City Research Online City, University of London Institutional Repository Citation: Makri, K. (2018). The characterisation of the internal diesel flow and the external spray structure using laser diagnostics. (Unpublished Doctoral thesis, City, Universtiy of London) This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/19786/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] THE CHARACTERISATION OF THE INTERNAL DIESEL FLOW AND THE EXTERNAL SPRAY STRUCTURE USING LASER DIAGNOSTICS Kassandra Makri This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy City, University of London, School of Mathematics, Computer Science and Engineering, Department of Mechanical Engineering May 2018 Table of Contents Chapter 1 Introduction ....................................................................................................................... 24 Chapter 2 Literature review .............................................................................................................. 29 2.1 Diesel fuel background ........................................................................................................ 29 2.1.1 Fundamentals of fuel injection systems .......................................................................... 36 2.1.2 Alternative fuels .............................................................................................................. 38 2.2 Cavitation- Bubble nucleation, growth and collapse dynamics ........................................... 42 2.2.1 Cavitation phenomenon................................................................................................... 42 2.2.2 Cavitation bubble dynamics- Nucleation, Growth, Collapse .......................................... 45 2.2.3 Internal cavitation flow inside diesel injectors ................................................................ 49 2.2.4 Cavitation patterns .......................................................................................................... 51 2.2.5 Internal flow phenomena inside enlarged and real-sized diesel injector nozzles. ........... 58 2.3 Diesel injector deposits ........................................................................................................ 63 2.3.1 Types of deposits in diesel fuel injection systems .......................................................... 64 2.3.2 Deposit formation mechanisms ....................................................................................... 72 2.4 Spray break-up mechanisms ................................................................................................ 75 2.4.1 Sprays emerging from diesel injector nozzles ................................................................. 82 2.5 Optical diagnostics for spray chareacterisation ................................................................... 85 2.5.1 Point Interferometry techniques ...................................................................................... 86 2.5.2 Shadowgraphy - Ballistic imaging technique .................................................................. 90 2.5.3 X-ray absorption technique ............................................................................................. 94 2.5.4 Planar Laser Imaging techniques .................................................................................... 97 Planar Mie imaging technique ................................................................................ 97 Planar Laser Induced Fluorescence (LIF)............................................................. 104 Structured Laser Illumination Planar Imaging (SLIPI) ........................................ 110 Laser Sheet Drop-sizing method (LSD) ............................................................... 114 ii Chapter 3 Experimental arrangements and methods.................................................................... 120 3.1 Experimental apparatus ..................................................................................................... 120 3.1.1 Diesel fuel injection system .......................................................................................... 120 3.1.2 Injection control unit ..................................................................................................... 123 3.1.3 Optically accessible diesel injector nozzle .................................................................... 124 3.1.4 Injector holder mount and spray extraction assembly ................................................... 130 3.1.4.1 Assembly of fuel injection components ............................................................... 130 3.1.4.2 Spray extraction assembly .................................................................................... 132 3.2 Optical arrangements ......................................................................................................... 134 3.2.1 Laser optics ................................................................................................................... 134 3.2.2 Internal flow imaging using white light scattering and Laser Induced Fluorescence (LIF) 136 3.2.3 External spray image acquisition using Laser Sheet Drop-sizing (LSD) ...................... 138 3.3 Control setup for high-speed data acquisition ................................................................... 140 3.4 Experimental methodology................................................................................................ 143 3.4.1 Diesel fuels and fuel seeding with fluorescent dye ....................................................... 144 3.4.2 Experimental procedure ................................................................................................ 148 3.4.2.1 Laser imaging experimental procedure ................................................................ 148 3.5 Calibration procedures ....................................................................................................... 152 3.5.1 Gaussian laser profile measurements ............................................................................ 153 3.5.2 Injected fuel mass .......................................................................................................... 154 Chapter 4 Internal flow characterisation using optical diagnostics ............................................. 158 4.1 In-nozzle and sac flow data analysis ................................................................................. 160 4.1.1 Sac bubble formation .................................................................................................... 160 4.1.2 Vorticity in the sac ........................................................................................................ 162 4.1.3 Sac vorticity induced nozzle flow ................................................................................. 165 4.1.4 Analysis on the buoyant effect on the in-nozzle flow ................................................... 167 iii 4.2 Discussion on the in-nozzle and sac results ....................................................................... 168 4.2.1 Mini-sac diesel vorticity ................................................................................................ 169 4.2.2 Bubble and fluid motion inside the nozzle passages ..................................................... 175 4.2.3 In-nozzle bubble size as a function of time and fuel properties .................................... 193 4.2.4 Bubble formation in the sac – Bubble size and pressure difference analysis ................ 201 4.2.5 Implications of the internal flow on the deposit formation inside the diesel injectors .. 211 4.3 Scattered Fluorescence data analysis ................................................................................. 212 4.4 Discussion on the SFLVF results ...................................................................................... 215 4.4.1 Dependence of Scattered Fluorescence Liquid Volume Fraction (SFLVF) on rail pressure and needle lift ............................................................................................................... 216 4.4.2 Dependence of Scattered Fluorescence Liquid Volume Fraction (SFLVF) on the physical properties of the fuels and needle lift ........................................................................... 220 4.5 Summary ............................................................................................................................ 222 Chapter 5 External spray drop-sizing analysis using Laser Sheet Drop-sizing technique ........ 224 5.1 Image processing methodology ......................................................................................... 224 5.1.1 External spray drop-sizing distribution ......................................................................... 224 5.1.2 Diesel spray asymmetry ................................................................................................ 232 5.2 Results and discussion ....................................................................................................... 232 5.2.1 Spray drop-sizing distribution as a function of rail pressure and needle lift ................. 232 5.2.1.1 Diesel spray asymmetry ....................................................................................... 247 5.2.2 Spray drop-sizing distributions as a function of fuel physical properties ..................... 260 5.2.3 Diesel spray asymmetry as a function of fuels’ physical properties ............................. 273 5.3 Flapping spray angles ........................................................................................................ 282 Chapter 6 Investigation of diesel jet structure using Laser Induced Fluorescence (LIF) technique ............................................................................................................................................ 291 6.1 Image processing methodology for the phenomenological analysis of the sprays ............ 291 6.1.1 Phenomenological analysis of the external diesel sprays .............................................. 291 iv 6.1.2 Spray structure phenomenology .................................................................................... 292 6.1.3 Liquid Volume Fraction (LVF) distribution along the spray axis ................................. 294 6.1.4 Asymmetry of the diesel sprays .................................................................................... 294 6.2 Results and Discussion ...................................................................................................... 295 6.2.1 Phenomenological analysis of fully developed diesel sprays........................................ 295 6.2.2 Liquid Volume Fraction (LVF) distribution along the central axis of diesel sprays ..... 298 LVF distribution along the spray axis as a function of rail pressure and needle lift 298 5.2.1.2 LVF distributions along the spray axis as a function of fuel’s physical properties 303 6.2.3 LVF distribution across diesel sprays as a function of rail pressure and needle lift ..... 308 6.2.4 Spray LVF distributions as a function of the physical properties of the fuels .............. 320 Chapter 7 Summary and Conclusions ............................................................................................ 331 Appendix A ........................................................................................................................................ 335 Appendix A1 Sac Vorticity Effects on Nozzle flow – Complementary data and results ....... 335 Appendix A2 Correlation between mean in-hole speed and mean in-sac radial flow ............ 351 Appendix A3 Buoyant effects as a function of fuel ‘s physical properties. ............................ 367 Appendix A4 Correlation between in-hole bubble displacement and radial-in sac flow ....... 369 Appendix B ........................................................................................................................................ 373 Appendix B1 Filling, emptying, flushing procedures of the fuel injection system ................ 373 Appendix B2 Injected mass experimental procedure ............................................................. 375 Appendix C ........................................................................................................................................ 376 Publications .................................................................................................................................... 376 v Table of figures Figure 2.1:Basic schematic of a crude oil refinery system18. ................................................................ 30 Figure 2.2:Typical distillation curve of diesel sample .......................................................................... 32 Figure2.3: Diesel engine characteristics ............................................................................................... 37 Figure 2.4: Schematic diagram of CR injection showing no injection, start of injection and end of injection stages30. .................................................................................................................................. 38 Figure 2.5: Schematic of the four stages of the cavitation evolution.44 ................................................ 44 Figure 2.6: Caption of the incipient cavitation flow regime53. .............................................................. 52 Figure 2.7: Example of pre-film cavitation flow regime53. ................................................................... 52 Figure 2.8: Example of film cavitation regime53................................................................................... 53 Figure 2.9: Example of string cavitation inside an enlarged diesel injector nozzle62. .......................... 55 Figure 2.10: String cavitation structures linking two neighbouring holes and entering nozzle passages53. .............................................................................................................................................................. 56 Figure 2.11: Example of needle string cavitation entering the nozzle passage and extending over the whole length of the nozzle passage56. ................................................................................................... 56 Figure 2.12: Effect of needle lift on spatial and temporal evolution of string cavitation. (a) low needle lift and (b) higher needle lift 68. ............................................................................................................. 57 Figure 2.13: Possible causes of FIE deposits79. .................................................................................... 64 Figure 2.14: Nozzle coking. a) optical observation, b) Microscopic observation81. ............................. 65 Figure 2.15: Appearance of a typical carboxylate salt85. ...................................................................... 67 Figure 2.16: Comparison of elements found in IIDs and nozzle-hole deposits83. ................................. 67 Figure 2.17: Potential formation mechanism of carboxylate salts80. .................................................... 68 Figure 2.18: Typical appearance of organic amide lacquer deposits85.................................................. 69 Figure 2.19: TEM images (a and b) of carbonaceous particles90. ......................................................... 71 Figure 2.20: Potential deposit formation mechanism8. ......................................................................... 72 Figure 2.21: Images taken 1ms after the needle sealing. Vapour structures are moving towards the sac inside the lower passage with 1ms time steps16. ................................................................................... 74 vi Figure 2.22: Illustration of the near injector region of an atomising spray98. ....................................... 78 Figure 2.23: Basic experimental setup for PDA measurements121. ....................................................... 86 Figure 2.24: Optical configurations of Phase Doppler Anemometry. a) annotation of characteristic angles, b) Standard optical configuration124. ......................................................................................... 88 Figure 2.25: Schematic representation of shadowgraphy principles..................................................... 90 Figure 2.26: Typical shadowgraph optical arrangement135. .................................................................. 91 Figure 2.27: Representation of ballistic, snake and diffuse photos with a) geometric dependence and b) time dependence138. ............................................................................................................................... 92 Figure 2.28: Shadowgraph images in a dense spray a) with no time gating, b) time gating to supress diffuse light. .......................................................................................................................................... 93 Figure 2.29: Schematic of X-ray absorption experimental setup142. ..................................................... 95 Figure 2.30: X-ray images from two different nozzles showing the mass distribution along the spray142,143. ............................................................................................................................................. 96 Figure 2.31: 3-D volume fraction distributions along both radial and axial direction of the spray144. . 96 Figure 2.32: Light scattering by an induced dipole moment due to incident EM wave145 .................... 98 Figure 2.33: Diagram showing the intensity of scattered light from different scattering modes152. ... 102 Figure 2.34 : Electronic state diagram illustrating the excitation of an atom to a higher energy level by photon absorption, followed by the emission of fluorescence. ........................................................... 104 Figure 2.35: Possible de-excitation pathways of excited molecules158. ............................................. 105 Figure 2.36: Example of singlet and triplet vibrational states158. ........................................................ 106 Figure 2.37: Representation of a spatially modulated light traversing a scattering medium172. ......... 111 Figure 2.38: An example of 3P-SLIPI application on a cone spray172. ............................................... 112 Figure 2.39: An example of 2P-SLIPI measurement of a premixed Bunsen Flame. a) raw image prior to any correction methods applied, b) processed 2P-SLIPI image174. ................................................. 113 Figure 2.40: Example of averaged 1P-SLIPI technique172. ................................................................. 114 Figure 2.41: Index of dependence relation on dye concentration159,148. .............................................. 116 Figure 2.42: Comparison between LSD and PDA measurements148. ................................................. 117 Figure 2.43: Comparison of SMD measurements from PDA and LSD methods149. .......................... 118 vii Figure 3.1: Schematic of the custom manufactured fuel injection system16. ...................................... 121 Figure 3.2: Needle lift profiles for a modified Denso injector, Jeshani’s mini-sac nozzle and Makri’s mini-sac nozzle. .................................................................................................................................. 123 Figure 3.3: Simple designs of: (a) a conventional diesel injector nozzle, (b) modified nozzle with acrylic tip. ....................................................................................................................................................... 125 Figure 3.4: Acrylic nozzle cross sections showing the internal dimensions16. ................................... 125 Figure 3.5: Modified diesel injector nozzle tip showing the view of the holes of interest16. .............. 126 Figure 3.6: Injector tip projective transparent view. ........................................................................... 126 Figure 3.7: Limited optical access through an unpolished surface of the acrylic nozzle. ................... 127 Figure 3.8: Polished nozzle surface, providing good optical access to the nozzle passages. The sac is located at the centre of the geometry and the passages entering in the sac are at the same height. .... 128 Figure 3.9: Double acting hydraulic ram16. ......................................................................................... 129 Figure 3.10: Operating principle behind a double acting hydraulic cylinder16. .................................. 129 Figure 3.11: Injector holder angled at 60 degrees to prevent any interference with the emerging spray16. ............................................................................................................................................................ 131 Figure 3.12: Assembly of fuel injection components16. ...................................................................... 131 Figure 3.13: Image showing the emerging fuel sprays without interfering with the fuel injection assembly16. .......................................................................................................................................... 132 Figure 3.14: Spray extraction design16. ............................................................................................... 133 Figure 3.15: Complete assembly of fuel injection components and fuel exhaust extract16. ............... 133 Figure 3.16: Picture showing the cylindrical telescope arrangement and the 50mm mirror. ......... 135 Figure 3.17: Picture showing the mirror and lens assembly above the acrylic nozzle tip. The green line shows the laser path. ........................................................................................................................... 136 Figure 3.18: Schematic of the optical configuration. .......................................................................... 137 Figure 3.19: Schematic of the internal flow imaging configuration. .................................................. 137 Figure 3.20: Schematic of the LIF/Mie two-channel imaging setup14. ............................................... 139 Figure 3.21: LSD optical arrangement. ............................................................................................... 140 viii Figure 3.22: Schematic of synchronisation setup. .............................................................................. 142 Figure 3.23: Schematic of data acquisition setup................................................................................ 143 Figure 3.24: Distillation profiles of the fuels under investigation. ..................................................... 145 Figure 3.25: Molecular structure of Rhodamine B16 ........................................................................... 146 Figure 3.26: An example of a laser sheet intensity profile produced by fuel 1 diesel sample. ........... 153 Figure 4.1: Frame obtained at 6.0ms after SoI (fuel D) showing the in-sac structures represented by the bright white regions due to white light elastic scattering from the structure interface. (green line: sac volume, red dotted dash profile needle tip, the yellow dashed line: nozzle holes). ............................ 160 Figure 4.2: (a) Representation of tracking process of an individual structure. y to y are the y-co- 1 3 ordinates in three successive frames (nozzle view from the bottom), (b) an example of bubble tracking in a series of raw images (the red circles indicate the bubbles of interest). ........................................ 164 Figure 4.3: Picture of the imaging nozzle side. The yellow dashed lines define the boundaries of the nozzle passages under investigation16. ................................................................................................ 166 Figure 4.4: Images captured between 5.7ms and 6.0ms after the SoI showing the bubble formation in the sac due to needle sheet cavitation (fuel A, 350bar)16. ................................................................... 169 Figure 4.5: Vorticity decay rates as a function of fuel physical properties at 250bar over a set of 20 injections. ............................................................................................................................................ 170 Figure 4.6: Vorticity decay rates as a function of fuel physical properties at 350bar over a set of 20 injections. ............................................................................................................................................ 172 Figure 4.7: Examples of a. anti-clockwise and b. clockwise flow direction inside the sac volume16. 173 Figure 4.8: Description of flow direction inside the nozzle passages. ................................................ 176 Figure 4.9: Displacement vs time graph, fuel A at 350bar, lower hole, inj.1-5. ................................. 178 Figure 4.10: Displacement vs time graph, fuel A at 350bar, lower hole, inj.6-10. ............................. 179 Figure 4.11: Displacement vs time graph, fuel A at 350bar, lower hole, inj.11-15. ........................... 179 Figure 4.12: Displacement vs time graph, fuel A at 350bar, lower hole, inj.16-20. ........................... 180 Figure 4.13: Displacement vs time graph, fuel A at 350bar, upper hole, inj.1-5. ............................... 180 Figure 4.14: Displacement vs time graph, fuel A at 350bar, upper hole, inj.6-10. ............................. 181 Figure 4.15: Displacement vs time graph, fuel A at 350bar, upper hole, inj.11-15. ........................... 181 ix
Description: