TheAstrophysicalJournal,679:587Y606,2008May20 A #2008.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. LINE SEARCHES IN SWIFT X-RAY SPECTRA C. P. Hurkett,1 S. Vaughan,1 J. P. Osborne,1 P. T. O’Brien,1 K. L. Page,1 A. Beardmore,1 O. Godet,1 D. N. Burrows,2 M. Capalbi,3 P. Evans,1 N. Gehrels,4 M. R. Goad,1 J. E. Hill,4,5 J. Kennea,2 T. Mineo,6 M. Perri,3 and R. Starling1 Received2007April13;accepted2008January29 ABSTRACT Priortothelaunchof theSwift missionseveralX-raylinedetectionswerereportedingamma-rayburstafterglow spectra.Todate,thesepreYSwifteraresultshavenotbeenconclusivelyconfirmed.Themostcontentiousissueinthis areaisthechoiceof statisticalmethodusedtoevaluatethesignificanceof thesefeatures.Inthispaperwecompare threedifferentmethodsalreadyextantintheliteratureforassessingthesignificanceofpossiblelinefeaturesanddis- cusstheirrelativeadvantagesanddisadvantages.Themethodsaredemonstratedbyapplicationtoobservationsof 40burstsfromthearchiveofSwiftXRTatearlytimes(<afewkilosecondsposttriggerintherestframeoftheburst). Basedonthisthoroughanalysiswefoundnostrongevidenceforemissionlines.Foreachof thethreemethodswe havedetermineddetectionlimitsforemission-linestrengthsinburstswithspectralparameterstypicaloftheSwift-era sample.Wealsodiscusstheeffectsofthecurrentcalibrationstatusonemission-linedetection. Subject headingsg: gamma rays: bursts — gamma rays: observations — line: identification — methods: data analysis — methods: statistical Online material: color figures 1. INTRODUCTION The models for the production of such emission features are divided into transmission and reflection models, although It is widely accepted that the spectra of the X-ray afterglow thelargeequivalentwidths((cid:1)afewkeV)inferredfromtheob- ofgamma-raybursts(GRBs)aredominatedbynonthermalemis- servedX-rayfeaturesfavormodelsinwhichthelineisproduced sion, the leading candidate for which is synchrotron emission by reflection (Rees & Me´sza´ros 2000; Ballantyne & Ramirez- (Piran 2005,andreferencestherein), although alternateemis- Ruiz2001;Vietrietal.2001).Proposedmodelshavetoovercome sionprocesseshavealsobeensuggested,suchasself-Compton two constraints; the size problem and the kinematic problem. (Waxman1997;Ghisellini&Celotti1999)orinverseCompton Observing a line at a time t after the burst implies that the scatteringof externallight(Brainerdetal.1994;Shemi1994; obs emitting material must be within a distance of (cid:1)ct /(1þz) Shaviv&Dar1995;Lazzatietal.2004). obs fromthecentralengine,thusimplyingthattheregionmustbe Up to thepresenttime theX-rayspectra of Swift afterglows compactif aline,orlines,areobservedatearlytimes.Inaddi- aregenerallywelldescribedbyanabsorbedpowerlaw(forcoun- tion, the emitting region must contain (cid:1)0.1 M of Fe (in the terexamplesseeButler2007),typicallyabsorbedbymaterialwith (cid:2) caseof FeK(cid:1)features)whilestillbeingopticallythintoelec- acolumndensityinexcessof thewell-measuredGalacticvalues tronscattering,inorderthatComptonizationdoesnotbroaden (Campanaetal.2006c).Table2ofCampanaetal.(2006c)shows thelinebeyondtheobservedwidths(Vietrietal.2001).If the that,of17burstsanalyzed,14haveobservedN valuesgreater H linewidthisinterpretedasbeingduetothevelocityof thesuper- thanthemeasuredGalacticcolumndensity,whiletheremain- novaremnant,theobservedlimitonthiswidthimpliesanagelimit ing three have observed N values that are consistent, within H ontheremnantof (cid:1)10Y20days.However,atthistimeConuclei limits,withthemeasuredvalues. outnumberbothNiandFenuclei;thustheemissionlinewouldbe Inthepastithasbeenproposedthatthereareotherspectralfea- duetoCoatanenergyof 7:5/(1þz)keV,whichisthekinematic tures,withvaryinglevelsof significance,inadditiontothebasic problem. absorbedpowerlawspectrum(Piroetal.1999,2000;Yoshidaetal. Variousgeometrieshavebeensuggestedforthereflectionmod- 1999;Amatietal.2000;Antonellietal.2000;Reevesetal.2002; els,whichrelyoneitheraprecursororsimultaneoussupernova Watsonetal.2002,2003;Fronteraetal.2004).Mostareattributed (SN)event.If aSNoccursseveraltensof daysbeforetheGRB toFeK(cid:1)emissionlinesortheradiativerecombinationcontinuum thissolvesboththesizeandkinematicproblems.Inthesecases of thesameelement.SomehavebeenattributedtotheK(cid:1)linesof the radiation from the GRB jets can either illuminate the inner Ni,Co,orlighterelementssuchasSi,S,Ar,andCa.Intwocases faceof theSNshellremnantortheinnerfacesof widefunnels therehavebeenareportsofatransientabsorptionfeaturealsocor- thattheyexcavatethroughyoungplerionicremnants.However, respondingtoFeK(cid:1)(Amatietal.2000;Fronteraetal.2004). thesemodelshavebeenquestionedfollowingthesimultaneous GRB-SN association indicated byGRB 980425 (Galama etal. 1998)andconfirmedbyGRB030329(Hjorthetal.2003;Stanek 1 XROA Group, Department of Physics and Astronomy, University of etal.2003)andGRB060218(Campanaetal.2006b;Pianetal. Leicester,LeicesterLE17RH,UK;[email protected]. 2 DepartmentofAstronomyandAstrophysics,PennsylvaniaStateUniversity. 2006).Inthiscasethemostlikelyscenarioforemission-linepro- 3 ASIScienceDataCenter,ASDCcareofESA-ESRIN,viaG.Galilei00044 ductionoccursif theprogenitorejectsalargeamountof matter Frascati,Italy. atsubrelativisticspeedsalongitsequator.Thehaloof material 4 NASAGoddardSpaceFlightCenter,Greenbelt,MD20771. surroundingmassivestars,ejectedbytheirstrongstellarwinds 5 Universities Space Research Association, 10211 Wincopin Circle, Suite towardtheendoftheirmainsequencelifetime,scattersafraction 500Columbia,MD21044. 6 INAFIASF-Pa,viaU.LaMalfa153,90146Palermo,Italy. of the photons from the prompt and afterglow phase back into 587 588 HURKETT ETAL. Vol. 679 theequatorialmaterial,whichthenproducesX-raylineemission of 153bursts,40of whichcontainedsufficientWTmodedata (Vietrietal.2001). forouranalysismethods.WTmodedatawaschosenprimarily Verifyingthepresenceof suchspectralfeaturesisof critical because the time interval covered by these observations, typi- importanceastheywillallowustoprobethecircumburstenvi- callyT þ0stoT þ500s(althoughforbrightburststhismay ronmentof theGRB,aswellasgaininganindirectindicationof extenduptoT+fewks)intherestframeoftheburst,israrely thepossiblestructureandbehaviorof thecentralengine. explored.Priorobservationsofthe1999Y2003burststypically Thestatisticalsignificanceof the1999Y2003reportedfeatures startat20+hrafterthetriggerintheobserver’sreferenceframe, islow(usually2Y3(cid:2)),andonlytwodetectionshaveasignificance althoughAntonellietal.(2000)reportonanemission-linedetec- >4(cid:2)(GRB991216:4.7(cid:2),Piroetal.2000;andGRB030227:4.4(cid:2), tionatTþ(cid:1)12hr;Amatietal.(2000)andFronteraetal.(2004) Watsonetal.2003).Althoughlaterdetectionsweremadewith reportabsorptionlinefeaturesinveryearlytimedata(Tþ<20s much more sensitive instruments than the early ones, all detec- and Tþ<300 s, respectively) from the Wide Field Camera tionshaveremainedatthislowsignificancelevel;asaresultthey (WFC)of BeppoSAX.InadditionWTmodedataisonlytaken remainthesubjectof muchdebate.Arguablythemostcontrover- whiletheGRBafterglowisbright.Allofthemethodsdiscussed sialissueinthediscussionoflinedetectionsisthechoiceofsta- caneasilybeextendedtophotoncounting(PC)modedata.We tisticalmethodemployedtogaugetheirsignificance.Atleastfour acknowledgethatthecurrenttheoreticalmodelsforlineemission methodshavebeenproposedandusedintheGRBliterature. indicatethatlinescouldoccurattimesnotcoveredbyWTmode data,however,thesamemodelsdonotruleoutthistimeperiod 1. Thelikelihoodratiotest(LRT)andrelatedF-test. either. 2. Bayesfactors. AlldatahavebeenobtainedfromtheUKSwift archive7(Tyler 3. Bayesianposteriorpredictiveprobability. etal.2006)andprocessedthroughxrtpipelineversion0.10.3,8 4. Monte Carlo test for peaks in data after ‘‘matched filter’’ usingversion008calibrationfilesandcorrectingfortheWTmode smoothing. gainoffset(if present).Version008oftheCALDBisamarked ExamplesoftheapplicationofthesemethodstoGRBX-rayspec- improvementoverthepreviousrelease(Campanaetal.2006a),9 tracanbefoundinFreemanetal.(1999),Yoshidaetal.(1999), however,itmaybethecasethatlow-energycalibrationfeatures Piro et al. (1999), Protassov et al. (2002), Rutledge & Sako havestillnotbeenoptimallycorrected.Wedidnotapplyanysys- (2003),Tavecchioetal.(2004),Butleretal.(2005,2007),Sako tematiccorrectionfactortotheerrorsof ourspectrabecausethe etal.(2005),andreferencestherein. recommendedfactorisverymuchsmallerthanthestatisticaler- Inalltheapplicationscitedabove,anunderlyingcontinuum rorsinourspectra.Grade0Y2data,usingextractionregionsof was assumed, usually in the form of an absorbed power law 20;3pixels,forbothsourceandbackgroundregionshavebeen (e.g., using the Wisconsin absorption model; see Morrison & used.Atcountratesbelow100countss(cid:3)1WTmodedatadoes McCammon1983).Thedetectionofalinethenamountstoacom- notsufferfrompile-up(Romanoetal.2006);however,someof parisonof twomodels:M ,thesimple‘‘continuum’’model,and thetimeintervalsconsideredcontainsufficientfluxtocausepile-up 0 M ,themorecomplex‘‘continuum+line’’model.Thestrength, effects.FollowingRomanoetal.(2006)wehaveexcludedcentral 1 location,and width ofthe emissionline may berestricted oral- regionswhennecessaryasdetailedintheirAppendixA,splitting lowedtobefreeparameters. the20;3pixelregionintotwo10;3pixelregionsplacedeither AsdiscussedindepthbyProtassovetal.(2002)andFreeman sideofthecentralexclusionregion. etal.(1999),therearestrongtheoreticalreasonswhytheLRTis Allspectralfittingandsimulationshavebeencarriedoutusing notsuitableforassessingthesignificanceof emissionslines,de- XSPECversion12.2.1aborhigherwithbackground-subtracted spiteitspopularityintheliterature.Wewillnotrepeatthoseargu- spectrabinnedto(cid:4)20countsbin(cid:3)1.Thisbinningpermitstheuse mentshere.Itisthepurposeof thepresentpapertocomparethe ofthe(cid:3)2minimizationasamaximumlikelihoodmethod.Data relativemeritsoftheremainingthreemethods,intermsoftheircom- foreachGRBbeingconsideredhavebeentimeslicedwiththe putationalefficiency,robustness,andsensitivitylimitsbyapply- followingcriteriainmind. ingallthreemethodstoX-rayspectrafromtheSwiftarchive.This 1. Each spectrum must contain 800Y1600 background- is a particularly rich archive because of the combination of the subtractedcounts.Thisisacompromisebetweengoodtimereso- rapidslewresponseoftheSwiftGRBmission(Gehrelsetal.2004) lutionandspectralquality. andthepowerfulX-rayTelescope(XRT;Burrowsetal.2005a). 2. If oneormoreflaresarepresentinthedata,whereverpos- Theremainderof thispaperisorganizedasfollows.Inx2we sible(notviolatingcondition1),separatespectrawereextracted providedetailsof thesampleselectioncriteriaandbasicdatare- fortherisingandfallingsectionsof theflare,sincespectralevo- duction. The theoretical basis and practical applications of the lutionislikelytooccuratthistime(Burrowsetal.[2005b],Zhang threestatisticalmethodsunderinvestigationaredescribedinde- [2007],andreferencestherein). tailinx3.Inx4weapplyallof themethodstoPKS0745-19,a 3. If dataareaffectedbypile-upthenthesetimeperiodswere knownlineemittingsource,todemonstratetheexpectedoutcome extractedseparatelyfromthenonYpiled-updata. whenalineispresent,andx5discussesasimulationstudytoas- sessthelinedetectionlimitsofeachmethodfortypicalSwiftXRT Therangeof800Y1600countswaschosentoensuregoodtime data.Inx6wediscusstheresultsfromtheSwiftarchivalGRBaf- resolutionwhilemaintainingsufficientcountstoobtainareason- terglowdata,highlightingseveralGRBswithpotentialadditional ablespectrum,with(cid:1)40Y80spectralbins(eachwith(cid:1)20counts) spectralcomponents.x7isdedicatedtoadiscussionofourresults over the useful bandpass. The data considered here were taken andtheircomparisontootherrecentlinedetectionsinthelitera- duringtheearly,brightphasesoftheafterglowevolution(typi- ture.Finally,x8presentsourconclusions. cally T þ0 s to T þ500 s), during which the X-ray flux and 2. DATA REDUCTION 7 Seehttp://www.swift.ac.uk/swift_live/obscatpage.php. 8 Releasedate2006March16. Thispaperreportsontheanalysisof windowedtiming(WT) 9 See http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/swift/docs/xrt/SWIFT- modedatafromGRB050128toGRB060510B,coveringatotal XRT-CALDB-09.pdf. No. 1, 2008 LINE SEARCHES IN SWIFT X-RAY SPECTRA 589 (possibly)spectrumareoftenhighlyvariable.Timeresolutionis detailedreview).Inthepresentcontextwehavenostrongtheo- therefore important to reduce the effects of flux/spectral varia- reticalgroundstopreferoneortheothermodel(lineornoline) tiononthemodelingofindividualspectra.Furthermore,previous andsoassignequalpriorprobabilitiestoourtwomodels.Thus claimsof emissionslineshaveoftenreportedthefeaturesastran- theratioof thepriorsinequation(2)issettounityandthepos- sientandsotimeresolutionmaybeimportantfordetectinglines. terioroddsareequaltotheBayesfactor.Inthefollowingweuse thetermsposteriorodds,odds,andBayesfactorsinterchangeably. 3. ANALYSIS METHODS The likelihood functions in equation (2) arefunctions of M i Asnotedinx1severaldifferentmethodshavebeenusedinthe only.Ifthemodelscontainnofreeparameters(i.e.,arecompletely pasttoassessthesignificanceoflinedetectionsintheX-rayspec- specified)thenequation(2)canbeuseddirectly.However,if the traofGRBs.Thethreemethodsthatarethesubjectofthepresent model does contain free parameters, the likelihood will be a paperarediscussedindividuallyinthefollowingsubsections.The functionof theparametervalues.Inthepresentcontext,where readerinterestedonlyintheapplicationof thesemethodsmay theparticularvaluesoftheparametersarenotthesubjectofthe wishtoskiptox4. investigation,theparametersarereferredtoas‘‘nuisance’’pa- rameters.Inordertoremovethedependenceonthesenuisance 3.1. Bayes Factors parametersthelikelihoodfunctionmustbewrittenafunctionof Thegoalofscientificinferenceistodrawconclusionsabout theNparameters(denoteda¼f(cid:4)1;(cid:4)2; : : :;(cid:4)Ng)andintegrated, the plausibility of some hypothesis or model, M, based on the or ‘‘marginalized,’’ over the prior probability density function available data D¼fx ;x ;: : :;x g, given the background in- (PDF)fortheparameters: 1 2 N formationI(suchasthedetectorcalibration,statisticaldistribu- Z Z tionof thedata,etc.).However,whenpresentedwithdataitis p(DjM)¼ p(D;ajM)da¼ p(Dja;M)p(ajM)da: ð3Þ usuallynotpossibletocomputethisdirectly.Whatcanbecalcu- lateddirectlyinmanycasesisthesamplingdistributionfordata Themarginallikelihoodisobtainedbyintegratingoverallpa- assumingthemodeltobetrue,p(DjM;I).Thisisusuallycalled rameter values the joint PDF for the data and the parameters. thelikelihoodwhenconsideredasafunctionof MforfixedD. This jointPDFmaybeseparatedintotheproductof twoterms Statementsaboutdataconditionalonthemodelmayberelatedto usingtherulesof probabilitytheory:p(Dja;M)isthelikelihood statements about the model conditional on the data by Bayes’ theorem.10InitsusualformBayestheoremrelatesthelikelihood functionofthedataasafunctionofthemodelanditsparameters, andp(ajM)isthepriorforthemodelparameters.Oncetheseare totheposteriorprobabilityof themodelMconditionalondataD assignedonecancomputethenecessarylikelihood(afunctionof (andanyrelevantbackgroundinformationI),writtenp(MjD;I): Malone)byintegration.TheBayesfactorformodelM (withpa- 1 p(DjM;I)p(MjI) rametersa1)againstmodelM0(withparametersa0)maynowbe p(MjD;I)¼ : ð1Þ written p(DjI) R p(Dja ;M )p(a jM )da Tdehsectreibrmespo(uMrjkIn)oiwstlheedg‘‘epr(ioorripgrnoobraabnicliet)y’o’fotfhtehemmodoedleplrMioarntod B10¼ R p(Dja10;M10)p(a10jM10)da10: ð4Þ considerationofthedata(oftencalledsimplytheprior).Theterm p(DjI) is effectively a normalization term and is known as the Theissuesof howtherelevantlikelihoodsandpriorsareassigned, priorpredictiveprobability(itdescribestheprobabilitywithwhich andtheintegralscomputed,arediscussedbelow. onewouldpredictthedatagivenonlypriorinformationaboutthe 3.1.1.Application to High-CountX-RaySpectra model).Foramoregeneraldiscussionof BayestheoremseeLee (1989),Loredo(1990,1992),Sivia(1996),Gelmanetal.(1995), Inthelimitof alargenumberof countsperspectralbin,the andGregory(2005),andfordiscussioninthecontextofGRBline Poisson distribution of counts ineach binwill convergetothe searchesseeFreemanetal.(1999,theirx3.1.2)andProtassovetal. Gaussiandistribution,andinthiscaseequation(3)canbewritten (2002).Intherestofthispaperwedroptheexplicitconditioningon intermsof thefamiliar(cid:3)2fitstatistic(Eadieetal.1971), background information I, but it is taken as accepted that ‘‘no probabilityjudgmentscanbemadeinavacuum’’(Gelmanetal. L¼ln½p(Dja;M)(cid:5) 1995). Onesimplewaytorepresenttheposteriorprobabilitiesfortwo ¼(cid:3)1XN ln(cid:1)2(cid:5)(cid:2)2(cid:2)(cid:3)XN ½xi(cid:3)(cid:6)i(a)(cid:5)2 alternativemodelsisintermsoftheirratio,theposteriorodds(see 2 i 2(cid:2)2 i¼1 i¼1 i Gregory2005,theirx3.5).Thiseliminatesthep(D)term(which ¼constant(cid:3)(cid:3)2=2; ð5Þ hasnodependenceonM).Ifwedefinetwocompetingmodels, suchasonewithaline(M )andonewithout(M ),wemaycom- 1 0 putetheposteriorodds: where(cid:2)i istheerroronthedata(e.g.,counts)measuredinthe ithchannel,and(cid:6)(a) isthepredicted(e.g.,modelcounts)inthe i p(M jD) p(M )p(DjM ) p(M ) channelbasedonthemodelwithparametervaluesa.Thelast O10¼ p(M10jD) ¼ p(M10)p(DjM10) ¼ p(M10)B10: ð2Þ equalitycanbemadesincethetermPln(2(cid:5)(cid:2)i2)isconstantgiven datawitherrors(cid:2).Thisiswhy,inthehighcountlimit,findingthe i Highoddsindicategoodevidencefortheexistenceofalinein parametervaluesatwhich(cid:3)2isminimizedisequivalenttofinding thespectrum.Thefirsttermontherighthandsideistheratioof themaximumlikelihoodestimates(MLEs)of theparameters,aˆ. thepriors,thesecondtermistheratioofthelikelihoodsandis 3.1.2.Approximatingthe Posterior oftencalledtheBayesfactor(seeKass&Raftery[1995]fora Ingeneraltheintegralsof equations(3)and(4)mustbecom- 10 ForgeneralreferencesrelatingtoBayesiananalysisseehttp://www.astro putednumerically,usingforexampleMarkovchainMonteCarlo .cornell.edu/staff/loredo/bayes. (MCMC)methods(Gelmanetal.1995,chapter11;Gregory2005, 590 HURKETT ETAL. Vol. 679 chapter 12), which is computationally demanding. However, in van Dyk et al. (2001). The MCMC method does not use an maximumlikelihoodtheorysaysthattheMLEwillbecomemore analyticalapproximationfortheposterior,andthereforeisamore Gaussianandof smallervarianceasthesamplesize(numberof generalmethod,butiscomputationallydemanding.Figure1illus- counts)increases,evenif themodelisnonlinear(chapter11of trates the two posterior distributions calculated for the specific Gregory2005).Therefore,withsufficientcountsthelikelihood caseof aspectrumfromGRB060124.TheGaussiandatawere functionwillapproachamultidimensionalGaussianwithapeak computed from 105 random draws from a multidimensional attheMLElocationaˆ,i.e.,thelocationof thebestfit(minimum Gaussianwith acovariancematrixevaluatedasthe minimum (cid:3)2)inparameterspace.Furthermore,if thepriorfunctionisrela- (cid:3)2locationusingXSPEC.Thenon-Gaussiandataweregenerated tivelyflataroundthepeakoftheGaussianlikelihoodwemayap- from105drawsgenerated12bytheMCMCroutineof vanDyk proximatethepriorterminequation(3)byaconstant,namelyits etal.(2001).Itisclearthatthetwodistributionsarenotidentical valueatthebest-fitlocation,p(aˆjM).Puttingthistogethermeans butareverysimilarbothintermsofsizeandshape.Inthepresent wemayapproximatetheposteriorasaGaussian—oftencalled contextitisimportantthatthe‘‘credibleregions’’occupysimilar theLaplaceapproximation—whichgreatlysimplifiestheintegra- volumesof parameterspace. tionsinequations(3)and(4),sinceamultidimensionalGaussian The above analyses demonstrate that the Gaussian approxi- maybeevaluatedanalytically,onceitspeaklocationsandco- mationisreasonablefortheposteriorof thesimple‘‘continuum’’ variancematrixareknown,whichavoidstheneedforcompu- modelM , which isthe denominator ofequation(4).Thesame 0 tationallyexpensivenumericalintegration. willbetrueof themorecomplex‘‘continuum+line’’modelM 1 Theintegralof anun-normalizedmultidimensionalGaussian whenthelineiswelldetected(seex11.3ofGregory2005).When is(2(cid:5))N/2½det(s2)(cid:5)1/2 timesthepeakvalue,wheres2 istheco- thelineisweaklydetectedtheposteriorwillbeclosetothebound- variancematrix11evaluatedatthepeak(best-fitlocation)andN aryoftheparameterspace,inwhichcasetheGaussianapproxi- isthenumberof parameters.Wecannowrewriteequation(3)as mationwillnotbesoaccurate.Indeed,whentheMLEof theline normalizationisclosetotheboundarythelikelihood(andthere- pðDjMÞ¼exp(cid:3)(cid:3)(cid:3)2 =2(cid:4)ð2(cid:5)ÞNi=2qffidffiffieffiffitffiðffiffisffiffiffiffi2ffiffiÞffiffip(cid:1)aˆ jM(cid:2); ð6Þ foreposterior)enclosedintheallowedregionofparameterspace i (i) i i i will be smaller than that given by the Laplace approximation, whichassumesthattheGaussianfunctionextendstoinfinityin whichinvolvesthepriordensityonlyatthemodeof thep(aˆ jM) alldirections.Thiswillalsohappen,forexample,whenthebest- i i likelihood(i.e.,thedensityattheMLEposition)foreachmodel. fittinglineenergyisnearthelimitof theallowedenergyrange. Thiscanbesubstitutedintoequation(2)togivetheBayesfactor InsuchcasestherewillbeatendencytooverestimatetheBayes (seeGregory2005,chapters10Y11) factor (i.e.,favor M ). Butwhen thelineis weakthere may be 1 multiple peaks in the likelihood (and posterior) which are not qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi B ¼exp(cid:1)(cid:3)(cid:1)(cid:3)2=2(cid:2)ð2(cid:5)Þ(cid:1)N=2 det(cid:1)s12(cid:2) p(cid:1)aˆ1jM1(cid:2); ð7Þ afocrceoutrnetaetdthfoerceaxlpculilcaittelydiBnathyeesLfaapcltaocresaopnplryoxasimaartoioung.hWgeutihdeerteo- 10 qffidffiffieffiffitffi(cid:1)ffiffisffiffiffiffi2ffiffi(cid:2)ffiffi p(cid:1)aˆ0jM0(cid:2) thepresenceof aspectralline. 0 3.1.4.AssigningPriors where(cid:1)N ¼N (cid:3)N and(cid:1)(cid:3)2 ¼(cid:3)2(cid:3)(cid:3)2.Thiscanbecalcu- lated,usingthea1pprop0riatevaluesof1(cid:3)2and0thecovariancema- Bayesfactorsaresensitivetothechoiceof priordensity.As trixs2evaluatedatthebest-fitlocationforeachmodel,oncewe statedabove,usingtheLaplaceapproximationtheresultingBayes assign prior densities to each parameter. See Gregory (2005), factorsaresensitivetothepriordensitiesonlyattheMLEparam- chapters10Y11,foradiscussionofessentiallythesamemethod. etervalues,butwemustexercisecareinassigningpriordensity functionsinorderthatthesevaluesarereasonable.Fortunately,the 3.1.3. Validity of theLaplace Approximation priordensitiesforallparametersthatarecommontoM andM 0 1 (suchasphotonindexandnormalization)arethesameforM and Thereareanumberof waystocheckthevalidityof thisas- 0 sumption.Oneistoinspecttheshapeofthe(cid:3)2(a)surface,which M1,andthereforecanceloutintheratio.Fortheotherparameters is related to the likelihood surface by L(cid:1)(cid:3)(cid:3)2/2. A Gaussian wehavenocogentinformationexceptfortheirallowedranges.In likelihoodisequivalenttoaparaboloidallog-likelihood,or(cid:3)2(a). suchcasesweshouldusethe‘‘leastinformative’’priordensities Ifthecontoursof(cid:1)(cid:3)2appearparaboloidalaroundtheminimum, (see,e.g.,Loredo[1990],Sivia[1996],Gregory[2005],andrefer- encesthereinforfurtherdiscussion). inoneandtwodimensions,foreachparameterorpairof param- Therearewiderangesof possiblelineenergiesandredshifts eters, the likelihood surface must be approximately Gaussian andsothelineenergy,E isonlyconstrainedtoliewithinthe (theconditionalandmarginaldistributionsof aGaussianarealso line Gaussian,soslicesthroughthe(cid:3)2spaceshouldalsobeparab- useful XRT bandpass, typically 0.3Y10 keV. We therefore as- signed a uniform prior density p(E jM )¼1/(E (cid:3)E ) oloidal). Thiswasgenerallytrueforthecontinuummodelfor line 1 max min overthisrange.FormostspectralfitsthelinewidthW wasini- theXRTdata. tiallyheldfixedatavaluebelowtheinstrumentalresolution,13 Asafurthertestof theGaussianapproximationwecompared andlaterallowedasafreeparameter.Forthosemodelsinwhich the posterior calculated using the Laplace approximation with thewidthofthelinewasafreeparameter,thewidthwasassigned the posterior calculated using the MCMC algorithm discussed auniformpriorovertheallowedrange(usually0.0Y0.7keV): p(WjM )¼1/(W (cid:3)W ). 1 max min 11 Thecovariancematrixisthesquare,symmetricmatrixcomprisingtheco- variancesofparameters(cid:4)iand(cid:4)jaselement(cid:2)i2j.Bysymmetry(cid:2)i2j ¼(cid:2)j2i.Thedi- agonalelementsarethevariancesoftheparameters.Thecovariancematrixmay 12 FollowingvanDyketal.(2001),wegeneratedfiveseparatechains,start- beestimatedasminustheinversetheHessianmatrixlistingallthesecondde- ingfromdifferent,‘‘overdispersed’’positionswithintheparameterspace(allout- rivativesoftheloglikelihoodfunction(99L)ij¼@2L/@(cid:4)i@(cid:4)j.GiventhatL¼ sidethe99%confidenceregioncalculatedusing(cid:1)(cid:3)2)andusedtheRˆ1/2statisticto log½p(Dja;M)(cid:5)¼constant(cid:3)(cid:3)2/2(inthelimitofmanycountsperchannel)the assesstheirconvergence.WecollecteddatafromthechainsonlyafterRˆ1/2<1:01. covariancematrixmaybeestimatedusing½(cid:2)2(cid:5) ¼2½(99(cid:3)2Þ(cid:3)1(cid:5) .Thesecond 13 (cid:2)¼59 eV (at 5.895 keV) at launch (A. Beardmore 2007, private ij ij derivativesofthe(cid:3)2(a)functioncanbeevaluatednumerically. communication). No. 1, 2008 LINE SEARCHES IN SWIFT X-RAY SPECTRA 591 Inordertotestthedependenceof theresultstothepriorden- sities,twononinformativepriorassignmentsweremadefortheline strength(normalization),A,followingthediscussioninGregory (2005).First,followingx4.2ofSivia(1996)thelinestrengthwas assignedauniformpriorbetweenzeroandsomeupperlimitA . max Previousreportsofemissionlineshaveestimatedthelineflux A tobeaslittleasafewpercent(Reevesetal.2002;Watsonetal. 2003)orasmuchas(cid:1)40%Y80%(Yoshidaetal.1999;Piroetal. 2000)ofthetotalflux.WeconservativelytakeA tobethetotal max flux of the spectrumoverthe evaluated bandpass(i.e.,our con- straintisthatthelinefluxisbetween0%and100%of thesource flux).However,therearestrongarguments(Loredo1990;Gelman etal.1995;Gregory2005)thatsucha‘‘scale’’parametershouldbe givena‘‘Jeffreysprior,’’p(AjM )(cid:1)1/A,whichcorrespondstoa 1 constantdensityinlog(A).Formallythisisanimproperprior(can- notbenormalizedsuchthatitsintegralisunity),butonecanapply reasonableupperandlowerboundsinordertoformaproperprior density.Followingequation(3.38)of Gregory(2005),weused p(AjM )¼1/Aln(A /A ).InthepresentcontextA /A ¼ 1 max min max min 800,sinceareasonablelowerlimittotheX-raycountsfromaline isonecount,andareasonableupperlimitis800,thetotalnumber of counts in the spectrum. This yields p(AjM )¼1/6:68A as a 1 normalized Jeffreys prior. The prior density is therefore higher forweakerlinesintheJeffreyscasecomparedtotheuniformcase atvalues(i.e.,over1:25;10(cid:3)3A (cid:6)A<0:15A ),andlower max max forstrongerlines. Theratioofthepriordensitiesatthemodesof thetwolikeli- hoodfunctionsisthensimply p(aˆ jM ) 1 1 ¼p(Eˆ jM )p(Wˆ jM )p(AˆjM ) p(aˆ jM ) line 1 1 1 0 0 1 ¼ ð8Þ ½ðE (cid:3)E ÞðW (cid:3)W ÞA (cid:5) max min max min P in the ranges E 2½E ;E (cid:5), W 2½W ;W (cid:5), and zero line min max min max elsewhere.Here,A ¼A intheuniformcaseorA ¼6:68Aˆ P max P intheJeffreyscase.WehaveusedbothuniformandJeffreyspriors intheanalysisdiscussedbelow(seex6.11). 3.2. Posterior Predictive p Values (ppp) Theuseofposteriorpredictive pvalues(ppp)wasadvocated, anddemonstratedbyapplicationtoGRBspectra,byProtassov etal.(2002;seetheirx4.1foradescriptionof theirmethodand theirx5foritsapplicationtoGRB970508).LikeBayesfactors thismethodisgroundedinBayesianprobabilitytheory. Oneusestheposteriordensity, p(ajD),forthemodelparame- ters that are conditional on the data, which defines our state of knowledgeabouttheparametersgiventhedataandtheavailable priorinformation,todeterminetheposteriorpredictivedistribu- tion, which is the distribution of possible future data predicted basedontheobserveddata.(‘‘Predictive’’becauseitpredictspos- siblefuturedatasetsand‘‘posterior’’becausetheparametersare drawnfromtheposteriordensityoftheparameters.)Theposterior predictivedistributionis Fig.1.—Marginalposteriordistributionsforthecontinuumparametersofan Z absorbedpowerlawfittoanXRTspectrumofGRB060124.Thecontoursen- p(cid:1)DsimjD(cid:2)¼ p(cid:1)Dsim;ajD(cid:2)da close80%,50%,20%,10%,and5%ofthedistribution(andthereforecorrespond to20%,50%,80%,90%,95%credibleregionsfortheparameters).Thefilledcon- Z tourswerecomputedassumingtheposteriorisaGaussian.Theopencontourswere ¼ p(cid:1)Dsimja(cid:2)pðajDÞda; ð9Þ computedusingMCMCsimulationsfromtheroutineof vanDyketal.(2001).The twodistributionsareclearlyverysimilar.Seex3.1.3fordetails. whereDsimrepresentsthepossiblefuturedatasets(simulations). Inpracticetheposteriordensityisusedtogenerateasetofrandom parametervaluesasim(i¼1;2; : : :),andeachoftheseisusedto i 592 HURKETT ETAL. Vol. 679 simulatearandomdataset Dsim.Thesetof simulateddatafrom For thepurposesof thepresentpaper weuse astheteststa- i allthepossiblerandomparametersdefinestheposteriorpredictive tisticthechangeinthe(cid:3)2fitstatistic14betweenthetwomodels, distributionforsimulateddata.Thisinturncanbeusedtodefine M and M . This is equivalent to the formulation discussed in 0 1 the posterior predictive distribution for some test statistic T(D) Protassov et al. (2002). The observed data were fitted with the (whichisafunctionof thedata): modelM andthecovariancematrixevaluatedatthebest-fitpoint 0 usedtoconstructthemultivariateGaussiandistributionfromwhich phT(cid:1)Dsim(cid:2)(cid:6)(cid:6)Di¼Z phT(cid:1)Dsim(cid:2)(cid:6)(cid:6)aipðajDÞda ð10Þ parametervalueswererandomlydrawn.15Foreachsetof model (cid:6) (cid:6) M parametervaluesaspectrumwassimulatedwiththeappro- 0 priate response matrix and exposure time, with counts in each channeldrawnfromaPoissondistribution,andbinnedinthesame (comparewitheq.[9]).Thepppisthefractionof thisdistribu- mannerastheobserveddata. tionforwhichT(Dsim)>T(D),i.e.,theareaofthetailofthedis- In order to calculate the test statistic for each simulation, tribution with valuesoftheteststatisticmore extreme thanthe T(Dsim),itwasnecessarytofiteachsimulateddatasetwiththe valuefromtheobserveddata; i twocompetingmodelsM andM ,findthebest-fittingparame- 0 1 p¼Z 1 phT(cid:1)Dsim(cid:2)(cid:6)(cid:6)DidDsim; ð11Þ tceormsfpourtaetaicohnaolnlye,eaxnpdecnosimvepumteul(cid:1)tid(cid:3)ii2m.eTnhsiisonneaclepsasraarmilyetienrveosltvimesaa- (cid:6) T(D) tionforeachof theNsimulations.WeuseasstandardN ¼104 simulations,whichyieldsa pvalueaccuratetofourdecimalplaces wheretheintegrationistakenovertheposteriorpredictivedis- atveryhighestandlowest pvalues(thereisanuncertaintyonthe tributionof Dsim.AssuchthepppvalueisaBayesiananalogof pppvaluefromthefinitenumberof simulationswhichisroughly the pvalueof nullhypothesistestsfamiliarfromclassicalstatis- ½ p(1(cid:3)p)/N(cid:5)1/2 fromthebinomialdistribution).Thisisaccept- tics(e.g.,theFor(cid:3)2tests).Seechapter6ofGelmanetal.(1995) ablefordeterminingpvaluesaslowas p(cid:1)10(cid:3)4,i.e.,99.99% orGelmanetal.(1996)forageneraldiscussionofthepppmethod, ‘‘significance.’’ andProtassovetal.(2002)forapplicationtoGRBdata. AsafurthertestofthevalidityoftheGaussianassumptionfor Using theposteriorpredictivedistribution fromequation(9) theposterior(seealsoxx3.1.2Y3.1.3)wehavecomparedresults onecanproducealargenumberofrandomsimulateddatasetsto withandwithoutthisassumption.Inparticular,wecalculatedthe beusedinaMonteCarloschemetocalculatetheintegralofequa- pppvalueforaspectrumofGRB060124usingGaussianparam- tion(11)numerically.ThestepsforaMonteCarlomethodfor etervaluesandalsousingvaluesgeneratedbytheMCMCmethod computingtheposteriorpredictivedistributiontocalibratethe discussedbyvanDyketal.(2001).Thetworesultswerereason- teststatisticT areasfollows. ably close (p¼0:050(cid:7)0:007 from the Gaussian simulations and p¼0:073(cid:7)0:008fromtheMCMC,basedon103simula- 1. Computethevalueoftheteststatisticfortheobserveddata, tions).Thisconfirmsthepointmadeinx3.1.3,thattheGaussian T(D). assumptionisreasonableforthesedata. 2. Randomly draw N sets of M model parameter values a 0 i for i¼1;2;: : :;N according to the appropriate posterior dis- 3.2.2. Automated FittingofGRB Spectra tributionp(ajD). 3. Foreachofi¼1;2;: : :;NsimulateadatasetDsimusing Giventhenumberof simulateddatasetsonemustresorttoan therandomlydrawnparametervaluesa.Thisaccountisforun- automatedmodelfittingprocedure.Thishasitself beenthecause i ofsomedebate,withsomeauthors(e.g.,x5of Rutledge&Sako certaintiesintheparametervalues. 2003)claimingthatautomaticroutinesdonotrobustlyfindthe 4. Foreachofthesimulateddatasetscomputetheteststatistic T(Dsim). This is the posterior predictive distribution of the test best-fittingparametervalues(minimum(cid:3)2).Thealgorithmused i byXSPECfor(cid:3)2minimizationistheLevenberg-Marquardtal- statisticgiventheobserveddataD. gorithm,whichisefficientandveryeffectivewhenthe(cid:3)2space 5. Computetheposteriorpredictivepvalueasthefractionof iswellbehaved(e.g.,withonlyonelocalminimum).However, simulated data sets that gave a test statistic more extreme than asthisisa‘‘local’’routine,thereisnoguaranteeof findingthe thatfortheobserveddata, ‘‘global’’minimumin(cid:3)2,anditispossiblethattheresultsarebi- asedbythepresenceofotherlocalminima.Forthepresentpaper p¼ 1 XN (cid:2)(cid:7)T(cid:1)Dsim(cid:2)(cid:3)TðDÞ(cid:8); ð12Þ wehaveemployedseveraladditionstothestandardLevenberg- N i Marquardt minimization algorithm in order to mitigate these i¼1 problems. Oncealocalminimumin(cid:3)2isfoundthesurroundingregion where (cid:2) is the Heaviside step function which simply counts instanceswhereT(Dsim)>T(D). of parameterspaceisexploredforsignsof otherminima.Each i parameterinturnhasitsvalueincreasedanddecreaseduntilthe Thenumberofsimulations,N,mustbelargetoensureagood (cid:3)2 is increased by at least (cid:1)(cid:3)2 ¼2:7, while simultaneously approximationtotheintegralof equation(11)(whichisamul- tipleintegral,beingitselftheintegralofthefunctioncomputedby eq.[10]).SeeProtassovetal.(2002)formoredetaileddiscussion. 14 The(cid:1)(cid:3)2statisticisfamiliartomostX-rayastronomersandwasusedinthe Bayesfactorsmethodabove.Herewenotethatitisequivalenttothelikelihoodra- 3.2.1. Application toGRB X-RaySpectra tiotest(LRT)statistic,sinceusingeq.(5)wehave(cid:1)(cid:3)2¼(cid:3)2 (cid:3)(cid:3)2 ¼(cid:3)2lnk, (0) (1) wherek¼p(Djaˆ0;M0)/p(Djaˆ1;M1)istheratioofthelikelihoodmaximaof the Asdiscussedabove,wemayapproximatetheposteriordensity twomodels.UndertheassumptionsforwhichtheLRTisvalidthisshouldbedis- fortheparametersusingamultidimensionalGaussiancenteredon tributedas(cid:3)2withdegreesoffreedomequaltothenumberofadditionalfreeparam- theMLEvaluesandwithashapedefinedbythecovariancematrix etersinmodelM1comparedtoM0.ThereasonforchoosingtheLRToverrelated evaluated at the peak (s2). The randomized parameter values statistics,suchastheF-test,isthatLRTismorepowerful.SeeFreemanetal.(1999), Protassovetal.(2002),andreferencesthereinfordetails. neededforstep2abovemaythenbegeneratedwiththeCholesky 15 Inpracticethiswasperformedusingthetcloutsimparscommandin method. XSPEC. No. 1, 2008 LINE SEARCHES IN SWIFT X-RAY SPECTRA 593 allowingtheotherparameterstovaryinordertominimize(cid:1)(cid:3)2. 3.4.Comparison of the Methods If anynon-monotonicityin(cid:3)2isdetectedduringthissearchthe Thethreemethodsdiscussedabovehavedifferenttheoretical volumeof parameterspaceexploredisincreasedbyincreasing motivations and underlying assumptions and require different the value of (cid:1)(cid:3)2. If during the course of this search (cid:1)(cid:3)2 be- amountsofcomputingpower.TheBayesfactormethodisbased comesnegative(meaningthereisalowerminimumnearby)the on a simple application of Bayes theorem combined with the Levenberg-Marquardtalgorithmisrestartedfromthepositionof Laplaceapproximationandassumesuniformpriorsonthemodel thisnewminimum.Theentireprocessisrepeatedbyperturbing parameters (or Jeffreys prior for the linenormalization).Asdis- eachparameterinthiswayuntilnofurtherimprovementcanbe cussedabove,thismaynotbetheoptimalassignment.However, madebytheadjustmentof anyof them. despite its possible drawbacks, the simple priors and Laplace Theabsorbedpowerlawmodel(M )hasonlythreeparameters 0 approximationmakethecalculationextremelysimple,requiring (photonindex(cid:3),normalization,andabsorptioncolumndensity), onlytheevaluationofequations(7)and(8),whichrequiretheval- andinallcasesfindingthe(cid:3)2minimumwasstraightforwardus- uesof(cid:3)2andthecovariancematricesforthebest-fittinglineand ingtheaboveprocedure.ThealternativemodelM ,whichin- 1 line-freemodels,anddetailsofthefreeparametersandtheiral- cludestheemissionline,requiredmorecarebecausethepresence lowed ranges. As such, it is useful as a ‘‘quick and easy’’ test. ofalinewithunknownenergymaycauselocal(cid:3)2minimaatdif- Thedependenceof choiceofpriorsmaybeassessedbycompar- ferentenergieswithinthewidebandpass.Aninitial‘‘bestguess’’ ingtheresultscomputedusingtheuniformand Jeffreysprior. lineenergywascomputedforeachspectruminthefollowingway. Bycontrast,theRSandpppmethodsrequirealargenumber Anabsorbedpowerlawplusemissionlinemodelwasconstructed of randomdatasetstobesimulatedandanalyzed,andarethere- usingthebest-fittingparametersof modelM andaddinganun- 0 foreconsiderablymorecostlyintermsofcomputingtime.There resolvedemissionlinefixedatsometrialenergyE andvarying i isnocompellingtheoreticalreasonforapplyingamatchedfilter, theotherparameters(includingthelinenormalization)tofindthe asintheRSmethod,althoughitshouldbenotedthatthemethod, minimum(cid:3)2.OnehundredvaluesofthetrialenergyE wereused, i asimplementedabove,iscalibratedusingtheappropriateposte- evenlyspreadovertheentireusefulbandpass,andthevaluethat riorpredictivedistribution.TheadvantageoftheRSmethodisthat recordedthelowest(cid:3)2wasselectedasthe‘‘bestguess’’fortheline nomodelfittingisrequired,whichisoftenatime-consumingpro- energy.TheenhancedLevenberg-Marquardtalgorithmdescribed cessandcanleadtobiasedresultsifnothandledproperly(x3.2.2). above was then used to find the global (cid:3)2 minimum starting Thepppmethodisgroundedinthetheoryof Bayesianmodel fromthisposition.Simulationtestsandcomparisonwithinter- checking(Gelmanetal.1995;Protassovetal.2002)butrequires active fittingdemonstratedtheautomaticproceduredescribed time-consumingfitstobeperformedoneachsimulatedspectrum, abovewasanefficientandveryrobustprocedureforfindingthe and is therefore the most computationally demanding method globalminimum. byaclearmargin.However,itisarguablythemostrigorousin the sense that it is less sensitive to the choice of priors than 3.3. Rutledge and Sako Smoothing (RS) areBayesfactors(Gelmanetal.1996;Protassovetal.2002), Rutledge&Sako(2003)proposedanalternativemethodfor anddoesnotapplyanadhocsmoothing,asintheRSmethod, linedetectionusinga‘‘matchedfilter’’tosmooththeobserved thatmayactuallyacttosuppressrealspectralfeaturesinsome countspectrumwiththeaimofremovinglow-significancenoise cases. andemphasizinganyspectralfeatures.Thedistributionof peak ThesimulationsusedforbothRSandpppmethodsweregen- fluxesinthesmoothedspectrumisthencomparedtotheresultof erated assuming a Gaussian posterior for the three parameters MonteCarlosimulationstocalibratetheirsignificance(p value). of M0,which,asdiscussedinx3.1.3,isagoodapproximation. ThecountsperPHAchannelareextractedfromtheobserved Again,thisapproximationwasmadetoincreasecomputational X-rayspectrumandthensmoothedusinganenergy-dependent efficiency,sinceGaussiandeviatesaretrivialtogeneratewiththe kernel(aGaussianhavingaFWHMequaltothespectralresolu- Choleskymethod.InsituationswheretheGaussianapproxima- tionofthedetector;seeeq.[2]ofRutledge&Sako2003)topro- tionisnotvalidand/orthenumberofspectraissmallenough ducethesmoothedspectrumC(E).ThedistributionofC(E)is thatconsiderablymorecomputingtimemaybespentoneach, thencalibratedusingMonteCarlosimulationsofspectragener- thepppmethodorBayesfactorsmaybecomputedusingresults atedusingthemethoddiscussedinx3.2thatemploysposterior fromMCMCsimulations(vanDyketal.2001;Protassovetal. predictivedatasets.(WenotethatRutledge&Sako[2003]and 2002),whichallowsforamoreaccurateevaluationof theposte- Sako et al. [2005] did not randomize the parameter values but riordensity. usedfixedMLEvaluestogeneratealltheirsimulations.Thisis 3.4.1.AlternativeApproximateMethods equivalenttoassumingtheposteriortobeadeltafunctionlocated atthebest-fitpoint,whichisclearlyabadapproximationinmany Thestatisticsliteraturecontainsmanymethodsdevelopedfor cases.)Eachsimulationisinturnsmoothedusingthesameenergy thepurposeofmodelselection.Inx1welistedfourmethodsthat kerneltoproduceC(E) .TheC(E) valuesarethensorted havepreviouslybeenappliedtotheproblemoflinedetectionin sim;i sim indescendingorderforeachPHAchannelseparately.Thusthe X-raydatafromGRBs.Onemethodthathasnot,toourknowledge, 99thpercentilelimitof theC(E) isthenfoundbyextract- beenappliedspecificallytoGRBlinedetectionistheBayesian sim;global ingthe100thhighestvalueof C(E) ineachPHAchannel. information criterion (BIC; Schwartz 1978). This aims to ap- sim The smoothed observed spectrum, C(E), is then plotted proximatethelogarithmoftheintegratedposteriorprobability alongsidethenthpercentilelimits,whichwehavechosenforthis foramodelwithkparametersgivendatawithasamplesizeN. analysistobe90.00%,99.00%,99.90%,and99.99%.Wherever TheBICtakestheformofthelogarithmofthelikelihoodwitha C(E)exceedsagivenlimitthenwehavedetecteda‘‘feature’’at penaltyterm: that confidence limit. Thus a line would show up as a narrow excesswhileotherthermalemissioncomponentswillshowupas broadexcess,bothofwhichareeasilydistinguishable. BIC¼(cid:3)ln½pðDja;MÞ(cid:5)þ(k=2)lnN: ð13Þ 594 HURKETT ETAL. Vol. 679 Fig.2.—SpectralfittoPKS0745-19withanabsorbedpowerlawplusanar- rowGaussianemissionlinemodel.Theredshiftedironlineat6.07keVisclearly Fig. 3.—PKS0745-19:RSmethod.Confidencecontoursmarkthesignifi- visible.Notealsotheresidualsat0.6keVand2.3keV,whicharethoughttobe canceofthespectralfeatures.Insetsfocusonenergyrangesofinterest.[Seethe duetotheoxygenandgoldedgesrespectively.[Seetheelectroniceditionofthe electroniceditionoftheJournalforacolorversionofthisfigure.] Journalforacolorversionofthisfigure.] slightlyimprovedthefitwith(cid:3)2/(cid:7) ¼610/509.Allspectralpa- rametererrorsarequotedat90%confidence. ThemodelwiththesmallestBICisfavored.Thedifference AddingaGaussiancomponent toanabsorbedpowerlawfit betweentheBICvaluesfortwocompetingmodels(oftencalled naturallyproducedasignificantlyimprovedfittothedata((cid:3)2/(cid:7) ¼ the Schwartz criterion) is therefore S ¼(cid:3)lnkþ((cid:1)k/2)lnN 539/508)with(cid:3)¼2:36þ0:04andalineat6:07þ0:02keV(width¼ (seefootnote14),andisaroughapproximationtothelogarithm (cid:3)0:03 (cid:3)0:02 0:06þ0:02keV).ThespectralfittothismodelcanbeseeninFig- of theBayesfactor(x4.1.3of Kass&Raftery1995). ure2(cid:3).0T:0h3isissupportedbytheBayesfactorof 7;1014forasin- In the high count (large sample size) limit (see eq. [5]) the Schwartz criterion becomes 2S ¼(cid:3)(cid:1)(cid:3)2þ(cid:1)klnN. Whether glelinebeingpresent.RSanalysisofthespectrum,Figure3,also clearlyshowedthepresenceofaGaussianfeatureat(cid:1)6.07keV ornottheBICformodelM issmallerthanthatforM isthen 1 0 equivalenttothecriterion(cid:1)(cid:3)2 >(cid:3)(cid:1)klnN.Inthepresentcase withasignificancefarinexcessofthe99.99%confidencelimit. Thepppanalysisplacedasignificanceof >99.99%onthisfeature. thedataareselectedwithfixedN,and(cid:1)k ¼(cid:3)2fortheaddition Aninterestingpointtonoteisthatthereareshallow‘‘excesses’’ of afixedwidthline,suchthattheBICisequivalenttoapplying thesame(cid:1)(cid:3)2criteriontoeachspectrum,mechanicallythesame at(cid:1)0.6and(cid:1)2.3keVintheRSplot(Fig.3)thatareclearlynot linefeatures.Coherent,low-level,positiveexcessesarealsoseen astheLRT,althoughwithadifferent(generallyhigher)thresh- inthespectralfitattheseenergies(Fig.2).Eitherthepowerlaw oldvalue.Therefore,inthepresentcontexttheapplicationofthe componentisnotmodelingthedataadequatelyatthesepoints,the BICwouldbeequivalenttoaslightlymoreconservativeapplica- energyscaleforthisspectrumhasanoffsetorthecalibrationfiles tiontheLRT(seefootnote21).However,asnotedinProtassov are lessaccuratearound thesetwo energies. Applyingthe gain etal.(2002)andelsewhere,theBICisoftenapoorapproxima- fitfunctioninXSPECimprovesthemodelfitssignificantlyby tiontotheintegratedposteriorprobability,andasdiscussedby addinganoffset16of(cid:3)0.07keV(nochangetotheslope).The Kass&Raftery(1995)isgenerallyaworseapproximationthan absorbedpowerlawmodelimprovesfrom(cid:3)2/(cid:7) ¼635/511to theLaplaceapproximationemployedtocalculateBayesFactors 606/509andthemekalcomponentmodelimprovesfrom(cid:3)2/(cid:7) ¼ inx3.1.2. 610/509 to 585/507. As a result the two shallow ‘‘excesses’’ at (cid:1)0.6and(cid:1)2.3keVbecomefarlessprominent. 4.RESULTS FROM AN IRON LINE-EMITTING SOURCE The feature at (cid:1)0.6 keV could be attributed to the detector Asafirstdemonstrationoftheabovemethodsweappliedthem oxygen absorption edge at 0.54 keV. Applying the (cid:3)0.07 keV toanon-GRBSwiftdataset.Ideallywewouldprefertoexamine offsetbringsthe(cid:1)0.6keV‘‘line’’inconjunctionwiththisedge, asourcewithaGRB-likespectrum,withasimilarcountrate,but thusreducingitssignificancebelowthepointatwhichwewould containingaclearlyidentifiedemissionlinefeature.However, considerittobearealdetection.Wenotethatthe(cid:1)2.3keVfea- itisdifficulttofindasourcethatmeetsallof thesecriteria.We tureiscoincidentinenergywiththegoldedgeduetotheXRTmir- chosethePCmodecalibrationdataset(combiningallavailable rors.Wehaveconfirmedthatthisfeature isnotduetoanybad datafrom2005May10to2005September2)of PKS0745-19 pixelorhotcolumnissues.17 (DeGrandi&Molendi1999;Chen etal.2003).This testhas 5. TESTING THE THREE METHODS somelimitationsasPKS0745-19isfainterthantheGRBsana- AND DETERMINING DETECTION LIMITS lyzedinthispaperanditisobservedinadifferentmode. PKS0745-19isagalaxyclusterwithathermalspectrumand In this section we discuss the sensitivity limits of the three aknownlineat6.07keVinSwift’sobservations,whichisared- methods,i.e.,theweakestlinesthatcanbereliablydetectedwith shifted6.7keVironline(z¼0:1).Eventhoughtheunderlying eachofthethreemethods,forobservationsofthetypediscussed spectrumisthermal,withmultipletemperaturecomponents,itcan bemodeledbyanabsorbedpowerlawcontinuumwherethepower 16 Seehttp://swift.gsfc.nasa.gov/docs/heasarc/caldb/swift/docs/xrt/xrt_bias.pdf. lawindex,(cid:3),is2:34þ(cid:3)00::0033((cid:3)2/(cid:7) ¼635/511).Anadditionalmekal 17 Seehttp://swift.gsfc.nasa.gov/docs/heasarc/caldb/swift/docs/xrt/SWIFT- (Meweetal.1985;Arnaud1996)component,withkT ¼0:19þ0:03, XRT-CALDB-01_v5.pdf. (cid:3)0:01 No. 1, 2008 LINE SEARCHES IN SWIFT X-RAY SPECTRA 595 Fig.4.—NarrowGaussianline(width<instrumentalresolution)foraspectrumcontaining800counts(left)and1600counts(right).Comparisonof thedetection limits,inequivalentwidth(keV),ofthethreemethodsovertheenergybandpassofSwift.Thedataareasfollows.Dottedlines:Bayesfactoranalysis:solidlines:RSmethod; dashedlines:posteriorpredictivepvalueanalysis.[SeetheelectroniceditionoftheJournalforacolorversionofthisfigure.] inx2,ofa‘‘typical’’Swifteraburst.Thisisdonebysimulating p(M jD)<0:01wastakenasthecriterionfordetection.Thisis 0 XRTdatawithacontinuumspectralmodeltypicalof theGRBs equivalenttop(M jD)>0:99,andapproximatelyequivalentto 1 observedwithSwift,butincludinganemissionline,andthenap- aBayesfactorB >100,whichisconventionallytakenasstrong 10 plyingthethreemethodsdescribedaboveforlinedetection. evidenceinfavorof M overM (Kass&Raftery1995).How- 1 0 Inordertogeneratethesimulateddataweuseafiducialspec- ever,westressthattheinterpretationofpvaluesandBayesfactors tralmodelcomprisingapowerlawwithphotonindex(cid:3)¼2:0, arefundamentallydifferent.Apvalueisthetailareaoftheprob- normalization(at1keV)of N ¼0:9photonskeV(cid:3)1s(cid:3)1andan abilitydensityfunctionoftheteststatistic,assuminganullhy- absorptioncolumndensityof N ¼1:8;1021cm(cid:3)2(seeTable pothesis(M )istrue,andisusedtodecidewhetherornottoreject H 0 2of Campanaetal.2006c).Theseparametersaretypicalofthe thehypothesis.Assuch,a pvalueisnottheprobabilityforthe X-rayspectraof Swifterabursts.18Inordertomeasurethesen- model M ; instead it corresponds to the frequency of more ex- 0 sitivityofthethreedetectionmethodstolinesinXRTdata,spec- tremeteststatistics(e.g.,(cid:1)(cid:3)2)givenalargenumberof repeatex- traldataweresimulatedusingtheabovemodelplusoneGaussian periments(assumingthenullhypothesis).Bycontrast,p(M jD) 0 emissionline,andsubjectedtoeachof thethreeprocedures.A istheposteriorprobabilityformodelM basedondataDandthe 0 rangeofvaluesforlineenergy,normalization,andintrinsicwidth priors(inthepresentcaseweusedanapproximationthereof),as wereusedinordertocalibratethedependenceof themethodsto p(M jD)isforM ,andBayesfactorsareusedtoselectbetween 1 1 thelineparameters.19 twomodelsbasedontheratioofthesetwo.Thisfundamentaldif- The ppp and RS method result in p values with the conven- ferenceintheinterpretationof Bayesfactorsmeansthereisno tionalfrequentistinterpretation.If wesetthedetectionthreshold expectationthat(cid:1)isthefrequencyof typeIerrorsfromalarge at (cid:1), and identify a detection as p(cid:6)(cid:1) then the rate of type I number of repeat observations when using a p(M jD)<(cid:1) 0 errors(i.e.,falsepositivedetections)willbe(cid:1).Forthepurpose criterion. ofsensitivityanalysisweused(cid:1)¼0:01,equivalenttoa‘‘99% Inx3.1.3weconfirmedthatusingtheLaplaceapproximation significance’’criterion. Incontrast tothese,theBayesfactoris assumptioninthecalculationof theBayesfactorwasvalidfor theratioofthemarginallikelihoodsofmodelsM andM ;inthe thefiducialabsorbedpowerlawspectralmodel.Thesamewas 1 0 caseofuniformpriorsforthetwomodelsthisistheratioof pos- alsofoundtobetrueofthespectrawithsimulatedGaussianlines teriorprobabilitiesB ¼ p(M jD)/p(M jD)wheretheprobabili- atandabovethedetectionlimitdetailedabove. 10 1 0 tiesareinterpreteddirectlyasprobabilitiesformodelsM andM , ForeachvalueofthelinenormalizationwecalculatedtheBayes 0 1 respectively. factorsfor50independentsimulationsandcalculatedthep(M jD) 0 Forthepurposeof numericalcomparisonwiththe pvalues, values for each. We then averaged the p(M jD) values at each 0 the Bayes factors were converted into probabilities [assuming normalizationandlinearlyinterpolatedbetweenpointsatadjacent p(M jD)þp(M jD)¼1;seeeq.(3.19)of Gregory2005],and normalizationvaluestomap p(M jD)asafunctionofnormaliza- 1 0 0 tion.Thelimitingsensitivitywastakentobethenormalizationat 18 Wehaveassumedaredshiftz¼0forthefiducialburstspectrum.The whichthemean p(M0jD)valuefallsbelow0.01. averageofthemeasuredredshiftsforSwiftGRBsishigherthanthis(seehttp:// Figure4showsthedetectionlimitsforanintrinsicallynarrow www.astro.ku.dk/~pallja/GRBsample.htmlfortheupdatedvalues).However,it line (W ¼0) at different energies for spectra with (cid:1)800 and shouldbenotedthatincreasingzcausestheeffectsofabsorptionbythehostgal- (cid:1)1600counts(leftandrightpanels,respectively).Thelimiting axyabsorption(whichtendstodominatethetotalabsorptioncolumn)toshiftout sensitivitiesareshowninunitsof equivalentwidth(keV),which oftheobservedbandpass,meaningthereisrelativelymorefluxatlowerenergies (<1keV).Thecalculateddetectionlimitsshouldberepresentativeof Swiftera iseasiertointerpretphysicallythantheabsolutenormalization,by burstsalthoughperhapsconservativeatlowerenergies. comparingthenormalizationtotheunderlyingcontinuummodel. 19 Therangesofvaluesusedforthelinesimulationsareasfollows.Normali- Figures5and6showthedetectionlimitsfordifferentlinewidths zationsof1;10(cid:3)7!100photonscm(cid:3)2s(cid:3)1takeninlogarithmicallyincreasing (W ¼0:2and0.7keV,respectively).TheBayesfactorpointsin steps,lineenergiesof 0.4,0.6,0.8,1.0,2.0,3.0,4.0,5.0,7.0,and9.0keV,and thesefigureshavebeencalculatedusingtheuniformprior,rather intrinsicwidthsof 0.0keV(i.e.,unresolved),0.2keV(broadline)and0.7keV (broadcontinuumexcess). thanthe Jeffreysprior.Seex6.11forfurtherdiscussiononthe 596 HURKETT ETAL. Vol. 679 Fig.5.—BroadGaussianline(width=0.2keV)foraspectrumcontaining800counts(left)and1600counts(right).Comparisonofthedetectionlimits,inequivalent width(keV),ofthethreemethodsovertheenergybandpassofSwift.Thedataareasfollows.Dottedlines:Bayesiananalysis;solidlines:RSmethod;dashedlines:ppp. [SeetheelectroniceditionoftheJournalforacolorversionofthisfigure.] effectof usingthetwodifferentpriorsinthecalculationof the of0.01.Similarly,theselibrarieswereusedtocomputethe99.00% Bayesfactorsfortheobserveddatasets. significancecontourfromthefiducialmodelfortheRSmethod.We ThepppandRSmethodsrequirealargenumberof spectral pointoutherethatthesesimulationlibrarieswereusedonlyforthe simulationsinordertocalibratetheirdistributionandestimatethe purposesofcomparingthedifferentalgorithms.Fortheanalysisof pvalue.Thecomputationaldemandsofthis20aresuchthatitwas realobservations(discussedbelow),eachobservationwasassessed notfeasibletoproduceasufficientlylargesetofsimulationsto usingindependentlygeneratedsimulationsmatchingtheparticular carryoutthemethodsoneachandeverylinespectrum(e.g.,which observationalparameters. includesseveralspectraateachtrialvalueof lineenergy,width,and Forthepppmethodeachof thespectracontainingalinewas normalization,forboth(cid:1)800and(cid:1)1600countspectra).Wethere- fittedwithanabsorbedpowerlawwithandwithoutanadditional foreconstructedtwolibrariesof104simulations,onefor(cid:1)800and Gaussiancomponent,andthechangein(cid:3)2noted.The(cid:1)(cid:3)2val- onefor(cid:1)1600countspectra,thatcouldbeusedforeachtest.These ueswereaveragedateachnormalization,andthesepointslinearly wereconstructedbysimulatinganappropriatespectrumbasedon interpolated,tomapthe(cid:1)(cid:3)2asafunctionof normalization.As thefiducialmodel,andusingthistogeneratetheposteriorpredic- withtheBayesfactor,thelimitingsensitivitywastakentobethe tivedistributionfromwhichtodraw104simulationsfollowingthe normalizationatwhichthemean pvaluefallsbelow0.01,calcu- recipediscussedinx3.1.2.Theselibrarieswerethenusedtocali- latedusingtheappropriatedvalueof(cid:1)(cid:3)2valuefromeachsimu- bratethedistributionof the(cid:1)(cid:3)2statisticforthepppmethodand lation library. The limitingsensitivity as a function ofenergy is thustocalculatethevalueof (cid:1)(cid:3)2thatcorrespondstoa pvalue shownasdottedcurvesinFigures4,5,and6fordifferentconfigu- rationsoflineparameters. 20 Togiveaspecificexample,forthesimulationandfittingmethodsdescribed For the RS method each line spectrum was smoothed indi- inxx3.2.1and3.2.2asetofN ¼104simulationstakes(cid:1)1dayonatop-rangePC. vidually.TheC(E)simvaluesoveranenergychannelrangeequal Fig.6.—Broadexcess(width=0.7keV)foraspectrumcontaining800counts(left)and1600counts(right).Comparisonofthedetectionlimits,inequivalentwidth (keV),ofthethreemethodsovertheenergybandpassofSwift.Thedataareasfollows.Dottedlines:Bayesfactoranalysis;solidlines:RSmethod;dashedlines:ppp. Valuesbelow0.7keVhavebeenexcludedduetothewidthof thefeaturesbeinganalyzed.[SeetheelectroniceditionoftheJournalforacolorversionofthisfigure.]
Description: