Apparent Diffusion Coefficients from High Angular Resolution Diffusion Images: Estimation and Applications Maxime Descoteaux, Elaine Angelino, Shaun Fitzgibbons, Rachid Deriche To cite this version: Maxime Descoteaux, Elaine Angelino, Shaun Fitzgibbons, Rachid Deriche. Apparent Diffusion Co- efficients from High Angular Resolution Diffusion Images: Estimation and Applications. [Research Report] RR-5681, INRIA. 2006, pp.44. inria-00070332 HAL Id: inria-00070332 https://hal.inria.fr/inria-00070332 Submitted on 19 May 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INSTITUTNATIONALDERECHERCHEENINFORMATIQUEETENAUTOMATIQUE Apparent Diffusion Coefficients from High Angular Resolution Diffusion Images: Estimation and Applications MaximeDescoteaux —Elaine Angelino — ShaunFitzgibbons — RachidDeriche N° 5681 Septembre2005 ThèmeBIO (cid:13) G N E apport + R F 1-- de recherche(cid:13) 8 (cid:13) 6 5 R-- R A/ RI N N I R S 9 I 9 3 6 9- 4 2 0 N S S I Apparent Diffusion Coefficients from High Angular Resolution Diffusion Images: Estimation and Applications MaximeDescoteaux(cid:3) ,ElaineAngelinoy ,ShaunFitzgibbonsz ,RachidDerichex ThèmeBIO—Systèmesbiologiques ProjetOdyssée Rapportderecherche n°5681 —Septembre2005— 44pages Abstract: Highangularresolutiondiffusionimaging(HARDI)hasrecentlybeenofgreatinterest incharacterizingnon-Gaussiandiffusionprocesses. Inthewhitematterofthebrain,non-Gaussian diffusionoccurswhenfiberbundlescross,kissordivergewithinthesamevoxel.Oneimportantgoal incurrentresearchistoobtainmoreaccuratefitsoftheapparentdiffusionprocessesinthesemulti- plefiberregions,thusovercomingthelimitationsofclassicaldiffusiontensorimaging(DTI).This paperpresentsanextensivestudyofhighordermodelsforapparentdiffusioncoefficientestimation andillustratessomeoftheirapplications. Inparticular,wefirstdeveloptheappropriatemathemat- ical tools to work on noisy HARDI data. Using a meaningful modified spherical harmonics basis to capture the physical constraints of the problem, we propose a new regularization algorithm to estimatea diffusivityprofilesmootherandclosertothe truediffusivitieswithoutnoise. We define asmoothingtermbasedontheLaplace-Beltramioperatorforfunctionsdefinedontheunitsphere. Thepropertiesofthesphericalharmonicsarethenexploitedtoderiveaclosedformimplementation ofthistermintothefittingprocedure. Wenextderivethegenerallineartransformationbetweenthe coefficientsof a spherical harmonics series of order ‘ and the independent elements of the rank-‘ highorderdiffusiontensor.Anadditionalcontributionofthepaperisthecarefulstudyofthestateof theartanisotropymeasuresforhighorderformulationmodelscomputedfromsphericalharmonics ortensorcoefficients. Theirabilitytocharacterizetheunderlyingdiffusionprocessisanalyzed. We are able to reproduce published results and also able to recovervoxels with isotropic, single fiber anisotropic and multiple fiber anisotropic diffusion. We test and validate the different approaches onapparentdiffusioncoefficientsfromsyntheticdata,fromabiologicalphantomandfromahuman braindataset. Key-words: restoration and deblurring, high angular resolution diffusionimaging (HARDI), ap- parentdiffusioncoefficient(ADC),sphericalharmonics(SH),diffusiontensor,anisotropymeasure (cid:3)[email protected] [email protected] zfi[email protected] [email protected] UnitéderechercheINRIASophiaAntipolis 2004,routedesLucioles,BP93,06902SophiaAntipolisCedex(France) Téléphone:+33492387777—Télécopie:+33492387765 Coefficients de Diffusion Apparents à Partir d’IRM de Diffusion à Haute Résolution Angulaire: Estimation et Applications Résumé : L’IRM de diffusion à haute résolution angulaire (HARDI) est maintenant un outil es- sentiel pour décrire les phénomènes de diffusion non-Gaussiens des faisceaux de fibres de la ma- tière blanche. Ceux-ci se produient lorsque plusieurs fibres se croisent. Dans ce cas, le tenseur de diffusion classique (DTI) est limité et insuffisant. Ce rapport fait le point sur les techniques d’approximationsdescoefficientsdediffusionapparentsàpartirdemodèlesàordressupérieurset présente aussi leur application dans la définition de mesures d’anisotropies. En particulier, nous développonsles outils mathématiques adéquats pour traiter et estimer les coefficientsde diffusion bruitésprovenantdes données HARDI. Àpartird’une base modifiée d’harmoniquessphériques et desespropriétés,nousproposonsunenouvelleméthodederégularizationobtenantdescoefficients dediffusionpluslisses. Nousvalidonsl’approchesurdesdonnéessynthétiques,surunfantômebio- logiqueetsuruncerveauhumain. Deplus,nousétudionsl’étatdel’artdesmesuresd’anisotropies calculéesàpartirdemodèlesàordressupérieursetnousévaluonsleurhabilitéàdécrireleprocessus dediffusion. Mots-clés : restoration et débruitage, IRM de diffusion à haute résolution angulaire (HARDI), coefficient de diffusion apparent (ADC), harmoniques sphériques, tenseur de diffusion, mesure d’anisotropie ApparentdiffusioncoefficientsfromHARDI:estimationandapplications 3 Contents 1 Introduction 4 2 HighAngularResolutionDiffusionImaging(HARDI) 5 3 ApparentDiffusionCoefficient (ADC)Profile Estimation 7 3.1 EstimatingtheADCProfilewiththeSphericalHarmonics(SH). . . . . . . . . . . . 7 3.1.1 SphericalHarmonics(SH) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.2 MethodsforFittingSphericalDatawithSHSeries . . . . . . . . . . . . . . 8 3.2 FittingtheADCProfilewithaHighOrderDiffusionTensor(HODT) . . . . . . . . . 10 4 FittingHODTstoHARDIDataUsingSphericalHarmonics 12 4.1 ARegularizationAlgorithmforADCProfileEstimation . . . . . . . . . . . . . . . 12 4.2 FromSHCoefficientstoHODTCoefficients . . . . . . . . . . . . . . . . . . . . . . 15 5 SyntheticDataExperiments 19 5.1 QuantitativeComparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.1 Effectofthe(cid:21)-RegularizationWeight . . . . . . . . . . . . . . . . . . . . . 21 5.2 AnisotropyMeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2.1 FrankandChenetalMeasures . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2.2 AlexanderetalMeasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2.3 ResultsofAnisotropyMeasuresfromSHSeries . . . . . . . . . . . . . . . 26 5.2.4 GeneralizedAnisotropyMeasure . . . . . . . . . . . . . . . . . . . . . . . 27 5.2.5 CumulativeResidualEntropy(CRE) . . . . . . . . . . . . . . . . . . . . . . 31 6 RealDataExperiment 33 6.1 ABiologicalPhantom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.2 HumanBrainHARDIData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7 ConclusionandDiscussion 38 A RelationofSphericalHarmonicstotheHODT 43 RR n°5681 4 M.Descoteaux,E.Angelino,S.Fitzgibbons,R.Deriche 2fibers trueADCprofile ADCprofilefromDTI Figure1: ADCprofileestimatefromDTIfailstorecovermultiplefiberorientation. Themaximaof theADCprofiledonotagreewiththingreenlinescorrespondingtothetruesyntheticfiberdirections. 1 Introduction For the past decade, there has been a growing interest in diffusion magnetic resonance imaging (MRI)tounderstandfunctionalcouplingbetweencorticalregionsofthebrain,forcharacterizationof neuro-degenerativediseases,forsurgicalplanningandforothermedicalapplications.DiffusionMRI istheonlynon-invasivetooltoobtaininformationabouttheneuralarchitectureinvivo. Itisbased on the Brownian motion of water molecules in normal tissues and the observationthat molecules tendtodiffusealongfiberswhencontainedinfiberbundles[19,4]. Usingclassicaldiffusiontensor imaging(DTI),severalmethodshavebeendevelopedtosegmentandtrackwhitematterfibersinthe human brain [39, 45, 47, 8, 23, 24]. The common way to analyze the data is to fit it to a second ordertensor,whichcorrespondstotheprobabilitydistributionofagivenwatermoleculemovingby acertainamountduringsomefixedelapsedtime. Bydiagonalization,thesurfacecorrespondingto thediffusiontensorisanellipsoidwithitslongaxisalignedwiththefiberorientation. However,the theoretical basis for this model assumes that the underlying diffusion process is Gaussian. While thisapproximationisadequateforvoxelsinwhichthereisonlyasinglefiberorientation(ornone), itbreaksdownforvoxelsinwhichthereismorecomplicatedinternalstructure,asseeninFig.1,an exampleoftwofiberscrossing. Thisisanimportantlimitation,sinceresolutionofDTIacquisition isbetween1mm3 and3mm3 whilethe physicaldiameteroffibers canbeless than1(cid:22)mandupto 30(cid:22)m[30]. Fromanisotropymeasuremaps,weknowthatmanyvoxelsindiffusionMRIvolumes potentiallyhavemultiplefiberswithcrossing,kissingordivergingconfigurations. To date, thisisa reasonwhyclinicians andneurosurgeonshavebeenskepticalof trackingand segmentation methods developed on DTI data. They have doubts on the principal directions ex- tracted and followed from the diffusion tensor to track fiber bundles. In the presence of multiple fibers,thediffusionprofileisoblateorplanarandthereisnouniqueprincipaldirection(Fig.1). Ad- ditionally,notethat maxima ofthe apparentdiffusioncoefficient(ADC) profiledo notcorrespond to true fiber orientation (thin green lines). In current clinical applications, people instead choose to use simple anisotropymapscomputed from the ADCprofile [13] to infer white matter connec- tivity information. These measures are fast and easy to interpret with regions of anisotropy that clearlystandout. ManyanisotropymeasuresexistandthemostcommonlyusedareFA(fractional INRIA ApparentdiffusioncoefficientsfromHARDI:estimationandapplications 5 anisotropy)andRA(relativeanisotropy)[5]butagain,thesemeasuresarelimitedinnon-Gaussian diffusionareaswhencomputedfromDTIdata. ThisiswellillustratedinOzarslanetal[29]where theanisotropymeasureinafibercrossingregionisinthesamerangeasvoxelswithnostructure. As such,recentresearchhasbeendonetogeneralizetheexistingdiffusionmodelwithnewhigherreso- lutionacquisitiontechniquessuchashighangularresolutiondiffusionimaging(HARDI)[40]. One naturalgeneralizationistomodeltheapparentdiffusioncoefficient(ADC)withhigherorderdiffu- siontensors(HODT)[28]. Thismodeldoesnotassumeanyaprioriknowledgeaboutthediffusivity profileandhasthepotentialtodescribenon-Gaussiandiffusion. Inthisarticle,westudytheestimateoftheADCprofilefromHARDIdataanditsabilitytode- scribecomplextissuearchitecture. ContrarytomostrecentpapersonHARDIdataprocessing,we donotfocusonfindingtheorientationofunderlyingfibersbutwanttodesigntheappropriatetools to describe noisy HARDI data and explore scalar anisotropy measures computed from high order formulation. In particular, the paper addresses the problem of fitting HARDI data with a higher order tensor. One proposed possibility by Ozarslan et al [28] is to use a direct linear regression by least-squares fitting. This can be effective but its robustness to noise is questionable as there doesnotappeartobeanystraightforwardwaytoimposeaviablesmoothnessmaximizingcriteria. We approachthe problemwith a sphericalharmonicsseriesapproximation[15,2, 10]. An impor- tantcontributionofourworkistoproposeageneralizationofthestandardleast-squaresevaluation methodtoincludearegularizationcriterion. Fromthisresult,wecomputethelineartransformation taking the coefficientsof the spherical harmonic series to the independent elements of the HODT usingtherelationpresentedin[28]. Therefore,ourapproachaswellasanytechniquedevelopedfor sphericalharmonicformulationcanbequicklyandeasilyappliedtothehighorderdiffusiontensor formulation and vice versa. This bridge is very useful for comparison purposes between state of the art anisotropymeasures for high order models computed from spherical harmonics and tensor coefficients. Published results are reproduced accurately and it is also possible to recover voxels withisotropic,singlefiberanisotropicandmultiplefiberanisotropicdiffusion. Thepaper isoutlinedas follows. InSection 2, we reviewthebasic principleofdiffusionMRI and the differences between DTI and HARDI data. In Section 3, we review the existing state of the art techniques to estimatethe ADC profilefrom noisy HARDIdata. In Section 4, we propose a new regularization method which recovers a smoother ADC that is closer to the ADC without noise.InSections5and6,weevaluateouralgorithmagainststateoftheartmethodsandreviewthe different anisotropy measures and algorithms proposed using spherical harmonic coefficients and independent elements of the HODT. We show the potential and usefulness of the generalized GA measureforHARDIproposedbyOzarslanetal[29]. Weconcludewithadiscussionoftheresults andourcontributionsinSection7. 2 High Angular Resolution Diffusion Imaging (HARDI) Diffusion magnetic resonance imaging, introduced in the mid 1980s by Le Bihan et al [19], has become intensely used for the past ten years due to important image acquisition improvement. It is the unique non-invasive technique capable of quantifying the anisotropic diffusion of water in biologicaltissuessuchasmuscleandbrainwhitematter. Shortlyafterthefirstacquisitionofimages RR n°5681 6 M.Descoteaux,E.Angelino,S.Fitzgibbons,R.Deriche 162points 642points Figure2:Discretesamplingsofthespherefordifferentnumbersofgradientdirectionscorresponding toorder3andorder4tessellationofthesphererespectively. characterizingtheanisotropicdiffusionofwatermoleculesin1990[26,27],Basseretal. proposed the diffusion tensor model [4, 3]. DTI computes the apparent diffusion coefficients (ADC) based ontheassumptionthatthediffusionorBrownianmotionofwatermoleculescanbedescribedbya zero-meanGaussiandistribution P(r)= 1 12 exp rTD(cid:0)1r : (1) (4(cid:25)(cid:28))3jDj 4(cid:28) (cid:18) (cid:19) (cid:18) (cid:19) P(r) istheprobability thata water moleculestartingata givenposition in avoxelwillhavebeen displacedbysomeradialvectorrintime(cid:28). Thediffusionprocessisthenfullydescribedbyarank- 2 diffusion tensor D which is a positive-definite 3x3 symmetric matrix. Using a minimum of six differentencodedgradientdirectionsg,thediffusiontensorcanbeconstructedateachvoxelinthe volume. TheresultingsignalattenuationisgivenbytheStejskal-Tannerequation[37], S(g)=S exp (cid:0)bgTDg (2) 0 where b is the diffusion weighting factor depending(cid:0)on scann(cid:1)er parameters such as the length and strength of the diffusion gradient and time between diffusion gradient pulses and S is the T2- 0 weighted signal acquired without any diffusion gradients. Numerous methods for estimating and regularizingthediffusiontensorhavebeenproposed[39,45,47,7]. Segmentationandtractography onknownfiberbundleswithclearanisotropicregionsofsinglefiberbundlesworkwell[20,21,22, 23,24]buttheapproachesareintrinsicallylimitedandunstableinregionsofmultiplefibersdueto therestrictiveassumptionofthediffusiontensormodel. Inorderto betterdescribethecomplexityofwatermotion, a clinicallyfeasibleapproach, high angular resolution diffusion imaging (HARDI), has been proposed by Tuch et al [43, 40]. At the cost of longer acquisition times, the idea is to sample the sphere in N discrete gradient directions (Fig.2)andcomputetheapparentdiffusioncoefficient(ADC)profileD(g)alongeachdirection[42]. Hence, at each voxel, we have a discrete spherical function with no a priori assumption about the natureofthediffusionprocesswithinthevoxel.Therehavebeeninterestingworksdonerecentlyon alternativewaystoobtaincomplexsub-voxeltissuearchitecture,suchasDSI[46,40],Q-ball[41], INRIA ApparentdiffusioncoefficientsfromHARDI:estimationandapplications 7 PASMRI[25]. However,inthispaper,wefocusonHARDIdataandinparticular,thedevelopment ofnewandefficienttechniquestoprocessnoisysphericaldataobtainedinmultipledirections. Sev- eralrecentapproacheshaveattemptedtoestimateandinvestigatepropertiesofnoisysphericaldata obtainedfromHARDI[43,15,2,10,28]tocharacterizetissueswithnon-Gaussiandiffusion. The problemistorecoverasmoothADC,D(g),closetothetrueADCfromthemeasureddiffusionMRI noisysignalS(g), 1 S(g) S(g)=S exp((cid:0)bD(g))=)D(g)=(cid:0) ln : (3) 0 b S (cid:18) 0 (cid:19) Westudytheexistingmethods,discusstheirlimitationsandproposeafastandrobustalgorithmfor ADCprofileestimationinthefollowingsections. 3 Apparent Diffusion Coefficient (ADC) Profile Estimation AteachvoxelofHARDIdata,wehaveanoisysamplingoftheunderlyingADCprofiledescribing the diffusion of water molecules within the voxel. In this section, we review tools for analyzing function defined on the sphere and describe state of the art methods for obtaining the underlying ADC profile from discrete noisy samplings. There are two classes of algorithms for ADC profile estimation. Thefirstusesatruncatedsphericalharmonicseriestoapproximatethefunctiononthe sphere[15,2,10]whereastheotherfitsahighorderdiffusiontensortothedata[28]. 3.1 EstimatingtheADCProfile withtheSphericalHarmonics (SH) Before discussing the fitting of data to a spherical harmonic series, we first define the spherical harmonicsanddiscussbrieflysomeoftheirproperties. 3.1.1 SphericalHarmonics(SH) Thesphericalharmonics, normallyindicatedbyYm (‘denotesthe orderandmthe phasefactor), ‘ areabasisforcomplexfunctionsontheunitspheresatisfyingtheSHdifferentialequation 1 @ @F 1 @2F (sin(cid:18) )+ +‘(‘+1)F =0; ‘2Z (4) sin(cid:18)@(cid:18) @(cid:18) sin2(cid:18) @(cid:30)2 + ThefirsttwotermsofthisequationcorrespondtotheLaplacianinsphericalcoordinates,alsocalled thethreedimensionalLaplace-Beltramioperator4 ,whichisdefinedby b 1 @ @F 1 @2F 4 F = (sin(cid:18) )+ : (5) b sin(cid:18)@(cid:18) @(cid:18) sin2(cid:18) @(cid:30)2 TheLaplace-Beltramioperatorisanaturalmeasureofsmoothnessforfunctionsdefinedontheunit sphere and has been used in many image processing applications [16, 35, 34]. Furthermore, it is RR n°5681
Description: