NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (cid:43)(cid:50)(cid:56)(cid:54)(cid:55)(cid:50)(cid:49)(cid:15)(cid:3)TEXAS APOLLO 11 LUNAR SCIENCE CONFERENCE ABSTRACTS INDEX Name Page No. Name Page No. Abell, P, I. 1 Davis, R. 30 Adams, J. B. 2 Doell, R. R. 31 Agrell, S. 0, 3 Douglas, J. A. V. 32 Albee, A, L. 4 Duke, M. B. 33 Alley, C. O. 5 Edgington, J. A. 34 Alvarez, L. 6 Ehmann, W. D. 35 Anderson, A. 7 Engel, C. G. 36 Arrhenius, G. 8 Engelhardt, W .,v. 38 Baedecker, P. 9 Epstein, S. 39 Bailey, J. C. 10 Evans, H. T. 40 Barghoorn, E. 11 Fernandez-Maran, H. 41 Birkebak, R. C. 12 Fields, P, R. 43 Bochsler, P. 13 Fireman, E. L. 44 Brown, G. M. 14 Fleischer, R. L. 45 Burlingame, A. 15 Fox, S. W. 47 Cameron, E. N. 17 Fredriksson, K. 48 Carter, J. L. 19 Friedman, I. 49 Carter, N. L. 20 Frondel, C. 51 Chao, E. C. T. 21 Fryxell, R. 52 Cloud, P, 22 Gast, P. W. 53 Coegg, P. E. 24 Gay, P. 54 Collett, L. S. 25 Geake, J. E. 55 Compston, W. 26 Gold, T. 56 Castes, N. C. 27 Gales, G. G. 57 Crozaz, G. 28 Gopalan, K. 58 Dalrymple, G. 29 Greenman, N. N. 59 I N D EX (continued) Name Page No. Name Page No. --- Grossman. J. 60 Marti. K. 87 s. Haggerty. 61 Mason, B. 88 Hargraves. R. 62 Maxwell. J.A. 89 Haskin, L.A. 63 Meinschein. W. G. 90 Helsley. C. E. 64 Moore, c. B. 91 Helz. A. 65 Morrison. G. H. 92 c. Herzenberg. 66 Muir, A. H. 93 c. Heymann. D. 67 Murphy. R. 94 Hintenberger. H. 69 Nagata. T. 95 Hodgson, G. W. 70 Nagy. B. 96 Hurley. P. 71 Nash, D. B. 98 Jedwab, J. 72 O'Hara. M. J. 99 Johnson. R. D. 73 O'Kelley. G. D. 101 Kanamori. H. 74 Onuma. N. 102 Kaplan, I. R. 75 Oro, J. 104 Keays, R. R. 76 Oyama, V. I. 105 o. Keil. K. 77 Pepin. R. 106 King, E. A. 78 Perkins. R. W. 107 Kirsten. T. 79 Philpotts, J. A. 109 Kohman. T. P. 80 Ponnamperuma. c. 110 Kushiro. I. 81 Quaide, W. L. 112 v. Larochelle, A. 82 Murthy, R. 113 Latham. G. 83 Simmons, G. 115 Lovering. J. F. 84 Ramdohr. P. 116 s. McKay. D. 85 Reed, G. W. 117 s. Manatt. L. 86 Reynolds. J. H. 118 INDEX (continued) Name Page No. Name Page No. Richardson, K. A. 119 Strangway, D.W. 144 Rho, J. H. 120 Tatsumoto, M. 146 Ringwood, A. E. 121 Taylor, R. 147 Roedder, E. 123 Tolansky, s. 149 Rose, H. J. 124 Turek ian, K. K. 150 Ross, M. 126 Turner, G. 151 Runcorn, S. K. 127 Walter, L. s. 152 Schaeffer, (cid:50). 128 Wanke, H. 154 Schmitt, R. A. 129 Wanless, R. K. 155 Schopf, J. w. 130 Warren, N. 156 Sclar, C. B. 131 Weeks, R. A. 157 Scoon, J. H. 132 Weill, D. F. 158 Shedlovsky, J. 133 Wiik, H. B. 159 Shoemaker, E. M. 134 Wood, J. A. 160 Short, N. M. 135 Silver, L. T. 136 Simmons, G. 115 Simpson, P. R. 137 Sippel, R. F. 138 Skinner, B. J. 139 Smales, A. A. 140 Stephens, D. R. 141 Stewart, D. B. 142 1 ORGANIC ANALYSIS OF THE RETURNED LUNAR SAMPLE P. I. Abell, G. H. Draffan, G. Eglinton*, J. M. Hayes, J. R. Maxwell, C. T. Pillinger The Organic Geochemistry Unit, School of Chemistry, The University; Bristol, England ABSTRACT The analysis scheme was designed to detect and identify carbon compounds over a wide molecular weight range. Mass spectrometry has been used to examine a sample of I unar fines for trapped volatile constituents. A variety of small organic molecules, including methane and other hydrocarbons, accompanied the rare gases when the sample was heated in a stepwise fashion to 900°C under vacuum. In addition, specially designed apparatus has been constructed to perform the classical geochemical procedures of extraction, separation, deri vati sation, chromatography and mass spectrometry, using the smallest possible volumes of solvent, and with a minimum exposure of the sample to the atmosphere. Stringent precautions were taken in the laboratory but contamination introduced during the course of the Apollo 11 mission undoubtedly made a major contribution to the observed organic content of the fines. The much cleaner samples and complete procedural blanks expected for subsequent missions must be awaited before the true nature and extent of indigenous lunar organic matter can be determined. *Speaker 2 SPEC'ih.i1L F.EF1.1CTI VI'l.'I 01' APOLLO 11 LUNAR f,M.4PLE.S John B. bctams1 Robert L. Jcnes2 Apollo J.l cry::;tb.lline rocks containing P.J'Tt)Xt:ne but no ulivine show h 36% absorption bi:nd centered at 0.94 microns and ~:;_ 19~ b~nd at 1::.0 microns. Crystalline rock Bamples containing pyroxene and minor olivine !:lave a 23% bend at 1.00 microns end E: 10% b1md at LO microns, the expected bt=.md frequenciec for mixtures of these minerals. Surface fine::s t-..nd breccies have on.1y traces of olivine, and the combina.tion bcmds occur at approximately 0.95 !llicrons ( 5%) and 2.0 microns 5%). Band shallovmess in the fines end breccias is related to their J.ower integr&l reflectivity. All :ufJjor bbnds are f).ssigned to Fe2+ in clinopyroxene tlnd olivine. Glass, feld.:;par and opaques apparently do not contribute meHS'.ll'E,ble 8b::;orption bands in diffuse reflected lie,ht. Bend frequencies are not sensitive to exposure of sumples to N2 or air, or to m:lcrofractur:i.ng and partial vitrific&tion. Band depths, ho;7ever, f..re diminished by the micro- fracturing and vitrification. Curves for surface fines agree in de- tail ~ith McCord's 0.4-l.l micron telescopic reflectivity curve for an 16 km. spot tbat includes the Apollo 11 site. Results confirm ea.rlier predictions of lunar surfhce mineralogy based on telescopic curves and strongly support the feasibility of obtuining mlneralo- gic;;J. infontation remotely, using telescopic rei'J.ectiv i ty data. 1 CuribteBJJ. Research Institute, St. Croix, Virgin Islands 2 ftllanned Spa.cecrnft Center, Houston, Texas 3 Observations on the mineralogy and composition of some lunar samples from Tranquility .Bo.sf: · S.O. Agrell, I. Drummon~, J.V.P. Long, J.D.C. McConnell and I.D. Muir, Department of Mineralogy and Petrology, University of Cambridge; England. Electron-probe, optical and electron-microscope data are presented for minerals and glasses from: a) Igneous rocks - individually collected samples and the 'fine31 material from the bulk sample container. b) Microbreccins and regolith material including glassy spheres, clast3 of shocked and unshocked material and composite fragments welded together by vesicular glass. The dark colour of the latter may in part be due to submicroscopic droplets of metallic iron and possibly troilite di3po~ed in a complex flow pattern. c) Fragcents cf meteoric origin. The bulk co~rosition of the glassy spheres scatters around that of the lunar basaltic igneou-s rocks, with extreme types having the composition of almost pure plagioclase (.~n 95). Iron crystals at the margins of glassy or crystaline spheres tend to be richer in nickel (7 - 17%) than those well within the spheres, where the nickel value of the kamacitic iron (~3%) approaches that associated \olith the troilite €<'1%) in lunar basaltic rocks. Preliminary studies by scanning electron microscopy have been made on micro-impact craters and the surface of some of the glassy sphe~es.
Description: