ApnI, a Transmembrane Protein Responsible for Subtilomycin Immunity, Unveils a Novel Model for Lantibiotic Immunity YunDeng,Cong-ZhiLi,Yi-GuangZhu,Peng-XiaWang,Qing-DongQi,Jing-JingFu,Dong-HaiPeng,Li-FangRuan,MingSun StateKeyLaboratoryofAgriculturalMicrobiology,CollegeofLifeScienceandTechnology,HuazhongAgriculturalUniversity,Wuhan,People’sRepublicofChina SubtilomycinwasdetectedfromtheplantendophyticstrainBacillussubtilisBSn5andwasfirstreportedfromB.subtilis strainMMA7.Inthisstudy,ageneclusterthathasbeenproposedtoberelatedtosubtilomycinbiosynthesiswasisolatedfrom theBSn5genomeandwasexperimentallyvalidatedbygeneinactivationandheterologousexpression.Comparisonofthe subtilomycingeneclusterwithotherverifiedrelatedlantibioticgeneclustersrevealedaparticularorganizationofthegenesapnI andapnTdownstreamofapnAPBC,whichmaybeinvolvedinsubtilomycinimmunity.Throughanalysisofexpressionofthe D apnIand/orapnTgenesinthesubtilomycin-sensitivestrainCU1065andinactivationofapnIandapnTintheproducerstrain o BSn5,weshowedthatthesinglegeneapnI,encodingaputativetransmembraneprotein,wasresponsibleforsubtilomycinim- w munity.Toourknowledge,evidenceforlantibioticimmunitythatissolelydependentonatransmembraneproteinisquiterare. n lo FurtherbioinformaticanalysisrevealedtheabundantpresenceofApnI-likeproteinsthatmayberesponsibleforlantibioticim- a munityinBacillusandPaenibacillus.WeclonedthepaeIgene,encodingonesuchApnI-likeprotein,intoCU1065andshowed d e thatitconfersresistancetopaenibacillin.However,nocross-resistancewasdetectedbetweenApnIandPaeI,eventhoughsubti- d lomycinandpaenibacillinsharesimilarstructures,suggestingthattheprotectionprovidedbyApnI/ApnI-likeproteinsinvolves fr o aspecific-sequencerecognitionmechanism.Peptiderelease/bindingassaysindicatedthattherecombinantB.subtilis m expressingapnIinteractedwithsubtilomycin.Thus,ApnIrepresentsanovelmodelforlantibioticimmunitythatappearstobe h common. tt p : / / a BacillussubtilisisaGram-positive,endospore-formingmodel Alantibioticproducermustpossessoneortwosynergisticim- e m bacterium. In general, B. subtilis grows in association with munity mechanisms to protect itself against its own produced . a plantsandpromotesplantgrowth(1).However,arecentreport lantibiotics.Thereportedimmunitymechanismsusuallyinvolve s m revealed that B. subtilis is also a saprophytic organism in other immunityproteins,includingABCtransporters(LanFE[G]),li- . environments, such as in an animal’s gastrointestinal tract (2). poproteinsormembrane-associatedpeptides(LanI),andtrans- o r DozensofantibioticsandenzymesproducedbyvariousB.subtilis membraneproteins(LanH)(8).Forlantibioticimmunity,ABC g / isolatesareusedinthefoodindustryandagriculturalfields.Be- transportersexportlantibioticstotheextracellularspacebyATP o n causeofitsabilitytotakeupDNAandintegrateitintoitsgenome, hydrolysis,andinsomecases,thetransmembraneproteinLanH A i.e.,naturalcompetence(3),itsgeneticsequenceshavebeenwell actsasanaccessoryproteinfortheABCtransportersinvolvedin p characterized,includingthoserelatedtothebiosynthesisandreg- substraterecognition(9,10).Inaddition,lipoproteinsormem- ril ulationmodeofmostoftheantibioticsdiscoveredinthisspecies brane-associatedproteins(LanI)canworkeithersolelyorsyner- 4 , todate. gistically with ABC transporters by interacting with lantibiotics 2 B.subtilisisalsoknowntoproducelantibiotics(4),whichare (11,12).MostoftheLanIproteinsthusfarreportedarelocatedon 0 1 lanthipeptideswithantimicrobialactivity(5).Lanthipeptidesare theexternalsurfaceofthemembrane,suchasNisI,SpaI,andPepI. 9 aclassofribosomallysynthesizedandposttranslationallymodi- VeryfewLanIproteins,especiallythosesolelyprovidingimmu- b y fiedpeptides(6),whicharealsoreferredtoaslanthionine(Lan)or nity,arelocatedwithinthecellmembrane. g 3-methyl-lanthionin (MeLan)-containing peptides. The ring- SubtilomycinisarecentlyidentifiedlantibioticproducedbyB. u e formingLanandMeLanpeptidesareusuallygeneratedviaatwo- subtilisstrainMMA7isolatedfromthemarinespongeHaliclona s t stepmodificationprocess,involvingdehydrationofthethreonine simulans,anditshowsabroadspectrumofactivityagainstGram- (Thr) and/or serine (Ser) in the precursor peptide to form the positive bacteria, including drug-resistant pathogens (13). The doublebonds,followedbycyclizationmediatedbyaMichaelad- relationshipbetweensubtilomycinanditsgeneclusterwasestab- ditionwiththethiolbondofcysteine(Cys)inthepropersite.This lishedbasedontheclosematchbetweentheN-terminalamino processinvolvesthedehydrataseandcyclase,whichare,respec- tively,encodedbyeithertwodependentgenes,lanBandlanC,ora combined gene, lanM. Lanthipeptides are subdivided into four Received9July2014 Accepted29July2014 classes (I to IV) depending on the specific biosynthetic gene(s) Publishedaheadofprint1August2014 involved.Structurallyestablishedlantibioticscanbefurthersub- Editor:H.L.Drake dividedbasedonsequencesimilarity,suchasthePep5group(7). AddresscorrespondencetoMingSun,[email protected]. ClassIlantibioticsaresynthesizedastheprecursorpeptideLanA Supplementalmaterialforthisarticlemaybefoundathttp://dx.doi.org/10.1128 andaremodifiedbytwodifferentenzymes,LanBenzyme(dehy- /AEM.02280-14. dratase)andLanCenzyme(cyclase),andareexportedbyLanT, Copyright©2014,AmericanSocietyforMicrobiology.AllRightsReserved. and then the leading peptides are removed by the extracellular doi:10.1128/AEM.02280-14 serineproteaseLanP. October2014 Volume80 Number20 AppliedandEnvironmentalMicrobiology p.6303–6315 aem.asm.org 6303 Dengetal. acidsequenceandthe5=-endsequenceofthestructuralgenesubA. TABLE1Bacterialstrainsandplasmidsusedinthisstudy PaenibacillinisalantibioticproducedbythestrainPaenibacillus Sourceor polymyxaOSY-DF(14),anditsstructurehasbeenelucidated(15); Strainorplasmid Description reference however, the paenibacillin biosynthetic gene cluster has not yet E.coliDH5(cid:3) Cloninghost 42 beenreported.Sinceitshowshighsequencesimilarity(54%)to Paenibacillus Wildtype;paenibacillinproducerstrain 28 subtilomycin, the structure of subtilomycin has been proposed ATCC842 usingthestructureofpaenibacillinasatemplate(13).However, B.subtilis no molecular biological evidence has been provided to validate BSn5 Wildtype;subtilomycinproducer 16 thisproposedbiosyntheticgenecluster. B1201((cid:6)apnB) StrainBSn5derivative;(cid:6)apnB::spc Thisstudy Inthisreport,weprovidedirectevidencetoconfirmthepres- B1202((cid:6)apnT) StrainBSn5derivative;(cid:6)apnT::kan Thisstudy B1203((cid:6)ybcL) StrainBSn5derivative;(cid:6)ybcL::kan Thisstudy enceofasubtilomycingenecluster,termedtheapncluster,inthe B1204((cid:6)ybdG) StrainBSn5derivative;(cid:6)ybdG::kan Thisstudy completegenomeofB.subtilisstrainBSn5,whichwaspreviously B1205((cid:6)apnI) StrainBSn5derivative;(cid:6)apnI::kan Thisstudy isolated from the plant Amorphophallus konjac (16). We com- CU1065 Strain168derivative;trpC2attSP(cid:2) 17 paredthegeneorganizationoftheapnclusterwiththoseofother B1301 CU1065amyE::(spcsubtilomycingene Thisstudy related gene clusters to determine its specificity and potential cluster) D function.DNAfragmentscontainingdifferentregionsofthegene B1302 CU1065amyE::(spcfragmentapnI) Thisstudy o w clusterwereexpressedintheheterologoushostB.subtilisstrain B1303 CU1065amyE::(spcfragmentapnT) Thisstudy n CU1065(W168attSP(cid:2)trpC2)(17),andgeneinactivationanalysis B1304 CU1065amyE::(spcfragmentapnI-apnT) Thisstudy lo B1305 CU1065amyE::(spcfragmentpro apnI) Thisstudy a wasperformedfortheproducerBSn5straintoidentifythegene(s) apnA d involvedinconferringimmunity.Ourstudythusprovidesvalu- B1306 CU1065amyE::(spcfragmentproapnAapnT) Thisstudy e B1307 CU1065amyE::(spcfragmentpro Thisstudy d ableinformationofararemolecularmodelunderlyinglantibiotic apnA apnI-apnT) fr immunity. o B1308 CU1065amyE::(spcfragmentproapnApaeI) Thisstudy m B1309 CU1065amyE::(spcfragmentpropaeApaeI) Thisstudy h MATERIALSANDMETHODS t Plasmids tp Bacterialstrains,plasmids,andgeneralmethods.Thestrainsandplas- pDG780 pBluescriptKS(cid:7)harboringkan(ampkan) 43 :/ midsusedinthisstudyarelistedinTable1.B.subtilisstrainsBSn5and pMD18T ClonevectorforE.coli(amp) TaKaRa /a CU1065,alongwiththeirderivatives,wereculturedinLuria-Bertani(LB) e simple m mediumat28°C,andEscherichiacoliDH5(cid:3),whichwasusedasahostfor pIC333 Mini-Tn10transposonsdeliveryvector 44 . a clones,wasroutinelyculturedinLBmedium(Invitrogen,Karlsruhe,Ger- harboringspcanderm s many) at 37°C. For solid culture, LB medium was supplemented with pDG1730 IntegrationvectorharboringamyE::spc 45 m 1.5%agar.Forstockpreparation,theculturewascultivatedovernightat (amperm) .o 28°CinLBmediummixedwithsterileglycerol(finalconcentrationof pB1201 pMD18Tharboringmutationof(cid:6)apnB::spc Thisstudy rg 17%)andstoredat(cid:4)80°C.Forselectivemedia,thefollowingantibiotics pB1202 pDG780harboringmutationof(cid:6)apnT::kan Thisstudy / wereadded:ampicillin,100(cid:5)g/ml(E.coli);spectinomycin,100(cid:5)g/ml(B. pB1203 pDG780harboringmutationof(cid:6)ybcL::kan Thisstudy on subtilis);andkanamycin,20(cid:5)g/ml(B.subtilis).Isolationofplasmidsand pB1204 pDG780harboringmutationof(cid:6)ybdG::kan Thisstudy A chromosomalDNA,restrictionendonucleasedigestion,agarosegelelec- pB1205 pDG780harboringmutationof(cid:6)apnI::kan Thisstudy p r trophoresis,PCR,andtransformationofE.coliwereperformedbyfollow- pB1301 pDG1730harboringamyE::(spcapngene Thisstudy il ingestablishedprotocolsformolecularbiologytechniquesdescribedby cluster) 4 , SambrookandRussell(18). pB1302 pDG1730harboringamyE::(spcapnI) Thisstudy 2 PlasmidconstructionandmanipulationofB.subtilisstrains.Gene pB1303 pDG1730harboringamyE::(spcapnT) Thisstudy 0 1 disruptionplasmidswereconstructedusingtwoapproaches.Thefirstwas pB1304 pDG1730harboringamyE::(spcapnI-apnT) Thisstudy 9 establishmentoftheapnBmutantallele(apnB::spc)bysubcloningofthe pB1305 pDG1730harboringamyE::(spcproapnA Thisstudy b spectinomycin resistance gene (spc) from pIC333 into the PCR-intro- apnI) y ducedClaIandXbaIsitesoftheapnBgeneinpMD18T-apnB,resultingin pB1306 pDG1730harboringamyE::(spcpro Thisstudy g apnA u plasmidpB1201(Table1).Thesecondapproachwastheestablishmentof apnT) e apnT,ybcL,ybdG,andapnImutantalleles(apnT::kan,ybcL::kan,ybdG:: pB1307 pDG1730harboringamyE::(spcpro Thisstudy s apnA t kan,andapnI::kan,respectively)byamplifyingtheupstreamanddown- apnI-T) streamarmsofeachgenefragmentintotheupstreamanddownstream pB1308 pDG1730harboringamyE::(spcpro paeI) Thisstudy apnA restrictionsitesoftheintegrationvectorpDG780,respectively,resulting pB1309 pDG1730harboringamyE::(spcpro paeI) Thisstudy paeA inplasmidspB1202,pB1203,pB1204,andpB1205(Table1).TheB.sub- tiliscompetentcellpreparationwasperformedbyfollowingtheclassical nutritionaldownshiftmethoddescribedbyAnagnostopoulosandSpiz- izenin1960(3),withmodificationsdescribedbyYasbinetal.(19).A resistanceevaluation.ProperallelicreplacementwasconfirmedbyPCR seriesofatleastfive10-minintervalgradesweresettoensurethatthet0 andsequencing. point(i.e.,thepointatwhichthecultureleavesthelogarithmicgrowth Differentfragmentscontainingthewholesubtilomycingenecluster, phase)couldbecapturedateverycycleconsideringthelowertransforma- apnI,apnT,orapnI-apnTwereamplifiedusingtheprimerslistedinTable tionefficiencyofwild-typestrainBSn5thanofB.subtilis168.Chromo- 2.Then,thesefragmentswerecutusingproperrestrictionendonuclease somalgenereplacementofwild-typeapnB,apnT,ybcL,andybdGwiththe andclonedintoanotherintegrationvector,pDG1730,resultinginthe correspondingconstructedmutationalleleswascarriedoutbytransform- heterologous expression alleles amyE::(spc subtilomycin gene cluster), ingBSn5withtheconstructedplasmids,resultinginthemutantsB1201, amyE::(spcfragmentapnI),amyE::(spcfragmentapnT),andamyE::(spc B1202,B1203,B1204,andB1205.B1201wasselectedforspectinomycin fragmentapnI-apnT)inplasmidspB1301,pB1302,pB1303,andpB1304, resistanceevaluation,andtheothermutantswereselectedforkanamycin respectively.Thefragmentcontainingthepredictedpromoterregionof 6304 aem.asm.org AppliedandEnvironmentalMicrobiology SubtilomycinGeneandLantibioticImmunity TABLE2Primersequencesusedinthisstudy Primer Sequence(5=¡3=)a Use ybcLUpF CTAACTAGTCAGAGATCAGTAAGTCC ybcLgenedisruption ybcLUpR TGTCTGCAGAGGTTCCAACTAAAAAGC ybcLgenedisruption ybcLDownF GGACTCGAGAGTTTGGTTGGATCAAAG ybcLgenedisruption ybcLDownR TGAGGTACCCTCAGTAATCTTATTAGCC ybcLgenedisruption ApnBUpF TTTGCATGCTTAGTATTCTCGAGCAG apnBgenedisruption ApnBDownR TGCGGATCCATTAAATAGGGATAGTG apnBgenedisruption ApnBUpR CCTTCGTATCCTATTACTCGCATTT apnBgenedisruption ApnBDownF AGAATCTAGAGCAATCACCTATTCTAAGAGC apnBgenedisruption SpcF AGTATCGATGCGGTGCTACAGAGTTCTTG Amplificationofspectinomycinresistancegene SpcR GGGTCTAGAGTAAACGCTGAATATCGTGTT Amplificationofspectinomycinresistancegene ApnTUpF TTTGGATCCGGTTGTTGAAGACGCAG apnTgenedisruption ApnTDownR TCCTTTCCCATACTCTTC apnTgenedisruption ApnTDownF CAACTCGAGCGAGTTCTCTAAGTTA apnTgenedisruption ApnTDownR TTTGGTACCTGGTCAGAGACCGCATCT apnTgenedisruption D YbdGUpF GGGACTAGTTCGAGATAG ybdGgenedisruption o w YbdGUpR CACCTGCAGATTATATACAGCGGAAG ybdGgenedisruption n YbdGDownF TATCTCGAGGGTTCGCTAGGATGAAGG ybdGgenedisruption lo YbdGDownR TGAGGTACCGGTTTAAACATGCTGTC ybdGgenedisruption a d ApnIUpF GAAACTAGTTCTAGAGGCGGAACAAGAT apnIgenedisruption e ApnIDownR GGGGAATTCATGAAAAGAACTGCGAACC apnIgenedisruption d ApnIDownF TAACTCGAGAGGTTATACATATGGGC apnIgenedisruption fr o ApnIDownR GCAACAAAGGTACCTGGTGAAATAG apnIgenedisruption m apnF CCTGGATCCGCTCTGTTTCCGTTGTCG Cloneofapncluster h apnR TGAGGATCCTACCCAAGTGGTCTCATTATTT Cloneofapncluster t t ApnIF TTCGGATCCGGTCAAGATTCGTGGGAC CloneoffragmentapnI-apnT(I) p : ApnIR GGCGAATTCGTTATTGCCCATATGTATAAC CloneoffragmentapnI // a ApnTF AGTGGATCCTAGCGAAAGTGTTCATTC CloneoffragmentapnT e ApnTR GACGAATTCAAGCAAAACCAAAGCAGCC CloneoffragmentapnI-apnT(T) m ProapnAF TTTGGATCCGCGAGCTGAAGTACAGTACG CloneoftheapnApromoterregion .a ProapnAR CTTGGATCCTTCCATTTCCTCCTTTT CloneoftheapnApromoterregion s m ProapnAF2 TTTGGATCCGCGAGCTGAAGTACAGTACG CloneoftheapnApromoterregion . ProapnAR2 CTTGAATTCCTTAGCTCGAGTTCCATTTCCTCCTTTT CloneoftheapnApromoterregion o r PropaeAF AACGGATCCATCGGGACCAAAGTGATTCGACTCA CloneofthepaeApromoterregion g / PropaeAR CTTGAATTCTGCCTCTCGAGTTTCCTCTTCCTCTCTGAATTAAAT CloneofthepaeApromoterregion o PaeIF TTTGGATCCCTTAGCTCGAGCAGATGCTGGTATTTAGCT CloneofthepaeIgene n PaeIR CTCCGAATTCGAATGGGCCGTTTGTTTT CloneofthepaeIgene A p aRestrictionsitesareunderlined. r il 4 , apnA(pro )wasamplifiedwithprimerscontainingBamHIrestriction intoa500-mlflaskcontaining100mlofLBmediumattheratioof1/100 2 apnA 0 sitesandclonedintoalloftheconstructedvectors,exceptforthatcon- (vol/vol).Theflaskwasincubatedat28°Cfor12hinarotaryshakerwith 1 tainingthewholeapncluster.PCRwasusedtoidentifytheinserteddirec- agitationat200rpm.Aftercentrifugationat10,000(cid:8)gfor10minat4°C 9 tionofthepro fragment.Thesameprocedureasdescribedabovewas usingthecentrifugeSorvallST16R(ThermoFisherScientific;USA),the b usedtopreparaepnthAecompetentcellsofB.subtilisCU1065.Theheterolo- cell-free supernatant was filtered through a 0.22-(cid:5)m membrane filter. y g gousexpressionrecombinantswereselectedforspectinomycinresistance Ammoniumsulfatewasaddedintermittentlytothecell-freesupernatant u andwereconfirmedbyPCRandsequencing. to30%saturationduringstirringusingamagneticstirrer.Themixture e s To express the gene paeI for putative paenibacillin immunity in wassetat4°Cfor2h.Theresultingprecipitatewascollectedbycentrifu- t CU1065,thefragmentscontainingpaeIandthepredictedpromoterre- gationat12,000(cid:8)gfor30minat4°C,followedbydialyzationdesalina- gionsofapnAandpaeA(pro andpro ,respectively)wereamplified tion.Theextractwasusedastheactiveammoniumsulfatecrudeextract apnA paeA usingtheprimerslistedinTable2andwereT/AclonedintothepMD18T (ASCE)ofthesubtilomycinpreparationforfurtherbioassays,high-per- Simplevector.Then,thepaeIfragmentswerecutandinsertedintothe formanceliquidchromatography(HPLC),andmatrix-assistedlaserde- downstreamregionsofthepro andpro fragments,resultingin sorptionionization–timeofflight(MALDI-TOF)massspectrum(MS) apnA paeA insertion of pro paeI and pro -paeI, respectively, in the vector analysis.ThesubtilomycinextractsfromBSn5mutantswerepreparedby apnA- paeA pMD18TSimple.Finally,thetwofragmentswerecutusingBamHIand followingthesameprotocol. EcoRIandclonedintotheintegrationvectorpDG1730,resultinginthe Crudesubtilomycinextractswerecondensedbyfilteringthrougha heterologous expression alleles amyE::(spc fragment pro paeI) and MilliporeAmiconUltra-153Kdeviceandadjustedto25%acetonitrile apnA- amyE::(spcfragmentpro -paeI)inplasmidspB1308andpB1309(Ta- (0.1%trifluoroaceticacid[TFA]),followedbycentrifugationat12,000(cid:8) paeA ble1).TheB.subtilisCU1065transformationandtheconfirmationof gfor5mintoremoveinsolublematerial.Subtilomycinwaspurifiedby recombinants were performed by following the procedures described preparativeHPLCusingaWaters1528binaryHPLCpump,Waters2489 above. UV/visibledetector,andWaters2707auto-samplesystemequippedwith Isolationandpurificationofsubtilomycin.Topreparesubtilomycin, anAgilentEclipseXDB-C18PrepHTcolumn(5(cid:5)m,21.2by150mm). asinglecolonyofBSn5wasinoculatedfromthecultureplateinto5mlof Themobilephaseconsistedofchromatography-gradewatercontaining LBmediumwithagitation,andthentheovernightculturewastransferred 0.1%trifluoroaceticacid(TFA)inpumpAand80%chromatography- October2014 Volume80 Number20 aem.asm.org 6305 Dengetal. gradeacetonitrilecontaining0.086%TFAinpumpB.Theelutionstep Basedonapreviouslyreportedisolationanddetectionstrategy(14),we wasperformedunderanacetonitrilegradientof30to70%over20minat aimed to detect and prepare crude extracts of paenibacillin. Briefly, a aflowrateof9.0ml/min.Subtilomycinwaselutedwithin14.3min(see singlecolonyofATCC842wasactivatedin5mloftrypticsoybrothyeast Fig.S4inthesupplementalmaterial).Thepurifiedpeptidewaslyophi- extractandincubatedat28°Cfor24h.Theresultingculturewasinocu- lizedandusedforsubtilomycinquantificationbyHPLC. lated into a 500-ml flask containing 100 ml of tryptic soy broth yeast Bioassayfordetectionofsubtilomycin.Agarwelldiffusionassays extract.Theflaskwasincubatedat28°Cfor24hinarotaryshakerwith wereusedtodetecttheantimicrobialactivitiesoftheisolatesaspreviously agitationat200rpm.Aftercentrifugationat9000(cid:8)gfor10min,the described(20).ThirtymillilitersofLBagar(1.0%,wt/vol)mediumwas cell-freesupernatantwasmixedwithAmberliteXAD-7resin(Sigma)ata pouredinto100-by100-mm2plasticdishesandinoculated(1%,vol/vol) 10%(wt/vol)ratio,andthemixturewassetforstaticadsorptionovernight withtheindicatorsuspension.Afterdryingfor30min,nine6-mmwells at4°C.Theabsorbedpaenibacillinresinwaswashedsequentiallywith1 wereboredineachplate.Approximately60(cid:5)lofcrudeextractsamples literofdistilledwaterand500mlof30%(vol/vol)ethanol.Finally,the fromthesupernatantsofB.subtilisstrainswaspipettedintoeachwell,and resin was eluted with 250 ml of 75% (vol/vol) ethanol (pH 2.0). The theplatesweremaintainedat4°Cfor4hfordiffusionandthenincubated fractionwascondensedwitharotaryevaporatorat35°Cundervacuum, overnightat28°C.Thediameteroftheinhibitionzoneswasmeasuredto andtheconcentratewasadjustedtopH7.0withphosphatebufferand determineantimicrobialactivity. thenwasfreeze-dried.Thepowderwasresolvedindistilledwater,fol- Detection of subtilomycin by HPLC and liquid chromatography lowedbycentrifugationat12,000(cid:8)gfor5min.Theresultingsupernatant D (LC)-MS.ThesameHPLCsystemasdescribedaboveforpurificationwas wasconsideredtobethepaenibacillincrudeextractandwasusedtodetect o usedforsubtilomycindetection.Thedataweredisplayedandanalyzedby paenibacillinunderLC-MSbyfollowingthesameprocedureasdescribed w usingaBreezesystem(WatersCorporation,USA).AnAgilentHC-C18 aboveforsubtilomycindetection. n reverse-phasecolumn(250by4.6mm;particlesizeof5(cid:5)m)wasem- Subtilomycinsensitivityassay.Thesubtilomycinsensitivityassayof lo a ployed(Agilent,USA).Themobilephaseconsistedofchromatography- B.subtilisCU1065andrecombinantswasperformedusingagardiffusion d testsaccordingtoamodificationofapreviouslydescribedprotocol(21). e gradewatercontaining0.1%TFAinpumpAandchromatography-grade d acetonitrileinpumpB.Thecrudelantibioticpreparationwasdissolvedin Stationary-phase-grownCU1065anditsrecombinantcultureswithan f 20%acetonitrile(TFA,0.1%),and5to20(cid:5)lwasloaded.Theelutionstep opticaldensityat600nm(OD600)of0.8wereeachinoculatedat1/1,000 ro intodilutedLBagar(1.0%,wt/vol)at40°Candthenpouredinto90-mm m wasperformedunderanacetonitrilegradientof20to80%over15minat petridishes(20ml)anddriedfor30min.Seven6-mmwellswerebored aflowrateof1ml/min.Thepeaksweredetectedbymeasuringtheabsor- h intoeachplate.Seriallydiluted(0.125to200(cid:5)M)subtilomycinextracts t banceat235nmand254nm. (60(cid:5)l)wereloadedintothewellsoftestplates.Theplatesweremain- tp Liquidchromatographyquadrupole-timeofflight(LC-Q-TOF)MS :/ tained at 4°C fo r 4 h toallow sufficient diffusion and then incubated / was carried out using an Agilent 1260 LC device equipped with a C a reverse-phasecolumn(100by1.8mm;particlesizeof3.5(cid:5)m)unde18r overnightat28°C.Theresponsewascalculatedasthemeanareaofthe em inhibitionhalos.Eachtestwasindependentlyreplicatedthreetimes.The chromatographydetectionconditionsastheflowratewasdecreasedby . 0.3ml/min;theinjectionvolumewas1(cid:5)l,andthediodearraydetection sameprocedurewasemployedforvancomycin,nisin,andpaenibacillin as was performed at 254 nm. MS was performed using the Q-TOF MS sensitivitytestsofB.subtilisCU1065andtheapnI-expressingrecombi- m G6540Asystem(Agilent)equippedwithadual-sourceelectrosprayion- nants(proapnAapnI). .o ization(ESI)ionsourceandwasoperatedinpositive-ionmode.Calibra- Peptide-bindingassayforsubtilomycin.Thepeptide-bindingassay rg for subtilomycin was performed according to a previously described tion was carried out with standard references of mass 121.0509 and / method,withsomemodifications(21).B.subtilisCU1065anditsrecom- o 922.0098. The source parameters were as follows: gas temperature of n binantexpressingapnIwereculturedovernight.Thecellswereharvested 350°C, gas flow rate of 9 liters/min, and nebulizer stress of 40 lb/in2 A andwashedtwicewith50mMsodiumphosphatebuffer(pH7.0)con- (gauge). The capillary, fragmenter, skimmer, and octopole radio fre- p quency(RF)peakvoltageweresetat4,000V,250V,65V,and750V, wtaiitnhin1gm1%lofgliunccousbea.tTiohnebceulflfceorncocenntatriantiinogn5w0amsaMdjusosdteidumtopanhoOspDh6a0t0eo,f11%0 ril respectively,forthescansource.Thequadrupolewassettopassionsfrom 4 glucose,and1MNaCl.Thecellsuspensionwasincubatedwithsubtilo- , m/z200to2,000.TheMSscanratewassetto1.5spectra/s. mycinatconcentrationsof15(cid:5)g/mland25(cid:5)g/mlwithshaking(150 2 Afterdeterminationoftheionsofsubtilomycinatm/z1,079.1666by 0 rpm)for30minat30°C.Afterincubation,thecellswerecentrifugedat 1 MS,targettandemMS(MS/MS)modewaschosenforacquisitionofthe 17,000(cid:8)gfor10min.ThesupernatantsweretransferredtotheHPLC 9 fragmentalionsofsubtilomycin.TheMSandMS/MSscanrateswereset systemwiththesameparametersasdescribedabove.Theharvestedcell b to1.5spectra/sand0.8spectrum/s,respectively.TheMSandMS/MSscan y pelletsweregentlymixedwith1mlof20%acetonitrileinwatercontain- g rangesweresettom/z200to2,000andm/z100to2,000,respectively.The ing0.1%trifluoroaceticacidandincubatedwithshaking(150rpm)for5 u targetionswereisolatedandfragmentedinthecollisioncellbyadding minat30°C.Thecellswereremovedbycentrifugationat17,000(cid:8)gfor10 e s optimizedcollisionenergyat34eV.DatawereanalyzedusingAgilent min,andtheremainingsupernatantswereloadedintotheHPLCsystem. t MassHunterqualitativeanalysissoftware. Subtilomycinamountsincell-freesupernatantsandincellextractswere DetectionofsubtilomycinbyMALDI-TOFMS.TheMSanalysisof quantitativelydetermined. thepeptidepreparationswasperformedbyusingthe4800PlusMALDI TOF/TOF analyzer (Applied Biosystems, USA). Aliquots of 0.5-(cid:5)l ex- RESULTS tractsweremixedwitha0.5-(cid:5)lsampleofmatrix((cid:3)-cyano-4-hydroxycin- ProductionofsubtilomycininB.subtilisstrainBSn5.Inaccor- namicacidinacetonitrileand0.1%TFAinwater,1:3).Thesampleswere dancewithapreviouslyreportedmethodforpurifyingsubti- spottedontotheMALDItargetanddriedinair.Massspectraweremea- lomycin(13),wepreparedASCEstodetecttheproductionof suredinpositiveion-modeintherangeofm/z800to4,000forsearching subtilomycinfromthe12-hsupernatantofB.subtilisBSn5.LC- and2,000to5,000DaforcomparisonandanalyzedusingProteinPilot electrospray ionization MS of the crude extracts revealed that software. BSn5canproduceacompoundwiththesamecharacteristicsas Preparationofpeptideantibioticsforsensitivityassay.Vancomycin subtilomycin. The corresponding main peak was detected at a and nisin were purchased from Sigma-Aldrich, USA. By searching the retentiontimeof7.9minundertheUVmonitorat254nmusing NationalCenterforBiotechnologyInformation(NCBI)databaseusing thepaenibacillinstructuralsequence,wefoundthataBacillusGenetic similarmobile-phaseconditions(Fig.1A),andtheMSextracted StockCenter(BGSC)preservedisolate,PaenibacillusstrainATCC842, fromthispeakshowedthatthemonoisotopicmassofthequadru- withcompletegenomesequenceinformation,mayproducepaenibacillin. plycharged[M(cid:7)4H]4(cid:7),triplycharged[M(cid:7)3H]3(cid:7),anddoubly 6306 aem.asm.org AppliedandEnvironmentalMicrobiology SubtilomycinGeneandLantibioticImmunity D o w n lo a d e d f r o m h t t p : / / a e m . a s m . o r g / o n A p r il 4 , 2 0 1 9 b y g u e s t FIG1Detectionoftheproductionofsubtilomycinbyliquidchromatography-electrosprayionization-massspectrometry(LC-ESI-MS).(A)Chromatography profileofactiveammoniumsulfatecrudeextractsoftheBacillussubtilisBSn5culturesupernatant.Thetargetcompoundisindicatedbyanarrow.(B)ESI-MS ofthecompoundindicatedbythearrowinpanelA.(C)Magnificationofthedoublychargedions[M(cid:7)2H]2(cid:7)inpanelB;themonoisotopicmasspeakis indicatedbyanarrow.(D)Fragmentalionsobtainedfromtargettandemmassspectrometryofthepeptidewithamassof3,234.48Da.Ionsyandbindicatethe fragmentedpeptidesextendedfromthecarboxylterminusandaminoterminus,respectively.(E)Predictedstructureofsubtilomycinandestablishedstructure ofpaenibacillin(15).Thepredictedstructuremotifsareshownindifferentcolors.Oburefersto2-oxobutyryl. October2014 Volume80 Number20 aem.asm.org 6307 Dengetal. charged [M (cid:7) 2H]2(cid:7) ions present in the sample were m/z observedwithrespecttotheproductionofsubtilomycin(Fig.2B). 809.6273,m/z1,079.1666,andm/z1,618.2471,respectively,which Thedetectionofsubtilomycinproductionwasalsoevaluatedus- areallequivalenttothemassof3,234.48Da,whichcorresponds ingMALDI-TOFMS,andtheresultswereconsistentwiththose extremely well to the theoretical mass of subtilomycin of fromthebioassayandHPLCanalyses(seeFig.S1inthesupple- 3,234.4806Da(Fig.1BandC). mentalmaterial). BasedontheMS/MSresults,wefurtherverifiedthepredicted Inaddition,theB.subtilisCU1065recombinantharboringthe N-terminal modification of 2-oxobutyrate. Similar to the re- wholeapnclusterwasconstructed.Subtilomycinproductionwas portedN-terminalmodificationofPep5(22),theN-terminalDhb evaluatedinthe12-to16-hculturedsupernatantoftherecombi- (C H NO—) is spontaneously deaminated into 2-oxobutyrate nant by LC-MS (Fig. 2C; see also Fig. S2 in the supplemental 4 6 (C H O —)insubtilomycin,resultinginanaccuratemassgainof material),whichfurtherverifiedthattheminimalapnclusterwas 4 5 2 0.9843 Da. All the measured b ions (extending from the amino responsibleforsubtilomycinbiosynthesis. terminus)areconsistentwiththemassofpeptideswithanN-ter- The putative transmembrane protein-encoding gene apnI minal 2-oxobutyrate modification (see Table S1 in the supple- confers subtilomycin immunity. A structurally elucidated lan- mentalmaterial).Previously,Lietal.usedtandemmassspectro- tibiotic, paenibacillin, produced by Paenibacillus polymyxa metricanalysistodeterminetheringtopologyoflanthipeptides OSY-DFwasidentifiedwiththehighestidentity(54%)tosubti- D thatdonotcontainoverlappingrings(23).Astheproposedsub- lomycin;however,itsbiosyntheticgeneclusterhasnotbeenpub- o w tilomycinstructuredoescontainoverlappingrings,wecouldnot lished.Inaddition,otherlantibioticsfromthePep5groupshowed n directly determine the subtilomycin structure based on our homologywithsubtilomycin,includingepilancin15X,epilancin lo MS/MS results. However, significantly increased fragmentation K7,Pep5,andepicidin280.Wecomparedthesubtilomycinbio- a d was observed at the N-terminal region, which contains no pre- syntheticclusterwithfourreportedandrelatedlantibioticgene e d dictedthioetherrings,therebyprovidingsubstantialsupportfor clustersfromthePep5group(Fig.3).Fourgeneshomologousto f thepredictedsubtilomycinstructure(Fig.1DandE). lanA,lanP,lanB,andlanCwerefoundtoberelativelyconservedin r o Identificationandcloningofthesubtilomycinbiosynthetic allofthegeneclustersexamined,includingthesubtilomycinclus- m genecluster.Throughscanningthewholegenomesequenceof ter.However,thegenesresponsibleforlantibioticexport,immu- h t strainBSn5,aputativesubtilomycingenecluster(BSn5_12550 nity,andN-terminalmodificationshowedvariationsintermsof t p to BSn5_12575), termed the apn cluster, that spans positions theirarrangement.Thegenesresponsibleforlantibioticexportin :/ / 2428600to2436982wasidentified(16).Althoughtherelation- thePep5grouparelocatedupstreamofthegeneslanAPBCinthe a e ship between subtilomycin and its biosynthetic gene cluster direction opposite to that observed in the subtilomycin cluster. m wasrecentlyestablishedbasedonthesinglematchbetweenthe The transporter gene is missing in the gene cluster for epicidin .a primaryaminoacidsequenceoftheN-terminalregionofsub- 280,whichwasproposedtobereplacedbyothertransportersin s m tilomycinandthe5= endofthestructuralgenesubA(13),no thehost(24).TheimmunitygenespepIandeciIarelocatedclosely . o directmolecularbiologicalevidencehasyetbeenprovidedto upstreamofthestructuralgenespepAandeciA,respectively.The r g validate the function of the proposed subtilomycin biosyn- putativeepilancin15XimmunitygeneelxIislocateddownstream / thetic gene cluster. Therefore, we explored the effect of gene andnexttoelxC. o n deletionofapnB,whichencodesaLanB-likedehydratase,and In the apn cluster, the gene products of apnAPBC were pre- A apnT, which encodes a putative transporter, to identify the dicted, respectively, as structural peptide ApnA, leader peptide- p r functionofthegenecluster(Fig.2A). cleaving protease ApnP, and lanthionine synthetases ApnB and il BioassaysandHPLCwereusedtodetectthechangeinsubti- ApnC.ThegeneorganizationapnI-apnT,whichislocateddown- 4 , lomycinproductioninthemutants(Fig.2B).Incontrasttothe streamofapnAPBC,isdifferentfromthatoftheotherreported 2 wild-typestrain,theculturesupernatantfromthe(cid:6)apnBmu- geneclusters(Fig.3).AsdeletionofapnTledtoaconsiderable 01 tants failed to inhibit the target indicator strain B. subtilis loss of subtilomycin production in the supernatant, apnT, 9 CU1065, and no production of subtilomycin was detected by which encodes an ABC transporter, likely plays a key role in b y HPLCfromtheASCEsofthe(cid:6)apnBmutant(Fig.2B).Therefore, subtilomycin export. Through protein BLAST using the se- g apnBisnecessaryforsubtilomycinproduction.Theresultsfrom quenceoftheapnI-encodedprotein,nofunctionallyvalidated u e bioassaysandHPLCshowedthatverylittlesubtilomycincouldbe homolog could be found in the NCBI database. Membrane s detectedfromthesupernatantofthe(cid:6)apnTmutant.TheapnT helixpredictionusingTMHMM(25),HMMTOP(26),andthe t gene,whichencodesaputativeABCtransporter,waspredictedto DAS-TM filter (27) revealed the presence of five transmem- beatransporterfortheexportofsubtilomycin.Wepreparedin- branedomainsintheputativeproteinApnI.Immunitygenes tracellularextractsfromthe10-hculturedcellsofthewild-type areusuallypresentinlantibioticbiosyntheticclustersandare BSn5andthe(cid:6)apnTmutantbyliquidnitrogengrindingtodetect necessaryforlantibioticproduction.Therefore,thefactthatno theprecursorpeptideofsubtilomycinbyhigh-resolutionLC-MS. immunity-related gene was found in the subtilomycin gene However,nopredictedmass(6,250.35Da)ofprecursorpeptideor clusters indicated that apnI and/or apnT is likely involved in significantaccumulationofmassesfrom5,500to6,500Dacould subtilomycinimmunity. beobservedinBSn5orthe(cid:6)apnTmutant(datanotshown).In To investigate which genes, apnI and/or apnT, could confer ordertoconfirmthepresenceoftheminimalsubtilomycingene resistanceonthesubtilomycin-sensitivehostB.subtilisCU1065 cluster,twoflankinggenesoftheclusterweredeletedasdescribed (B.subtilis168background),wefirstpredictedtwoputativepro- inMaterialsandMethods.TheybcLgene,whichencodesaputa- motersintheapncluster,whicharelocatedontheupstreamgenes tiveeffluxtransporter,andybdG,whichencodesaputativehydro- apnA and apnT. Different fragments that contained the whole lase, located upstream and downstream of the cluster, respec- cluster,apnI-apnT,apnT,orapnIwereclonedintotheintegration tively, were disrupted (Fig. 2A). No significant change was vector pDG1730. The promoter region of apnA (pro ) was apnA 6308 aem.asm.org AppliedandEnvironmentalMicrobiology SubtilomycinGeneandLantibioticImmunity D o w n lo a d e d f r o m h t t p : / / a e m . a s m . o r g / o n A p r il 4 , 2 0 1 FIG2Thesubtilomycingeneclusterandinactivationanalysisofrelatedgenes.(A)Theapnclustergenesareshownindifferentcolors:theprecursorpeptide 9 encodedbyapnAisshowninblack,thegenesencodingmodifyingenzymesareshowninred,thegeneencodingproteaseisshowninyellow,thegeneinvolved b inputativeimmunityisshowningray,andthegeneencodingthetransporterisshowninblue.Theflankinggenesareshowninwhiteandarenumbered.The y blackarrowindicatesrelatedgenesinterruptedbyspectinomycin(Spc)orkanamycin(Kan)resistancegenes.(B)Bioassayandhigh-performanceliquid g chromatographyresultsfordetectionofsubtilomycinfromactiveammoniumsulfatecrudeextractsofwild-typestrainBSn5anditsmutants.1,wild-typestrain u BSn5; 2, (cid:6)apnB mutant; 3, (cid:6)ybcL mutant; 4, (cid:6)ybdG mutant; 5, (cid:6)apnT mutant. The black ring refers to the respective target peaks of subtilomycin in e s high-performanceliquidchromatography.(C)ESI-MSdetectionofsubtilomycinproductioninthe12-hsupernatantoftherecombinantharboringtheapn t cluster.Thetriplychargedion[M(cid:7)3H]3(cid:7)isshown. clonedinfrontofeachoftheconstructedfragmentsapnI-apnT, sensitivitytosubtilomycinaswild-typeCU1065(Fig.4BandC), apnT, and apnI, resulting in the vectors pro apnI-T, which suggested that apnT does not confer subtilomycin resis- apnA pro apnT,andpro apnI,respectively,toensuretheexpres- tanceonthehost.OurresultsindicatedthatthesinglegeneapnI apnA apnA sionofeachgene(Fig.4A).Theconstructedvectorsweretrans- couldconferprotectionagainstsubtilomycinonthesensitivehost formed and integrated into the amyE locus of the B. subtilis strainB.subtilisCU1065. CU1065chromosome,resultingincorrespondingrecombinants. TodeterminewhethertheapnIgeneplaysaroleinimmunity Subtilomycinsensitivitytestswereconductedtodetermineif inaproducerstrain,subtilomycinsensitivitytestswereconducted theclonedfragmentsconferredresistanceondifferentB.subtilis usingwild-typeBSn5andits(cid:6)apnIand(cid:6)apnTmutants.There- recombinants. The fragments containing apnI with pro re- sultsshowedthatwild-typestrainBSn5andthe(cid:6)apnTmutant apnA sulted in the same CU1065 resistance level as that observed for couldtoleratehighsubtilomycinconcentrations(uptoapproxi- fragmentscontainingthewholecluster(Fig.4BandC).There- mately0.3mM),whereasthe(cid:6)apnImutantwassignificantlysen- combinantsnormallyexpressingapnTshowedthesamelevelof sitivetosubtilomycin(Fig.4DandE). October2014 Volume80 Number20 aem.asm.org 6309 Dengetal. D o FIG3ComparisonoftheorganizationofsubtilomycingeneclusterswithbiosyntheticgeneclustersofPep5grouplantibiotics,epilancin15X(39),epilancinK7(40), w epicidin280(24),andPep5(41).Genesarelabeleddifferentlydependingonthepredictedfunctionoftheirproducts:precursorpeptides(black),proteases(horizontal n stripes),modificationenzymes(verticalstripes),immunity(white),andtransporters(gray).TheunavailablesequencesinstrainK7areshownasabrokenline. lo a d e d Discovery of the ApnI-like proteins for lantibiotic immu- transformedthemintoB.subtilisCU1065.Aconcentrationgra- f nity.Assubtilomycinsharesstructuralsimilaritywithpaenibacil- dientofcrudepaenibacillinwasemployedforthesensitivitytestof r o lin,wethuswonderedwhatgenedoesplayaroleinpaenibacillin thethreestrains.Theresultsshowedthatthefragmentcontaining m immunity. Using the reported draft genome sequence (28), we paeIunderthecontrolofpro couldconfercertainresistance h apnA t foundthattheannotatedgenesoftheputativepaenibacillinbio- on CU1065 at the low concentration dilutions of paenibacillin t p syntheticgeneclusterarepresentintheorderpaeNAPBCIT.We (the2ndand3rddilutions),comparedwiththeothertwostrains :/ / thencomparedtheproposedpaenibacillingeneclustertotheapn (Fig. 6). At the increasing paenibacillin concentrations (the 5th a e cluster(Fig.5).Interestingly,aputativetransmembraneprotein- and 6th dilutions), no significant difference could be observed m encoding gene, paeI, is present downstream of the conserved amongthethreestrains(Fig.6A),whichindicatesthatthepaeni- .a lanAPBC gene organization. Despite the low sequence identity bacillinresistancelevelconferredbyPaeIwasmuchlowerthanthe s m (27%)betweenApnIandPaeI,theirsimilartopologicalstructures ApnI-conferredsubtilomycinresistancelevelinthebackground . o andthesamegenearrangementoftheclusterasfortheapncluster ofB.subtilisCU1065. r g suggestedthatPaeIwasresponsibleforpaenibacillinimmunity. ImmunityprovidedbyApnIisspecifictowardsubtilomycin. / Furthermore,weobtainedmoreuncharacterizedputativelantibi- Sincethesoleputativetransmembraneprotein,ApnI,conferred o n otic gene clusters from the Bacillus cereus group (including 5 B. significantresistancetothesensitivehostCU1065,wenextevalu- A cereusstrainsand5Bacillusthuringiensisstrains)basedonrunning ated whether ApnI could confer cross-resistance against other p r protein BLAST using the sequences of ApnA and ApnI on the bacteriocins.Towardthisend,weselectedthefollowingpeptide il NCBI website. Comparison of these gene clusters with the apn antibiotics based on their relationship with subtilomycin, listed 4 , cluster showed that they shared the same gene arrangement, from more distantly to closely related: vancomycin, nisin, and 2 0 lanAPBCfollowedbylanIandlanT.TheLanIproteinsfromtheB. paenibacillin.Wefirstcarriedoutasensitivitytestwithvancomy- 1 cereusgroupshowedlowsimilarity(27to29%)toApnI.TheLanIs cinandnisin.AsshowninFig.7A,CU1065withandwithoutthe 9 from these gene clusters were predicted to have six transmem- integratedgeneapnI(withthepro -apnIfragment)showedan b apnA y branedomains,whichhadsimilartopologywithApnI.Accord- inhibition zone of the same size with various vancomycin and g ingly, we named these LanI proteins as ApnI-like proteins and nisin concentrations, suggesting that ApnI could not recognize u e predictedthattheywereresponsiblefortheimmunityofthecor- vancomycinandnisin. s t respondinglantibiotics. Since subtilomycin and paenibacillin showed high similarity WepredictedthatthepaenibacillinstructuralgenepaeAwould (54%)andhavethesamefive-thioetherringbackbone(Fig.2B), also exist in the genome sequence of Paenibacillus strain ATCC we next evaluated whether ApnI and PaeI could confer cross- 842, which is the strain most closely related genetically to the resistance against paenibacillin and subtilomycin, respectively. paenibacillin producer strain P. polymyxa OSY-DF (28), and Thesensitivitytestsshowedthatdespitethefactthattheseantibi- paenibacillinproductionwasdetectedfromthecrudeextractsof oticsarestructurallysimilar,nocross-resistancewasobservedbe- the24-h-culturedsupernatantofstrainATCC842,accordingtoa tweenthepro -apnIandthepro -paeIrecombinants(Fig. apnA apnA previouslyreportedmethod(seeFig.S3inthesupplementalma- 7B).Together,theseresultsimplythatApnIprovidesimmunity terial)(14).Weestimatedthatthepurityofpaenibacillininthe thatmayinvolveaspecificsequencerecognitionmechanism. crudeextractswasabout8%basedontherelativeabundanceof TherecombinantB.subtilisexpressingApnIcouldbindsub- thepaenibacillinpeakunderthedetectionofUV254nmbyLC- tilomycin.WecharacterizedthefunctionofApnIbyconductinga MS.TovalidatethefunctionofpaeI,whichencodesanApnI-like quantitativepeptide-bindingassayusing15(cid:5)g/mland25(cid:5)g/ml protein, we cloned the fragment containing the paeI and the ofsubtilomycin(Fig.8).AsadditionofNaCltotheassaysolution downstream promoter regions of apnA (pro ) and paeA coulddecreasetheamountofcell-bindinglantibioticsbyreducing apnA (pro ) into the integrated vector pDG1730, respectively, and thelantibioticaffinitytothecytoplasmicmembrane(21),toin- paeA 6310 aem.asm.org AppliedandEnvironmentalMicrobiology SubtilomycinGeneandLantibioticImmunity D o w n lo a d e d f r o m h t t p : / / a e m . a s m . o r g / o n A p r il 4 , 2 0 1 9 b FIG4FunctionalanalysisofsubtilomycinimmunitybygeneexpressioninB.subtilisCU1065andgeneinterruptioninB.subtilisBSn5.(A)Mapdisplaying y essentialDNAfragmentsforsubtilomycinimmunity.EachconstructionwasclonedintothevectorpDG1730andintegratedintotheamyElocusofthe g u chromosomeofthesubtilomycin-sensitivestrainB.subtilisCU1065.ThepredictedfragmentscontainingtheapnAandapnTpromoterregionsareindicatedby e grayarrows.(B)SubtilomycinsensitivitiesofB.subtilisCU1065strainsharboringdifferentfragmentsofthesubtilomycingeneclusterwereinvestigatedinagar s diffusiontests.B.subtilisCU1065anditsrecombinantsweretransformedwiththevectorcontainingpro -apnI-T,pro -apnI,pro -apnT,orthewhole t apnA apnA apnA subcluster.Startingfromthearrowandmovingclockwise,thesubtilomycinconcentrationsappliedwereasfollows:0.125(cid:5)M,0.25(cid:5)M,0.5(cid:5)M,1(cid:5)M,2(cid:5)M, and8(cid:5)M.Theasteriskindicatesablurryinhibitionzone.(C)LineardependenciesbetweenthesquareoftheradiusofthehalosshowninpanelBandthenatural logarithmoftheappliedsubtilomycinconcentrationwith60(cid:5)lofsubtilomycinanddiffusionforatleast4h.ResultsforB.subtilisCU1065transformedwith vectorscontainingapnI,apnT,apnI-apnT,andsubgeneclustersareshown.(D)SubtilomycinimmunityofstrainBSn5(plate1)withinterruptionofapnI(plate 2)andapnT(plate3).Startingfromthearrowandmovingclockwise,theappliedconcentrationsofsubtilomycinwere3.125(cid:5)M,12.5(cid:5)M,25(cid:5)M,50(cid:5)M,100 (cid:5)M,and200(cid:5)M.Thewellinthemiddleoftheplatewasnotcounted.(E)SubtilomycinimmunityofBSn5withinterruptionofapnTandapnI.Theimmunity responsewascalculatedcorrespondingtothesquareoftheradiusofthehalosshowninpanelD. vestigatethetargetspecificityofApnIagainstsubtilomycin,the geststhattheapnI-expressingstrainconfersresistancebyseques- assaywasperformedinthepresenceof1MNaCl.ForB.subtilis teringsubtilomycin. CU1065expressingapnI,(cid:9)7(cid:5)gofsubtilomycinwasfoundtobe attachedtothecellsindependentlyofthequantityofappliedsub- DISCUSSION tilomycin(15or25(cid:5)g/ml)(Fig.8).Correspondingly,theamount Although a link between subtilomycin and its gene cluster was ofsubtilomycinremaininginthesupernatantoftheapnI-express- proposedbasedonamatchbetweentheN-terminalregionanda ingrecombinantdecreasedsignificantly(Fig.8).Thisresultsug- functionalgeneatthe5=end,itsbiosyntheticgeneclusterhasnot October2014 Volume80 Number20 aem.asm.org 6311 Dengetal. FIG5ThepotentialApnI-likeimmunityprotein-encodinggenefromtheuncharacterizedlantibioticgeneclusters.Genesarecolor-codedbythepredicted functionoftheirproducts:genesforprecursorpeptides(black),genesforproteases(yellow),genesformodifyingenzymes(green),genesfortransporters (purple),andgenesforimmunity(red).Thebarrepresents1kbp.Thenumberofindependentisolatesthathavethepotentialclusterisshown.Detailsforthese sequencesareshowninTableS2inthesupplementalmaterial. D o w yetbeenfunctionallyvalidated.Inthisstudy,weexperimentally validated homolog could be found. We thus first determined n identifiedtheapnclusterresponsibleforsubtilomycinbiosynthe- themechanismofself-resistanceofalantibioticproducerto- lo a sisandprovidedevidencethatapnIdoesindeedconfersubtilomy- wardPep5,whichishomologouswithsubtilomycin.Theself- d cin immunity on its host. When we BLAST searched the NCBI protectionagainstPep5issolelydependentonfunctionalex- e d database using the ApnI amino acid sequence, no functionally pressionofthe69-amino-acidPepI,whichwasdemonstrated f r throughaseriesofcloningexperiments(29,30).Furtherfunc- o m tionalanalysisindicatedthatPepIisalipoproteinwithanapo- lar N-terminal segment for its localization at the membrane- h t t cellwallinterfaceandahydrophilicCterminus,whichconfers p : immunity(11).However,thepredictedapnIgeneproductisa // a membraneproteinwithfivetransmembranedomains,whichis e m vastlydifferentfromPepI. . Otherknownmodelsforlantibioticimmunityusuallyinvolve a s thelanFE(G)genes,encodinganABCtransportercomplex(Fig. m 9).LanFE(G)canindependentlyprovidelantibioticimmunity, .o suchasLctFEGforlacticin481immunity(31),orworksyner- rg / gistically with a membrane-associated protein, such as NisI o (32), or a transmembrane protein, such as NukH (9, 10) and n LtnI (33). Lantibiotic immunity that is solely provided by A p transmembraneproteinsisveryrare.Wefoundonlyonereport r of such a protein, CylI, which is different from other trans- il 4 membraneimmunityproteins,asitcontainsaconservedzinc , 2 metalloprotease(MEROPSfamilyM50A)domain,whichsug- 0 1 geststhatitplaysaroleinimmunitybycleavingoneorbothof 9 thecytolysinsubunits(34,35). b y Throughbioinformaticsanalysis,manyApnI-likeproteinsin g theuncharacterizedlantibioticgeneclustersthatarerelatedtothe u e apnclusterwerefoundintheNCBIdatabase(seeTableS2inthe s supplemental material). Although low identity (27 to 29%) is t presentbetweenthesequencesofApnIandtheLanIproteins,they allarepredictedtohaveatopologicalstructuresimilartothatof ApnI,withfiveorsixtransmembranedomains.TheLanAstruc- turalpeptidegenesinthesegeneclusterswerealsoshowntobe closelyrelated,withasequenceidentityof47%to58%toApnA (Fig.5;seealsoTableS2).Intotal,21strainsofB.subtilis,Paeni- FIG6FunctionalanalysisofthepaeIgeneinB.subtilisCU1065.(A)Paeni- bacillus,B.cereus,andB.thuringiensishavetheputativelantibiotic bacillin sensitivity test results of B. subtilis CU1065 and the recombinants biosyntheticgeneclusterwithApnI-likeproteins.Wesuccessfully harboringfragmentspro -paeIandpro -paeI.Theconcentrationsof apnA paeA introducedonesuchApnI-likeprotein,PaeI,inB.subtilisCU1065 crudepaenibacillinwereappliedwithaseriesof2-folddilutionsandwerenot quantified.Theconcentrationsofpaenibacillinincreasedstartingfromthe fromPaenibacillusstrainATCC842andfoundthatPaeIindeed arrowandmovingclockwise.(B)Theresponseasthelengthoftheradiiofthe confersresistancetopaenibacillin.Theseresultsindicatedthatthe inhibitionhalosversusthecorrespondingrelativeamountofpaenibacillinas novel model represented by ApnI for lantibiotic immunity is showninpanelA.Twohighconcentrationsofpaenibacillin(the5thand6th widelypresentamongtheBacillusandPaenibacillustaxa.Inaddi- dilutions)wereremoved.Thisexperimentwasindependentlyperformedat least3times,andtheresultswereconsistent. tion,intheB.subtilisbackground,paeIcouldbeexpressedunder 6312 aem.asm.org AppliedandEnvironmentalMicrobiology
Description: