTA inactivation only attenuated specific and interactioninvolvingopioid,cholinergicanddopaminergicsystems general transfer; essentially reducing but not abolishing these (seeFig.3).ThebasisforthisinteractionisformedduringPavlo- effects. vian training, with the increased expression of DORs on CINs at El-AmamyandHolland(2007)usedinsteadadisconnectionpro- thecellmembrane(Bertran-Gonzalezetal.,2013).DORsarethen ceduretoseparateCeAfromeithersubstantianigraparscompacta activated during the transfer test by enkephaline (ENK), the lat- (SNpc)orVTA.Inasingleleverparadigm,bothCeA-SNpcandCeA- terpossiblyreleasedbyD2MSNs,alteringCINactivityandcausing VTA unilateral lesion reduced transfer; a CeA-SNpc controlateral lower acetycholine release overall and thus a lower level of M4 lesion (disconnection) also reduced transfer, with no additional binding, resulting in increased D1 neuron activity and increased effecttotheunilaterallesion.Puzzlingly,CeA-VTAdisconnection specifictransferasaconsequence. was found to restore transfer to control levels. The result was A confirmation of the involvement of acetylcholine in spe- explained by reference to possible cross-hemispheric inhibitory cific transfer can also be found in Ostlund et al. (2014a), were connections between the two VTAs and CeA output to the SNpc the effects of scopolamine (muscarinic receptor antagonist) and (seealsoLeeetal.,2011). mecamylamine(nicotinicreceptorantagonist)weretested.Inthis case,bothmuscarinicandnicotinicacetylcholinesystemicantago- 4.4.1. Dopamine nismimpairedspecifictransfer.Collinsetal.(2016)alsoexamined Other results have, however, pointed to the involvement theroleofacetylcholineanditsinteractionwithdopamine,how- of dopaminergic areas such as VTA and SNpc in transfer. ever they focused on Nacc core, using a single-lever paradigm. Dickinsonetal.(2000)showedthatdopamineantagonists(such Usin gloca linfusion sof scopo lamin eand m ecamylamine combined ˛-flupenth ix ol) reduced transfe rusin gasingle- leverparad igm,a with fast-scan cyclic voltammetry they showed that acetyl- resultalsoreplicatedinWassumetal.(2011).Later,LexandHauber choline antagonism can modulate both transfer and cue-evoked (2008)usedD1andD2receptorantagonismincoreandshelland 838 E.Cartonietal./NeuroscienceandBiobehavioralReviews71(2016)829–848 confirmed the ability of dopamine antagonism to reduce trans- moving rats during transfer test sessions. They found that the ferinasingle-leverparadigm.Conversely,transferispotentiated CS+amplifiedneuronalresponsestobothinstrumentalnosepokes byindirectdopamineagonistssuchasampethamine(i.e.Wyvell andPavlovianapproachesinallofthesestructures.However,the and Berridge (2000), see also Section 5). Using fast-scan cyclic amplification of the instrumental responses correlated with the voltammetry Wassum et al. (2013) monitored dopamine release strengthoftransferonlyinthemPFCandOFCbutnotDS.Morever, inrealtimeinnucleusaccumbenscoreandshowedthatduringa DSneuronsrepresentedtransferandapproachbehaviorthrough single-levertransfertestphasicdopaminereleaseevokedbytheCS mostly-segregated populations, whereas in mPFC and OFC they correlatedwiththeincreaseinleverpressing.Thisresultwasalso wererepresentedinoverlappingpopulationsofneurons. replicated in Aitken et al. (2016). Ostlund and Maidment (2012) InSaddorisetal.(2011)electrophysiologicalrecordingsofthe instead examined the effects of flupentixol in a specific transfer singlelevertransfertestsessionwereconductedintheNacccore paradigm, presenting both levers during the test session. They and shell. Multiple groups were used with one exposed to sep- foundthatalthoughflupentixolreducedtheresponseinvigoration arate cocaine self-administration training. In all groups, neurons generatedbytheCS,itdidnotinfluencetheabilityoftheCStobias in both core and shell encoded information about cues, rewards action selection towards the lever sharing the same outcome as andresponses.Incontrolanimals,coreneuronsweremorelikely theCS.Inhumans,Weberetal.(2016)administeredamisulpride(a toencodethisinformation,whichcorrelatedwithbehavioralper- selectiveD2/D3antagonist)andfoundreducedtransferinasingle- formance in the transfer test. However, neurons that expressed lever paradigm. All these results (and also Soares-Cunha et al. transfer-specific encoding (their lever-press related activity was (2014),Laurentetal.(2014)describedelsewhereinthisreview) increasedduringCSperiods)correlatedwithtransferperformance indicatethattheincreaseinleverpressingduringthetransfereffect intheshell,butnotinthecore.Thegroupwithahistoryofcocaine is mediated by dopamine (and likely by VTA); interestingly, the self-administrationshowedincreasedtransferandincreasedneu- biastowardsoneleverinachoicesituationmightbedopamine- ral encoding of task events in the shell. Generally, these studies independentinstead(OstlundandMaidment,2012). areconsistentwithwhathasbeenfoundinlesionandinactivation studies;however,thepossibilityofmixedtransfereffectsemerg- 4.5. Prefrontalcortex inginsingleactionstudieslikelyaccountsforthebreadthofthe observedeffects. BasalgangliastructuressuchastheNaccformaclosedloopwith prefrontalcortexandso,giventhepreviousresults,theinvolve- ment of PFC structures in transfer would be expected. Indeed, 5. Interactionwithdrugsofabuse Ostlund and Balleine (2007) found that post-training lesions of OFCabo lishe dspecific transfe r5,whi lepr e-traininglesio nshad no The importance of conditioned stimuli in promoting drug- effect.SubsequentlyBalleineetal.(2011)reportedthatthispost- taking and relapse is widely recognised in addiction research trainingeffectwaslikelyaproductofsparingaspectsofventralOFC. (Belin et al., 2009). Conditionedstimuli associatedwith drugs of Complete ventral and lateral OFC lesions produced pre-training abuse can promote drug use through various mechanisms, such deficitsinspecifictransfer(Balleineetal.,2011).Similarly,Scarlet as conditioned approach, conditioned reinforcement as well as etal.(2012)foundareductioninspecifictransferusingpre-training Pavlovian-instrumental transfer (Belin et al., 2009). Despite this, OFC lesions, albeit using a very different paradigm. In Bradfield relatively few studies have been conducted using the transfer et al. (2015) lesions targeting the medial OFC did not eliminate paradigmwithdrugsofabuse.Asanexample,searchingPubmed transfer but instead made it non-specific: i.e. the CS no longer with terms referring to transfer (e.g. PIT, transfer) and addiction enhancedleverpressinginthesamecondition,butalsointhediff (e.g.addiction,cocaine,ethanol,opiate)wefoundonly27articles condition.DespitebothACCandPLhavingconnectionwithNacc, with experiments investigating the relationship between trans- Cardinaletal.(2003)foundnoeffectsofACClesionsontransfer feranddrugsofabuse.Thisisasmallnumbercomparedtoother usingasingle-leverparadigm,whereasCorbitandBalleine(2003b) paradigmsusedinaddictionresearch,e.g.conditionedplacepref- foundnoeffectsofPLlesionsinaspecifictransferparadigm.More erence, for which it is possible to find hundreds of results. As recently,Keistleretal.(2015)foundthatbilateralILlesionsabol- expressedbyLeBlancetal.(2012),thismightbedueto“experi- ishspecifictransfer.TheyalsoemployedanIL-Shelldisconnection encedorperceiveddifficultiesingeneratingthePIT[transfer]effect procedureandconfirmedthatILmediatesthiseffectviafunctional usingconventionaldrugself-administrationprocedures”. connectivtywithNaccshell,alsopartofthespecifictransfercir- Studies investigating transfer with drugs of abuse have cuitry. involveddifferentsubstances,includingamphetamine(Wyvelland Berridge,2000,2001;Pecin˜aetal.,2006;Pecin˜aandBerridge,2013; 4.6. Neuralcorrelates HallandGulley,2011;Shiflett,2012;Shiflettetal.,2013),cocaine (Kruzich et al., 2001; Saddoris et al., 2011; LeBlanc et al., 2012, Finally, we briefly mention two studies that have investi- 2013,2014;Ostlundetal.,2014b),andethanol(Krank,2003;Ripley gatedtheneuralcorrelatesoftransferusingelectrophysiological etal.,2004;Glasneretal.,2005;CorbitandJanak,2007a;Krank recordings: Homayoun and Moghaddam (2009) and Saddoris et al., 2008; Milton et al., 2012; Depoy et al., 2014; Corbit et al., et al. (2011). Both studies used a single-lever transfer paradigm. 2016)inrodentsandtobacco(Hogarthetal.,2007,2013b,2014, HomayounandMoghaddam(2009)recordedfrommedial(mPFC), 2015; Hogarth and Chase, 2011, 2012; Hogarth, 2012) and beer orbitalprefrontalcortex(OFC)anddorsalstriatum(DS)offreely (Martinovicetal.,2014;Garbusowetal.,2014,2016)inhumans. Thesestudiesshowthattransfercanbeobservedwithdrugsof abusejustasitisobservedwithnaturalrewards:aCSassociated withdrugsofabusecanenhanceinstrumentalrespondingdirected 5 WenotethatinOstlundandBalleine(2007)andinOstlundandBalleine(2008) tothedrugitself,justasaCSassociatedwithfoodenhancesfood aleltshioonusg ohf rOatFsCa acntuda mllyedkieopdtoprrseasl stihnaglammourse winetrhee resapmoreteadn dtod aifbfocolinshd istpioencsificco tmrapnasrfeedr res pon ding (e.g.K rank ,2 0 03; LeBlancet al.,2 012; Hogarthe tal., tothebaseline.Althoughtheeffectwasnotstatisticallysignificantinthoseexperi- 2007).However,therearealsosomepeculiaritiesoftransferwhen me nts ,itisposs iblethat thes elesio nsd ono tabolishsp ecifictrans fer butre nderit thesub jectsaree xpose dto drug sofab use.Infact,so m estudie shave “non-specific”.Indeed,inLeungandBalleine(2015),disconnectionofVP-mfromthe foundastrongertransfereffectinsubjectsthathavebeenexposed MDproducedasimilar“non-specific”transfereffectsuchthattheCSsignificantly elev atedrespo n dingon boththesame anddiff lever. todrugsofabusecomparedtocontrols(WyvellandBerridge,2000,

Description:
conditioning alter motivation and choice of instrumental actions. The first a disconnection procedure between BLA and either medial shell or.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.