TheAstrophysicalJournal,679:570Y586,2008May20 A #2008.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. GLOBAL PROPERTIES OF X-RAY FLASHES AND X-RAYYRICH GAMMA-RAY BURSTS OBSERVED BY SWIFT T. Sakamoto,1,2 D. Hullinger,3 G. Sato,1,4 R. Yamazaki,5 L. Barbier,1 S. D. Barthelmy,1 J. R. Cummings,1,6 E. E. Fenimore,7 N. Gehrels,1 H. A. Krimm,1,8 D. Q. Lamb,9 C. B. Markwardt,1,10 J. P. Osborne,11 D. M. Palmer,7 A. M. Parsons,1 M. Stamatikos,1,2 and J. Tueller1 Received2007July14;accepted2008January27 ABSTRACT We describe and discuss the spectral and temporal characteristics of the prompt emission and X-ray afterglow emissionofX-rayflashes(XRFs)andX-rayYrichgamma-raybursts(XRRs)detectedandobservedbySwiftbetween 2004Decemberand2006September.Wecomparethesecharacteristicstoasampleofconventionalclassicalgamma- raybursts(C-GRBs)observedduringthesameperiod.WeconfirmthecorrelationbetweenEobs andfluencenoted peak byothersandfindfurtherevidencethatXRFs,XRRs,andC-GRBsformacontinuum.Wealsoconfirmthatour knownredshiftsampleisconsistentwiththecorrelationbetweenthepeakenergyintheGRBrestframe(Esrc )and peak theisotropicradiatedenergy(E ),theso-calledEsrc -E relation.Thespectralpropertiesof X-rayafterglowsof iso peak iso XRFsandC-GRBsaresimilar,butthetemporalpropertiesof XRFsandC-GRBsarequitedifferent.Wefoundthat thelightcurvesof C-GRBafterglowsshowabreaktosteeperindices(shallow-to-steepbreak)atmuchearliertimes thandoXRFafterglows.Moreover,theoverallluminosityof XRFX-rayafterglowsissystematicallysmallerbya factorof 2ormorecomparedtothatof C-GRBs.ThesedistinctdifferencesbetweentheX-rayafterglowsof XRFs andC-GRBsmaybethekeytounderstandingnotonlythemysteriousshallow-to-steepbreakinX-rayafterglowlight curves,butalsotheuniquenatureof XRFs. Subject headingsg: gamma rays: bursts — X-rays: bursts Online material: color figures<![%ONLINE; [toctitlegrptitleOnline Material/title/titlegrplabelColor figures/ labelentrytitlegrptitlefigref rid="fg1" place="NO"Figure 1/figref/title/titlegrp/ entryentrytitlegrptitlefigref rid="fg4" place="NO"Figure 4/figref/title/titlegrp/ 1e.nItNrTyRenOtDryUtCitTlIeOgNrptitlefigref rid="fg5" pStlraochem=a"yeNrOet"aFl.i(1g9u9r8e)id5en/fitifigerde2f/2tbitulrest/stoitblseegrvrepd/byGinga entryentrytitlegrptitlefigref rid="fg6"thaptloaccceu=rr"edNObe"twFeiegnur1e9876/Mfiagrcrhefa/ntidtl1e9/9t1itOlecgtorbpe/r and for Despite the rich gamma-ray burst (GRB) sample provided entryentrytitlegrptitlefigref rid="fg7"whpiclhacteh=e"sNpeOct"raFcigouulrdebe7r/efiligarbelyf/atnitalleyz/teidt.leAgbropu/t 36% of by BATSE (e.g., Paciesas et al. 1999; Kaneko et al. 2006), entryentrytitlegrptitlefigref rid="fg8"GRpBlascoeb=se"rNveOd"bFyiGgiungraeha8d/fivegrryesfo/fttistpleec/ttriat.lTehgerypn/otedthat BeppoSAX(e.g.,Frontera2004),Konus-Wind(e.g.,Ulanovetal. entryentrytitlegrptitlefigref rid="fg9"thepsleacbuer=s"tsNrOes"eFmibgleudreBA9T/SfiEgrleofn/gtiGtlReB/tsitilnegdrupra/tion and 2005), and HETE-2 (e.g., Barraud et al. 2003; Sakamoto et al. entryentrytitlegrptitlefigref rid="fg10"gepnelaracles=p"ecNtrOal"sFhiagpuer,ebut1t0h/efipgeraekfe/tnietrlgei/etsitolfegthrep(cid:2)/F spec- 2005), the emission properties of GRBs are still far from be- (cid:2) entryentrytitlegrptitlefigref rid="fg11"trupml,aEceob=s",NexOte"nFdeigdutorelow1e1r/vfiaglureesf/tthiatnlet/htoisteleogfrtph/eBATSE ingwellunderstood.Inrecentyears,however,anotherphenom- peak entryentrytitlegrptitlefigref rid="fg1"buprlsatsc(eP=re"eNceOe"tFali.g20u0r0e;K1a2ne/fikogerteafl/.t2i0tl0e6/)t.iHtleeisgerept/al.(2003) enonthatresemblesGRBsinalmosteveryway,exceptthatthe entryentrytitlegrptitlefigref rid="fg13"reppolratecdet=h"atNaOm"oFngigthueresou1rc3e/sfiimgraegfe/dtibtyleth/teitWleidgerpF/ieldCam- fluxcomesmostlyfromX-raysinsteadof (cid:1)-rays,hasbeendis- entryentrytitlegrptitlefigref rid="fg14"erapsl(aWceF=C"sN)oOn"bFoiagrdurBeepp1o4S/AfiXgwreafs/atictllaes/stiotflefagsrtpX/-raytran- coveredandstudied.Thisnewclassof burstshasbeendubbed entryentrytitlegrptitlefigref rid="fg15"siepnltsawceit=h"dNurOati"oFnisgoufrleess1th5a/nfi1g0r0e0fs/ttihtaltew/teirtelneogtr‘p‘t/riggered’’ ‘‘X-rayflashes’’(XRFs;Heiseetal.2003;Barraudetal.2003; entryentrytitlegrptitlefigref rid="fg16"(i.ep.,ladceete=c"teNdO) b"yFitghuerGeam1m6/afiRgraeyf/Btuitrlset/Mtitolneigtorrp(/GRBM). Sakamoto et al. 2005), and there is strong evidence to suggest entryentrytitlegrptitlefigref rid="fg17"Thpislabceec=am"Ne Oth"eiFriwguorrkeing17de/fifingirtieofn/toitfleX/RtiFtlse.gKripp/pen et al. that‘‘classical’’GRBs(C-GRBs)andXRFsarecloselyrelated entryentrytitlegrptitlefigref rid="fg18"(20p0l3a)csee=a"rcNheOd"fFoirgCu-rGeRB1s8/afindgrXeRf/Ftsi,tlwe/htiicthlewgerrpe/observed phenomena. Understanding what physical processes lead to entryentrytitlegrptitlefigref rid="fg19" place="NsiOm"uFlitganuereou1s9ly/fibgyreWf/tFitCle/atintldegBrAp/TeSnEtr.y/Ttohce]y]>found 36 C-GRBs their differences could yield important insights into their na- and17XRFsina3.8yearperiod.JointWFCandBATSEspec- tureandorigin. tralanalysiswasperformedforthesample,andtheyfoundthat XRFshaveasignificantlylowerEobs comparedwithC-GRBs. peak They also found that there is no systematic difference between 1 NASAGoddardSpaceFlightCenter,Greenbelt,MD20771. XRFs and C-GRBs in their low-energy photon indices, high- 2 OakRidgeAssociatedUniversities,P.O.Box117,OakRidge,TN37831- energyphotonindices,ordurations.Thesystematicspectralanal- 0117. ysisof asampleof 45HETE-2GRBsconfirmedthesespectral 3 Moxtek,Inc.,452West1260North,Orem,UT84057. and temporal characteristics of XRFs. It is worth noting that 4 InstituteofSpaceandAstronauticalScience,JAXA,Kanagawa229-8510, nine out of 16 XRF samples of HETE-2 have Eobs <20 keV Japan. peak 5 Department of Physics, Hiroshima University, Higashi-Hiroshima 739- (Barraudetal.2003;Sakamotoetal.2005). 8526,Japan. Although the XRF prompt emission properties have been 6 JointCenterforAstrophysics,UniversityofMaryland,BaltimoreCounty, studied, until the launch of Swift (Gehrels et al. 2004), only 1000HilltopCircle,Baltimore,MD21250. ahandfulof X-rayafterglowsassociatedwithXRFswerere- 7 LosAlamosNationalLaboratory,P.O.Box1663,LosAlamos,NM87545. 8 Universities Space Research Association, 10211 Wincopin Circle, Suite ported. D’Alessio et al. (2006) studied the prompt and after- 500,Columbia,MD21044-3432. glowemissionofXRFsandX-rayYrichGRBs(XRRs)observed 9 Department of Astronomy and Astrophysics, University of Chicago, by BeppoSAX and HETE-2. They found that the XRF and Chicago,IL60637. XRR afterglow light curves seem to be similar to those of 10 DepartmentofPhysics,UniversityofMaryland,CollegePark,MD20742. 11 Department of Physics and Astronomy, University of Leicester, LE1, C-GRBs,includingthebreakfeatureinthelightcurves.They 7RH,UK. also investigated the off-axis viewing scenarios of XRFs 570 SWIFT X-RAY FLASHES 571 for the top-hatYshaped jet (Yamazaki et al. 2002, 2004), the obtainbetterconstraintsonEobs.WefocusonX-rayafterglow peak universal power-lawYshaped jet (Rossi et al. 2002; Zhang & properties observed by the Swift XRTin this study. In x 2, we Me´sza´ros2002;Lambetal.2005),andtheGaussianjet(Zhang discussourclassificationof GRBs,theanalysismethodsof the et al. 2004), and they concluded that these models might be BATandtheXRTdata,andtheselectioncriteriaof oursample. consistent with the data. Their sample, however, only contains Inxx3and4,weshowtheresultsofthepromptemissionandthe nine XRFs/XRRs with measured X-ray afterglows. Further- X-ray afterglow analysis, respectively. We found distinct dif- more, the data points in the X-ray light curves were not well ferences between XRFs and C-GRBs in the shape and in the sampled, so that there are large uncertainties in the decay in- overallluminosityof X-rayafterglows.Wediscusstheimpli- dicesandtheoverallstructuresof thelightcurveinmostcases. cationsof ourresultsinx5.Ourconclusionsaresummarized Moreover,sincetheX-rayafterglowobservationsbegan>104s in x 6. We used the cosmological parameters of (cid:1) ¼0:3, m afterthetrigger,theirsampleisabletosaylittleabouttheearly (cid:1) ¼0:7,andH ¼70kms(cid:2)1Mpc(cid:2)1.Thequotederrorsare (cid:2) 0 afterglow properties, which contain rich information that can atthe90%confidencelevelunlessstatedotherwise. constrainjetmodelsforXRFs.OtherXRFtheoreticalmodels 2.ANALYSIS are the inhomogeneous jet model (Toma et al. 2005), the in- ternal shock emission from high bulk Lorentz factor shells 2.1.Working Definition of Swift GRBs and XRFs (Mochkovitch et al. 2003; Barraud et al. 2005), the external Thepreciseworkingdefinitionsadoptedbyotherswhohave shock emission from low bulk Lorentz factor shells (Dermer studiedXRFshavetended(understandably)tobebasedonthe etal.1999;Dermer&Mitman2003),andtheX-rayemission characteristics and energy sensitivities of the instruments that from the hot cocoon of the GRB jet if viewed from off-axis collectedthedata(Gotthelfetal.1996;Strohmayeretal.1998; (Me´sza´rosetal.2002;Woosleyetal.2003). Heiseetal.2003;Sakamotoetal.2005).Theeffectiveareaofthe Because of the sophisticated on-board localization capabil- BATissufficientlydifferentfromtheseotherinstrumentsthat ity of the Swift Burst Alert Telescope (BAT; Barthelmy et al. none of the definitions previously adopted are quite suitable 2005)andthefastspacecraftpointingof Swift,morethan90% (Band2003,2006).Wedesireadefinition,however,thatwill of SwiftGRBshaveanX-rayafterglowobservationfromthe correspondtopreviousdefinitionssothatwemayreliablycom- SwiftX-RayTelescope(XRT;Burrowsetal.2005a)withina parethecharacteristicsoftheBAT-detectedXRFpopulationwith fewhundredsecondsafterthetrigger.DuetothefactthatBAT thosefromothermissions.Sakamotoetal.(2005)definedXRFs issensitivetorelativelylowenergies(15Y150keV)andalsoa in terms of the fluence ratio S (2Y30 keV)/S (30Y400 keV), largeeffectivearea((cid:1)1000cm2at20keVforasourceon-axis), X (cid:1) andC-GRBs,XRRs,andXRFswereclassifiedaccordingtothis BAT is also detecting XRFs and XRRs. However, because of fluenceratio.Sakamotoetal.(2005)notedastrongcorrelation BAT’s lack of response below 15 keV, it is very challenging betweentheobservedspectralpeakenergyEobs andthefluence todetectXRFswithEpoebaskofafewkeV,whichdominatedtheXRF ratio.TheyfoundthattheborderEobs betweepneaXk RFsandXRRs samplesof BeppoSAXandHETE-2(e.g.,Kippenetal.2003; is(cid:3)30keV,andtheborderEobs bepetawkeenXRRsandC-GRBsis Sakamotoetal.2005).Nonetheless,Swifthasauniquecapabil- peak (cid:3)100keV. ity for studying detailed X-ray afterglow properties just after IntheBATenergyrange,afluenceratioofS(25Y50keV)/S(50Y theburstforXRFsandXRRswithEobs k20keVforthefirsttime. peak 100keV)ismorenaturalandeasiertomeasurewithconfidence. The systematic study of the X-ray emissions of GRBs ob- Wethereforechoseourworkingdefinitionintermsof thisratio. served by XRT reveals a very complex power-law decay be- Inordertoensurethatourdefinitionisclosetothatadoptedby haviorconsistingtypicallyofaninitialverysteepdecay(t(cid:3) with Sakamotoetal.(2005)wecalculatedthefluenceratioof aburst (cid:2)10P(cid:3)1P(cid:2)2) (e.g., O’Brien et al. 2006; Sakamoto et al. for which the parameters of the Band function13 (Band et al. 2007), followed by a shallow decay ((cid:2)1P(cid:3)2P0), followed 1993)are(cid:3) ¼(cid:2)1,(cid:3) ¼(cid:2)2:5,andEobs ¼30keV.Theseval- by a steeper decay ((cid:2)2P(cid:3) P(cid:2)1; e.g., Nousek et al. 2006; 1 2 peak 3 ues of (cid:3) and of (cid:3) are typical of the distributions for XRFs, O’Brien et al. 2006; Willingale et al. 2007), sometimes fol- 1 2 XRRs, and C-GRBs found by BATSE (Preece et al. 2000; lowedbyamuchsteeperdecay((cid:3) P(cid:2)2;e.g.,Willingaleetal. 4 Kanekoetal.2006),BeppoSAX(Kippenetal.2003),andHETE-2 2007)and,insomecases(about50%),overlaidX-rayflares(e.g., (Sakamotoetal.2005).Theratiothusfoundis1.32.Welikewise Burrows et al. 2005b; Chincarini et al. 2007; Kocevski et al. calculatedthefluenceratioof aburstforwhich(cid:3) ¼(cid:2)1; (cid:3) ¼ 1 2 2007).Althoughthereisincreasingevidencethattheinitialvery (cid:2)2:5, and Eobs ¼100 keV, which was found to be 0.72. Our steepdecaycomponent(cid:3) isatailof theGRBpromptemission peak 1 workingdefinitionof XRFs,XRRs,andC-GRBsthusbecomes (e.g.,Liangetal.2006;Sakamotoetal.2007),theoriginof the phase from a shallow (cid:3)2 to a steeper decay (cid:3)3 (hereafter a S(25Y50 keV)=S(50Y100 keV)(cid:4)0:72 ðC-GRBÞ; shallow-to-steep decay) is still a mystery. Moreover, not all 0:72<S(25Y50 keV)=S(50Y100 keV)(cid:4)1:32 ðXRRÞ; ð1Þ GRBs have a shallow-to-steep decay phase in their X-ray af- terglow light curves. Thus, it is very important to investigate S(25Y50 keV)=S(50Y100 keV)>1:32 ðXRFÞ: theX-rayafterglowlightcurvesofburstsalongwiththeirprompt emission properties to find a difference in their characteristics Tochecktheconsistencyof ourdefinition,wecalculatedS(25Y betweenC-GRBsandXRFs. 50 keV) and S(50Y100 keV) of the HETE-2 sample using the Inthispaper,wereportthesystematicstudyofthepromptand best-fittime-averagedspectralparametersreportedinSakamoto afterglowemissionof 10XRFsand17XRRsobservedbySwift et al. (2005). The 90% error in the fluences is calculated by from 2004 December through 2006 September. Although the scalingtheassociatederrorinthenormalizationof thebest-fit data from Swift BATare the primary data set for investigation spectral model. As shown inFigure 1, ourdefinition isconsis- ofthepromptemissionproperties,wealsouseinformationfrom tentwiththeHETE-2definitionof XRFs,XRRs,andC-GRBs Konus-Wind and HETE-2 as reported on the Gamma-ray burst (Sakamotoetal.2005). Coordinate Network12 or in the literature, when available, to 13 f(E)¼K1E(cid:3)1exp½(cid:2)E(2þ(cid:3)1)/Epeak(cid:5) if E<((cid:3)1(cid:2)(cid:3)2)Epeak/(2þ(cid:3)1) 12 Seehttp://gcn.gsfc.nasa.gov/gcn_main.html. and f(E)¼K2E(cid:3)2 ifE(cid:6)((cid:3)1(cid:2)(cid:3)2)Epeak/(2þ(cid:3)1). 572 SAKAMOTO ETAL. Vol. 679 Fig. 1.—S(2Y30 keV)/S(30Y400keV) and S(25Y50 keV)/S(50Y100 keV) Fig.2.—RelationshipbetweenEobs derivedbytheBandfunctionwithafixed peak fluenceratiosofHETE-2bursts.Thedashedanddash-dottedlinescorrespondto high-energyphotonindex(cid:3)2¼(cid:2)2:3andEpoebaskderivedbytheC-Bandfunction thebordersbetweenC-GRBsandXRRs,andbetweenXRRsandXRFs,respec- oraCPLmodel. tively.[SeetheelectroniceditionoftheJournalforacolorversionofthisfigure.] with (cid:5) of S(15Y150 keV)¼100:59 ergs cm(cid:2)2. In addition, the 2.2. Swift BAT Data Analysis best-fitlognormaldistributionisusedforthet durationcen- 100 All the event data from Swift BAT are available through tering on t100 ¼101:74 s with a (cid:5) of t100 ¼100:53 s. The BAT HEASARC at NASA Goddard Space Flight Center. We used energy response matrix used in the simulation corresponds to thestandardBATsoftware(HEADAS6.1.1)andthelatestcal- anincidentangleof 30(cid:7),whichistheaverageof theBATGRB ibration database (CALDB: 2006-05-30). The burst pipeline samples. We found equal or higher improvements in (cid:4)2 in script,batgrbproduct,wasusedtoprocesstheBATeventdata. 62 simulated spectra out of 10,000. Thus, the chance prob- Thexspecspectralfittingtool(ver.11.3.2)wasusedtofiteach ability of having an equal or higher (cid:4)(cid:4)2 of 6 with a CPL spectrum. modelwhentheparentdistributionisacaseof aPLmodelis For the time-averaged spectral analysis, we use the time in- 0.62%. tervalfrom0%to100%of thetotalburstfluence(t interval) Because of the narrow energy band of the BAT, most of 100 calculatedbybattblocks.SincetheBATenergyresponsegen- theEobs valuesmeasuredfromtheBATspectraldataarebased peak erator,batdrmgen,performsthecalculationforafixedsinglein- on a CPL fit, but not on the Band function fit. For XRFs, we cidentangleof thesource,itwillbeaproblemifthepositionof apply a constrained Band (hereafter C-Band) functionmethod the source is moving during the time interval selected for the (Sakamoto et al. 2004) to constrain Eobs. However, there is peak spectral analysis due to the spacecraft slew. In this situation, a systematic problem in the Epoebask values derived by different wecreatedtheresponsematricesforeach5speriodduringthe spectralmodels.Inparticular,fortheburstsforwhichthetrue time interval taking into account the position of the GRB in spectralshapeistheBandfunction,thereisaknowneffectthat detectorcoordinates.Wethenweightedtheseresponsematrices Eobs derivedfromaCPLmodelfithasasystematicallyhigher peak bythe5scountratesandcreatedtheaveragedresponsematrices valuethanEpoebaskderivedfromaBandfunctionfit(e.g.,Kaneko usingaddrmf.Sincethespacecraftslewsabout1(cid:7)persecondin etal.2006;Cabreraetal.2007).Toinvestigatethiseffect,we responsetoaGRBtrigger,wechose5sintervalstocalculatethe fit all the BAT GRB spectra for which Eobs are derived only peak energyresponseforevery5(cid:7). fromtheBATdatawithaBandfunctionwiththehigh-energy We fit each spectrum with a power-law (PL) model14 and a photonindexfixedat(cid:3)2to(cid:2)2.3.Figure2showsEpoebaskderivedby cutoffpower-law(CPL)model.15Thebest-fitspectralmodelis the Band function fixing (cid:3)2 ¼(cid:2)2:3 and Epoebask derived by a determined based on the difference in (cid:4)2 between a PL and a CPL or a C-Band function. The Eobs values derived by the peak CPL fit. If (cid:4)(cid:4)2 between a PL and a CPL fit is greater than 6 Band function with fixing (cid:3)2 ¼(cid:2)2:3 and by a CPL model (b(cid:4)et(cid:4)te2rr(cid:8)ep(cid:4)reP2sLe(cid:2)nta(cid:4)tiC2vPeLs>pec6t)r,awlmeoddeteelrfmorintehethdaattaa.CTPoLqumaondtiefylitshea afugnrecetiownithalisnoerargorrese.MwiotshtEofpoebEaskpoebdaskerviavleudesbdyetrhiveeBdabnydafCun-Bctaionnd significanceofthisimprovement,weperformed10,000spectral withfixing(cid:3)2 ¼(cid:2)2:3towithinerrors.Therefore,weconclude simulations taking into account the distributions of the power- that the systematic error in Eobs derived by different spec- peak lawphotonindexinaPLfit,thefluenceinthe15Y150keVbandin tralmodelsisnegligiblecomparedtothatof thestatisticalerror aPLfit,andthet100durationof theBATGRBs(e.g.,Sakamoto assigned to Epoebask derived from the BAT spectral data alone. et al. 2008), and we determined in how many cases a CPL fit Note that the BATspectral data include the systematic errors, gives(cid:4)2improvementsof (cid:6)6overaPLfit.Weusedthebest-fit which are introduced to reproduce the canonical spectrum of normaldistributionforthepower-lawphotonindexcenteringon theCrabnebulaobservedatvariousincidentangles(Sakamoto 1.65with(cid:5)of 0.36.Thebest-fitlognormaldistributionisused etal.2008).ToperformthesystematicstudyusingtheBATdata, forthefluencecenteringonS(15Y150 keV)¼10(cid:2)5:92ergscm(cid:2)2 we only selected bursts for which the full BATevent data are available.16 14 f(E)¼K50(E/50keV)(cid:3),whereK50isthenormalizationat50keVinunits ofphotonscm(cid:2)2s(cid:2)1keV(cid:2)1. 16 We exclude bursts such as GRB 050820A, GRB 051008, and GRB 15 f(E)¼K50(E/50keV)(cid:3)exp½(cid:2)E(2þ(cid:3))/Epeak(cid:5). 060218becauseofincompleteeventdata. No. 1, 2008 SWIFT X-RAY FLASHES 573 2.3. Swift XRT Data We constructed a pipeline script to perform the XRTanaly- sisinasystematicway.Thispipelinescriptanalysisiscomposed of four parts: (1) data download from the Swift Science Data Center (SDC); (2) an image analysis to find the source (X-ray afterglow) and background regions; (3) a temporal analysis to constructandfitthelightcurve;and(4)aspectralanalysis.The screenedeventdataof theWindowTiming(WT)modeandthe PhotonCounting(PC)modearedownloadedfromtheSDCand used in our pipeline process. For the WT mode, only the data of thefirstsegmentnumber(001)areselected.AllavailablePC modedataareapplied.Thestandardgrades,grades0Y2forthe WTmodeand0Y12forthePCmode,areusedintheanalysis. Theanalysisisperformedinthe0.3Y10keVband.Thedetection of an X-ray afterglow is done automatically using ximage as- suming that an afterglow is the brightest X-ray source located within 40 from the BATon-board position. However, in cases whereasteadycatalogedbrightX-raysourceismisidentifiedas Fig.3.—DistributionsofthefluenceratioS(25Y50keV)/S(50Y100keV)for anafterglow,wespecifythecoordinatesof theX-rayafterglow BAT(top)andHETE-2(bottom).Thedashedlinescorrespondtotheborders manually. The source region of the PC mode is selected as a betweenC-GRBsandXRRs,andbetweenXRRsandXRFs. circleof4700radius.ThebackgroundregionofthePCmodeisan annulus in an outer radius of 15000 and an inner radius of 7000 countrate,thescriptalwayseliminatesacentralareawithin700 radius for the PC data and a 1400 ;6:70 box region for the WT excludingthebackgroundX-raysourcesdetectedbyximagein circularregionsof 4700 radius.FortheWTdata,therectangular data. The count rate derived from the region excluding the regionof 1:60;6:70 isselectedasaforegroundregionusingan centralpartiscorrectedbytakingintoaccounttheshapeof the ARFatanaveragedphotonenergy.Thespectralanalysisisper- afterglowpositionderivedfromthePCmodedataasthecenter formedusingonlythedataof <0.6countss(cid:2)1forthePCmode of theregion.Thebackgroundregionisselectedtobeasquare regionof6.70onasideexcludinga2:30;6:70rectangularregion and<100countss(cid:2)1fortheWTmode. TwoGRBsinoursample,GRB050713AandGRB060206 centered at the afterglow position. The light curve is binned haveabackgroundX-raysource(cid:1)2500 and(cid:1)1000,respectively, basedonthenumberof photonsrequiredtomeetatleast5(cid:5)for fromthepositionof theafterglow.Sinceitisdifficulttoexclude thePCmodeand10(cid:5)fortheWTmodeineachlightcurvebin. the contamination from the very closely located background The light curve fitting starts with a single power law. Then, additionalpower-lawcomponentsareaddedtominimize(cid:4)2of source,we excludedthelast portion of thelightcurves,which haveaflatteningthatisverylikelyduetothecontaminationfrom thefit.ComplicatedstructuressuchasX-rayflaresarealsowell thebackgroundsource. fitted with this algorithm. Although our pipeline script fits the XRT light curve automatically for every GRB trigger by this 2.4. Sample of GRBs algorithm, we excluded the time intervals during the X-ray Wecalculatedthefluenceratiobetweenthe25Y50keVandthe flares from the light curve data by visual inspections before 50Y100keVbandsderivedfromaPLmodelusingtheBATtime- doingthefitbyourmethodbecausetheunderstandingof the averaged spectrum for all Swift bursts detected between 2004 overall shape of the light curve is the primary interest in our Decemberand2006September.ThenweclassifiedtheseGRBs study.Theancillaryresponsefunction(ARF)filesarecreated usingthedefinitiondescribedinx2.1.Outofatotalof158long by xrtmkarffor the WTand the PC mode data individually. GRBs,weclassified10asXRFs,97asXRRs,and51asC-GRBs. The spectral fitting is performed by xspec 11.3.2 using an absorbedpower-lawmodel17forboththeWTandthePCmode ThedistributionofthefluenceratioS(25Y50keV)/S(50Y100keV) forthe158longGRBsisshowninFigure3.SimilartotheHETE-2 data.Foranabsorptionmodel,wefixtheGalacticabsorption results (Sakamoto et al. 2005), the figure clearly shows that ofDickey&Lockman(1990)attheGRBlocationandthenadd Swift’sXRFs,XRRs,andC-GRBsalsoformasinglebroaddis- anadditionalabsorptiontothemodel.Weusethexspeczwabs tribution.Thisfigurealsoclearlyshowsthattheratioof thenum- modelforknownredshiftGRBsapplyingthemeasuredredshift berofBATXRFstoBATXRRsissmallerthanthatoftheHETE-2 to calculate the absorption associated to the source frame of XRFsamples.AsdiscussedinBand(2006)thenumbersof each GRBs.Thespectraarebinnedtoatleast20countsineachspec- GRB class strongly depend on the sensitivity of the instrument. tralbinbygrppha.Theconversionfactor fromacountrateto anunabsorbed0.3Y10keVenergyfluxisalsocalculatedbased Thisproblembecomesmoreseriousfortheinstrumentsthatdonot coverawideenergyrange,suchastheBAT.Thus,wewillnot ontheresultof thetime-integratedspectralanalysis. discusstheabsolutenumbersof eachGRBclassinthispaper. A ‘‘pile-up’’ correction (e.g., Romano et al. 2006; Nousek Since the determination of Eobs is crucial for our study, et al. 2006; Evans et al. 2007) is applied during our pipeline peak weonlyselectGRBshavingvaluesforEobs thatcanbedeter- process. It assumes a ‘‘pile-up’’ effect exists whenever the un- peak minedfromtheBATdataaloneorfromusingthedatafromother correctedcountrateintheprocessedlightcurveexceeds0.6and 100countss(cid:2)1forthePCandtheWTmodes,respectively.Only GRBinstruments(Konus-WindandHETE-2).Sincewecanuse theC-Bandfunctionmethodfor XRFs toconstrainEobs ifthe thetimeintervalsthatareaffectedbythe‘‘pile-up’’asdescribed peak photonindex(cid:3)inaPLfitismuchsteeperthan(cid:2)2intheBAT in our definition above have corrections applied. Although the spectrum,we select allbursts thathave(cid:3)<(cid:2)2ata90%con- area of the spectral region affected by pile-up depends on its fidence level. We exclude GRB 041224 from our sample be- causethereisnoXRTobservation.WealsoexcludeGRB060614 17 Thewabs(cid:9)wabs(cid:9)pegpwrlworwabs(cid:9)zwabs(cid:9)pegpwrlwmodelinxspec. because there was no report on the time-averaged spectral 46 5 5059605 2526 6656863544 00 02010001010000 c3 0.0.0.0.0.0.0.0.0.0. 0.0.50.0.0.0.0.0.0.0.0.0.0.0.0.0. 2 (cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10) (cid:10)(cid:10)8(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10) SR 3146645445 380.29338425482338 1.2.1.1.1.1.1.1.1.1. 0.70.7 0.70.0.90.70.70.80.80.80.70.0.70.80.70.7 b keV) 0.170.41.10.50.50.80.80.40.60.3 52220.11.40.90.61.50.41.43.11.520.51.50.7 0 (cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10) (cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10) 5 1 9705732382 12318840137506623 Y15 0.73.6.3.2.4.8.2.4.2. 1641550.33.8.12.17.8.15.80.16.149.77.11. S( hMo/Inst C-BandC-BandC-BandC-BandC-BandC-Band...C-BandC-BandC-Band .........iAT/KW.....................jKW...kKW...lKW... r B e h t O 1 fobsEpeak 7þ2912(cid:2)6þ1710(cid:2)7þ2718(cid:2)6þ2217(cid:2)<19<33...8þ2318(cid:2)<27.6<23 .........117þ2180(cid:2).....................36þ8424(cid:2)...122þ5758(cid:2)...33(cid:10)... 4 1 2 6 1 e2(cid:4) ..................59.1......... 69.061.317.9...62.146.049.750.445.855.360.6...60.5...53.7...57.5 1(cid:2)) V e k 1(cid:2) s s Burst gK502(cid:2)cm ..................210þ915(cid:2)......... 10þ98(cid:2)13þ48(cid:2)30þ427(cid:2)...1390þ0111(cid:2)4þ23(cid:2)7þ53(cid:2)8þ75(cid:2)3þ31(cid:2)6þ44(cid:2)4þ42(cid:2)...10þ94(cid:2)...9þ06(cid:2)...7þ24(cid:2) Swift otons 1 3227 131 1 1 2 1 L h 1 P p f4 C 3(cid:2) o 0 1TABLEProperties obsEpeakkeV)(1 ..................5þ2312(cid:2)......... 35þ0816(cid:2)19þ749(cid:2)4þ823(cid:2)...9þ436(cid:2)17þ618(cid:2)45þ7213(cid:2)19þ7410(cid:2)36þ6311(cid:2)38þ7813(cid:2)18þ588(cid:2)...21þ6310(cid:2)...28þ7311(cid:2)...25þ7211(cid:2) n ( 1 o si omptEmis (cid:3) ..................:17þ:08(cid:2):12(cid:2)......... 1.00.2(cid:10)0.80.4(cid:10)1.00.1(cid:10)...:19þ:09:14(cid:2)1.40.3(cid:10):08þ:06(cid:2):06(cid:2)0.90.3(cid:10):06þ:10(cid:2):05(cid:2)1.20.3(cid:10):06þ:09(cid:2):05(cid:2)...:07þ:06(cid:2):06(cid:2)...1.20.3(cid:10)...0.90.4(cid:10) r (cid:2)(cid:2)(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) P 7831967195 65486590665051864 e2 2.8.5.7.9.9.6.6.6.8. 6.8.6.0.5.5.6.9.2.4.1.4.0.0.4.3.0. (cid:4) 8545456355 87677556567573647 1 7 3 4132322584 74 16213131121412 L dK50 13(cid:10)98(cid:10)12(cid:10)7(cid:10)9(cid:10)6(cid:10)12(cid:10)24(cid:10)49(cid:10)25(cid:10) 224(cid:10)94(cid:10)135028(cid:10)32(cid:10)67(cid:10)16(cid:10)75(cid:10)13(cid:10)74(cid:10)13(cid:10)362(cid:10)25(cid:10)67(cid:10)103(cid:10)62(cid:10)52(cid:10) P 58 8 647 8 7 3748 2334 23 2 00 02010101010000 :03þ:04(cid:2)0.(cid:10)0.(cid:10)0.(cid:10)0.(cid:10):03þ:04(cid:2)0.(cid:10)0.(cid:10):02þ:03(cid:2)0.(cid:10) 0.(cid:10)0.(cid:10)760.(cid:10)0.(cid:10)0.(cid:10)0.(cid:10)0.(cid:10)0.(cid:10)0.(cid:10)0.(cid:10)0.(cid:10)0.(cid:10)0.(cid:10)0.(cid:10)0.(cid:10)0.(cid:10) (cid:3) :24(cid:2)3.1(cid:2)2.4(cid:2)2.7(cid:2)2.8(cid:2):26(cid:2)2.6(cid:2)2.5(cid:2):25(cid:2)2.5(cid:2) 1.541.651.(cid:2)1.541.8(cid:2)1.901.551.651.7(cid:2)1.711.8(cid:2)1.571.7(cid:2)1.531.721.551.65 (cid:2)(cid:2) (cid:2) (cid:2)(cid:2)(cid:2) (cid:2) (cid:2) (cid:2)(cid:2)(cid:2)(cid:2) aBATT100 6.43.050.347.326.665.365.79.79.98.7 76.149.512.8190.73.256.759.618.2157.312.6143.223.774.4230.310.6132.524.7 GRB 06......................16A....................14B....................19......................24......................19......................28B....................12......................23B....................26...................... 19B...................10......................25A...................13A...................15......................15B...................21B...................11A...................15......................06......................11A...................10A...................07......................14......................25......................04A...................27...................... 4478824599 24578901122578899 0000000000 00000010000000000 5555566666 55555556666666666 0000000000 00000000000000000 FFFFFFFFFF RRRRRRRRRRRRRRRRR RRRRRRRRRR RRRRRRRRRRRRRRRRR XXXXXXXXXX XXXXXXXXXXXXXXXXX 574 653243433 2534 00000000010000 c3 0.0.0.0.0.0.0.0.0.0.0.0.0.0. 2 (cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10) R S 95296651573843 0.60.60.60.50.60.50.60.60.60.0.50.60.60.6 b ) V 7366134857 841 ke 0.2.1.1.3.2.2.1.0.2.31.1.1. 0 (cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10)(cid:10) 5 1 92162671206560 Y15 11.50.41.88.82.63.61.63.16.22.1729.54.28. S( p hMo/Inst .........mKWnKWoKW...AT/KWqHETErKWsKW......... r B e h t O fobsEpeak .........124(cid:10)216(cid:10)928(cid:10)...1934þ01830(cid:2)51þ3127(cid:2)224þ6158(cid:2)25þ2420(cid:2)......... 034 1114 213 2 e2(cid:4) 45.444.845.5.........39.4............38.943.544.2 1(cid:2)) V e k 1(cid:2) s gK502(cid:2)cm 23þ715(cid:2)14þ510(cid:2)15þ110(cid:2).........4þ33(cid:2)............2(cid:10)5þ24(cid:2)5þ53(cid:2) ns 434 1 321 o ot nued CPL 3(cid:2)ph nti 10 o ( C — 1BLE obsEpeakkeV) 39þ9516(cid:2)46þ1319(cid:2)12þ928(cid:2).........61þ2324(cid:2)............75þ0021(cid:2)117þ6839(cid:2)184þ5041(cid:2) A ( 1 1 111 T e. d 0.40.30.3 0.3 0.40.20.3 piso PL ade2BAT(cid:3)(cid:4)(cid:3)KGRBT50100 RB050124....................6.01.470.082131158.70.7(cid:2)(cid:10)(cid:10)(cid:2)(cid:10)RB050128....................30.41.370.07172759.30.7(cid:2)(cid:10)(cid:10)(cid:2)(cid:10)RB050219A.................35.11.310.061234103.20.1(cid:2)(cid:10)(cid:10)(cid:2)(cid:10)...RB050326....................41.01.250.04216442.1(cid:2)(cid:10)(cid:10)...RB050401....................36.81.400.07231937.1(cid:2)(cid:10)(cid:10)...RB050603....................21.41.160.062891071.1(cid:2)(cid:10)(cid:10)RB050716....................90.11.370.0672352.50.8(cid:2)(cid:10)(cid:10)(cid:2)(cid:10)...RB050717....................209.21.300.0531148.5(cid:2)(cid:10)(cid:10)...RB050922C.................6.81.370.06247844.9(cid:2)(cid:10)(cid:10)...RB051109A.................45.41.50.251663.7(cid:2)(cid:10)(cid:10)...RB060105....................87.61.070.04191432.5(cid:2)(cid:10)(cid:10)RB060204B.................195.01.440.0917147.00.8(cid:2)(cid:10)(cid:10)(cid:2)(cid:10)RB060813....................36.71.360.04155354.11.0(cid:2)(cid:10)(cid:10)(cid:2)(cid:10)RB060908....................28.51.350.06103350.71.0(cid:2)(cid:10)(cid:10)(cid:2)(cid:10) aInseconds.Yb721(cid:2)(cid:2)(cid:2)BAT15150keVenergyfluencein10ergscmswiththeBATbest-fitmodel.YYcAfluenceratioofS(2550keV)/S(50100keV)derivedfromaPLfit.d4211(cid:2)(cid:2)(cid:2)(cid:2)In10photonscmskeV.eThedegreesoffreedominaPLfitandaCPLfitare57and56,respectively.fInkeV.g3211(cid:2)(cid:2)(cid:2)(cid:2)In10photonscmskeV.hobsSpectralfittingmodelused/GRBinstrumentthatreportsE.peakobsiMorrisetal.2007;EderivedfromaCPLmodel.peakobsjGolenetskiietal.2006a,GCNCirc.5113.EderivedfromaCPLmodel.peakobskGolenetskiietal.2006c,GCNCirc.5460.EderivedfromaCPLmodel.peaklobsGolenetskiietal.2006d,GCNCirc.5518.EderivedfromaBandmodel.peakobsmGolenetskiietal.2005a,GCNCirc.3152.EderivedfromaBandmodel.peakobsnGolenetskiietal.2005b,GCNCirc.3179.EderivedfromaBandmodelforthefirstepeakoobsGolenetskiietal.2005c,GCNCirc.3518.EderivedfromaBandmodel.peakobspKrimmetal.2006;EderivedfromaCPLmodel.peakobsqCrewetal.2005,GCNCirc.4021.EderivedfromaCPLmodel.peakobsrGolenetskiietal.2005d,GCNCirc.4238.EderivedfromaCPLmodel.peaksobsTashiroetal.2007;EderivedfromaCPLmodel.peak GGGGGGGGGGGGGG 575 576 SAKAMOTO ETAL. Vol. 679 Fig.4.—S(25Y50keV)/S(50Y100keV)fluenceratiosandEobs valuesofBAT- peak detected bursts. The dashedlineshows the fluence ratiosas afunctionof Eobs peak assuming(cid:3)1¼(cid:2)1and(cid:3)2¼(cid:2)2:5intheBandfunction.Thedash-dottedlines indicatetheboundariesbetweenXRFs,XRRs,andC-GRBs(eq.[1]inthetext). [SeetheelectroniceditionoftheJournalforacolorversionofthisfigure.] parameters by Konus-Wind (Golenetskii et al. 2006b). Based ontheseselectioncriteria,atotalof 41GRBsareselected,in- cluding10XRFs,17XRRs,and14C-GRBs. 3. PROMPT EMISSION The spectral properties of the prompt emission for our 41GRBsaresummarizedinTable1.Figure4showstheS(25Y 50keV)/S(50Y100keV)fluenceratioversusEobs.Asseeninthe peak figure,Eobs oftheBATGRBsrangesfromafewtensofkeVtoa peak fewhundredsofkeV.ThisbroadcontinuousdistributionofEobs is peak consistentwiththeBeppoSAX(Kippenetal.2003)andHETE-2 (Barraudetal.2003;Sakamotoetal.2005)results.TheBATGRBs followwellonthecurvecalculatedassuming(cid:3) ¼(cid:2)1and(cid:3) ¼ (cid:2)2:5fortheBandfunction.ThegapintheS(215Y50keV)/S(520Y Fig. 6.—Plotofthe15Y150keVfluenceandpeakspectralenergyEpoebaskof XRFs,XRRs,andC-GRBsdetectedbyBAT.Thedashedanddash-dottedlinesare 100keV)fluenceratiofrom0.8to1.2inoursampleislikelydue thebestfitstothedatawithandwithouttakingintoaccounttheerrors,andthey to a selection effect. Essentially, we selected burstsbased on the are given by log(Eobs)¼ 3:87þ0:33þ(0:33(cid:10)0:13)log½S(15Y150keV)(cid:5) and measurement of Eobs forXRRs andC-GRBs.Thiscriterionis log(Epoebask)¼(5:46(cid:10)pe0ak:80)þ(0:(cid:2)602:1(cid:10)6 0:14)log½S(15Y150keV)(cid:5). Those bursts peak forwhichEobs isderivedfromaconstrainedBandfunction,aCPL,andtheBand more or less equivalent to selecting the bursts based on their peak functionaremarkedassquares,circles,andtriangles,respectively.[Seetheelec- brightness.Ontheotherhand,mostof theXRFswereselected troniceditionoftheJournalforacolorversionofthisfigure.] based on the photon index value in a PL fit ((cid:3)<(cid:2)2). This is equivalenttoselectingbythesoftnessof thebursts.Therefore, thereisadifferentwaytodistinguishbetweenXRFs,andXRRs andC-GRBs.Evidently,asshowninFigure3,thereisnosuch gapinthehistogramof thefluenceratiosfortheBATGRBsif the whole burst sample has been examined. Therefore, we be- lievethatthegapinthefluenceratioat0.8Y1.2isduetotheway inwhichweselectedthebursts. InFigure5,wecompareEobs inaCPLfitandthelow-energy peak photon indices (cid:3) for the BAT, HETE-2, and BATSE samples. For both the HETE-2 (Sakamoto et al. 2005) and the BATSE (Kanekoetal.2006)samples,weonlyplottedGRBswithaCPL model as the best representative model for the time-averaged spectrumtoreducethesystematicdifferencesinboth(cid:3)andEobs peak due to the different choices of spectral models (Kaneko et al. 2006).Asseeninthefigure,therangeof (cid:3)-valuesderivedfrom theBATdataaloneareconsistentwiththeHETE-2andBATSE results.Inaddition,wehaveconfirmedthatthe(cid:3)-valuesforXRFs Fig.5.—Distributionofthelow-energyphotonindex(cid:3)andEobs inaCPL peak andXRRs (GRBs with Eobs <100 keV)coverthesame range model.ThesamplesofBAT,HETE-2,andBATSEareshownascircles,squares, peak andtriangles,respectively.[SeetheelectroniceditionoftheJournalforacolor as for C-GRBs (GRBs with Epoebask >100 keV; Sakamoto et al. versionofthisfigure.] 2005). No. 1, 2008 SWIFT X-RAY FLASHES 577 Fig.7.—DistributionofE fortheSwift/BAT,HETE-2,andBATSEsamples.Thewhite,gray,andblackhistogramsrepresentE derivedbytheconstrainedBand peak peak function,aCPLmodel,andtheBandfunction,respectively.Theleft-sidearrowsareE withupperlimits.[SeetheelectroniceditionoftheJournalforacolorversionof peak thisfigure.] The top panel of Figure 6 shows Eobs and the 15Y150 keV bottompanelof Figure6showsthedistributionbetweenEobs peak peak fluence, S(15Y150 keV), for the BAT GRBs. We note a corre- andS(1Y1000keV). lationbetweenEobs andS(15Y150keV).Forthepurposeof the To take into account the errors associated with Eobs and peak peak correlationstudy,weassignedthemedianofthe90%confidence S(1Y1000keV)inourcalculationof thecorrelationcoefficient, intervaltobethebest-fitvalueof Eobs,sothattheerrorswould wegenerate10,000randomnumbersassumingaGaussiandis- peak be symmetric. For cases in which we only have upper limits tributioninEobs andS(1Y1000keV)ofthecentralvalueandthe peak forEobs,weassignedthebest-fitvaluesofEobs tobethemedian error for each GRB in the sample. For GRBs only having the peak peak of 0and90%upperlimit,andweassignedthesymmetricerror upper limits in Eobs and/or S(1Y1000 keV), we use a uniform peak tobehalfthatvalue.Thelinearcorrelationcoefficientbetween distributiontogeneratetherandomnumbers.Thenwecalculate log½S(15Y150 keV)(cid:5) and log(Eobs) is +0.76 for a sample of thelinearcorrelationcoefficient for the10,000 burstsamplein peak 41GRBsusingthebest-fitvalues. log½Eobs(cid:5)Ylog½S(1Y1000 keV)(cid:5)spaceandmakeahistogramof peak The best-fit functions with and without taking into account thecalculatedcorrelationcoefficient.Thehighestpeakand68% the errors are log(Eobs)¼3:87þ0:33þ(0:33(cid:10)0:03)log½S(15Y points from the highest value of the histogram are assigned as peak (cid:2)0:16 150 keV)(cid:5) and log(Eobs)¼(5:46(cid:10)0:80)þ(0:62(cid:10)0:14)log thecentralvalueand1(cid:5)intervalof thecorrelationcoefficient. ½S(15Y150 keV)(cid:5),resppeaekctively. Weinvestigatethecorrelationcoefficientfor(1)GRBswithEobs peak Since the fluence in the 15Y150 keV band is not a good from aCPLmodel (sample A;total32GRBs); (2)GRBswith quantity to examine the correlation with Eobs because of its a constrained Eobs from a C-Band model and a CPL model peak peak narrowenergyrangeof integration,wealsoinvestigatethecor- (sampleB;total37GRBs);and(3)all41GRBs(sampleC)to relationbetweenEobs andthefluenceinthe1Y1000keVband, evaluate the systematic effect of Eobs due to the different peak peak S(1Y1000keV).ForGRBsthathavethemeasurementof Eobs spectralmodels(C-Bandvs.CPL).Thecalculatedcorrelation peak fromBATdataalone,wecalculateS(1Y1000keV)directlyfrom coefficientsareþ0:50þ0:11; þ0:63þ0:08,andþ0:68þ0:07(allin (cid:2)0:12 (cid:2)0:10 (cid:2)0:08 a spectral fitting process using the Band function. Therefore, 1(cid:5)error)forsamplesA,B,andC,respectively.Theprobabili- uncertaintyinthespectralparametersintheBandfunction,es- tiesof suchacorrelationoccurringbychanceineachsample pecially in the high-energy photon index (cid:3) is also taken into sizeare3:4;10(cid:2)2Y2:4;10(cid:2)4,5:8;10(cid:2)4Y5:3;10(cid:2)7,and4:1; 2 account in an error calculation of the fluence. For GRBs for 10(cid:2)5Y2:3;10(cid:2)8 in the 1 (cid:5) interval for samples A, B, and C, which we use E from the literature, we calculated the flu- respectively. Thus, the correlation between Eobs and the flu- peak peak enceusingthespectralparameterspresented intheliterature, enceisstillsignificantevenifweusethefluenceinthe1Y1000keV and the error associated in the normalization of the best-fit bandandalsotakeintoaccounttheEobs derivedbythedifferent peak spectral model is used to calculate an error of the fluence. If spectralmodels. the reported best-fit model is a CPL for these GRBs, we use ThehistogramsofEobs fortheSwift/BAT,HETE-2(Sakamoto peak (cid:3) ¼(cid:2)2:3to calculate the fluence in the Band function. The etal.2005),andBATSE(Kanekoetal.2006)samplesareshownin 2 578 SAKAMOTO ETAL. Vol. 679 Fig.9.—Isotropicequivalentenergy,E vs.thepeakenergyintheGRBrest iso frame,Esrc fortheknownredshiftBATGRBsinthiswork(circles),pre-Swift peak GRBs(dots)andtheknownredshiftSwiftGRBsobservedbyKonus-Windor HETE-2(triangles).Thedashedlineisthebest-fitcorrelationreportedbyAmati (2006)(Epsercak¼95keV½Eiso/ð1052 ergsÞ(cid:5)0:49).[Seetheelectroniceditionofthe Journalforacolorversionofthisfigure.] samplesiscalculatedbyscalingtheerrorinthenormalizationof the best-fit spectral model. As clearly seen in the figure, S(15Y 150 keV) and Eobs of the BAT GRBs are consistent with both peak theHETE-2andtheBATSEsamples.Thestrongcorrelationbe- tweenEobs andS(15Y150keV)stillexistsbycombiningtheBAT peak andtheHETE-2samples.Thecorrelationcoefficientcombin- ingtheBATandHETE-2GRBsis+0.685for83samples.The probabilityofsuchacorrelationoccurringbychanceis<10(cid:2)11. Thebest-fitcorrelationfunctionsbetweenEobs andS(15Y150keV) peak withandwithouttakingintoaccounttheerrorsarelog(Eobs)¼ peak 2:74þ1:51þ(0:15(cid:10)0:02)log½S(15Y150keV)(cid:5) and log(Eobs)¼ (cid:2)0:08 peak (4:77(cid:10)0:63)þ(0:52(cid:10)0:11)log½S(15Y150keV)(cid:5), respectively. Fig.8.—Top:Plotofthe15Y150keVfluenceandpeakspectralenergyEobs However, as clearly shown in both Figures 7 and 8, the BAT forBATandHETE-2samples.Bottom:Plotofthe15Y150keVfluenceandppeeaakk XRFsarenotsofter(orweaker)thantheHETE-2sample.This spectralenergyEobs forBAT,HETE-2,andBATSEsamples.Thedashedanddash- is because of the higher observed energy band of the BAT peak dottedline are thebest fitto the BATandtheHETE-2datawith and without compared to that of the HETE-2 Wide-field X-ray Monitor (ta0k:1in5g(cid:10)in0to:02ac)cloogu½nSt(1th5eY1e5rr0orkse,Van)(cid:5)dtahnedy aloreg(gEivoebsn)b¼y(l4o:g7(7Ep(cid:10)oebask0):6¼3)2þ:74(0(cid:2)þ:005::01285(cid:10)þ (WXM;2Y25keV)(Shirasakietal.2003).Thus,cautionmight 0:11)log½S(15Y150keV)(cid:5).[SeetheelectronicepdeiatkionoftheJournalforacolor beneededwhencomparingtheBATandHETE-2XRFsamples. versionofthisfigure.] ItisalsoclearfromthefiguresthattheEobs distributionof the peak TABLE2 Figure 7. We notice a difference in the distributions of Esrc andE DerivedfromtheBATData Eobs for the three GRB instruments, especially between the peak iso peak BAT(ortheHETE-2)andtheBATSEdistributions.Applying Esrc E the two-sample Kolmogorov-Smirnov (K-S) test to the Epoebask GRB z (kpeeVak) (1052iseorgs) Instrument distributions for the BATand HETE-2 samples, the BATand BATSE samples, and the HETE-2 and BATSE samples, we 0504011.................. 2.9 467(cid:10)110 41(cid:10)8 Konus-Wind findK-Stestprobabilitiesof 0.44,2:3;10(cid:2)9,and4:1;10(cid:2)16, 050416A................. 0.6535 28þ(cid:2)69 0:096(cid:2)þ00::000191 BAT respectively. Based on these tests, we may conclude that 050525A................. 0.606 131þ(cid:2)43 2:5þ(cid:2)00::45 BAT the BATSE GRB samples have a systematically higher Eobs 050603a.................. 2.821 1333(cid:10)107 70(cid:10)5 Konus-Wind peak 050824.................... 0.83 <35 0:13þ0:10 BAT than the BATand the HETE-2 samples. This is probably be- (cid:2)0:03 050922Ca................ 2.198 415(cid:10)111 6.1(cid:10)2.0 HETE-2 cause not only is the BATSE energy range higher than those 051109Aa............... 2.346 539(cid:10)200 7.5(cid:10)0.8 Konus-Wind other instruments, but also the current BATSE spectral cata- 060115.................... 3.53 285þ63 6:3þ4:1 BAT (cid:2)34 (cid:2)0:9 log only contains the bright GRBs, therefore systematically 060206.................... 4.048 394þ82 4:3þ2:1 BAT (cid:2)46 (cid:2)0:9 selecting higher Eobs GRBs in the catalog (Kaneko et al. 060707.................... 3.425 279þ43 5:4þ2:3 BAT peak (cid:2)28 (cid:2)1:0 2006). 060908b.................. 2.43 514þ224 9:8þ1:6 BAT (cid:2)102 (cid:2)0:9 Figure8showsEobs andS(15Y150keV)oftheBAT,HETE-2, 060926.................... 3.20 <96.6 1:1þ3:5 BAT andBATSEsamplesp.eaTkhefluenceinthe15Y150keVbandforthe 060927.................... 5.6 475þ(cid:2)7477 14:1(cid:2)þ(cid:2)022:::130 BAT HETE-2andBATSEsamplesiscalculatedusingthebest-fitspec- Note.—Theuncertaintyis1(cid:5). tralmodelreportedinthecatalog(Sakamotoetal.2005;Kaneko a Esrc andE valuesfromAmati(2006). peak iso etal.2006).TheerrorinthefluencefortheHETE-2andBATSE b Thehigh-energyphotonindex(cid:3) oftheBandfunctionisfixedat(cid:2)2.3. 2 No. 1, 2008 SWIFT X-RAY FLASHES 579 TABLE3 XRTX-RaySpectralPropertiesof41SwiftBursts WT PC t t N t t N start stop H start stop H GRB (s) (s) (1021cm(cid:2)2) (cid:3)a (cid:4)2/dof (s) (s) (1021cm(cid:2)2) (cid:3)a (cid:4)2/dof XRF050406......... 92 1.5 ; 105 ... (cid:2)2.3 32.0/16 1.1 ;104 1.4 ; 106 3:5þ5:9 (cid:2)3:5þ1:1 6.3/8 (cid:2)2:0 (cid:2)2:3 XRF050416A....... 85 1.4 ; 105 <11 (cid:2)2:4þ0:8 9.9/9 184 6.4 ; 106 5:6þ1:0 (cid:2)2.1(cid:10)0.1 81.4/100 (cid:2)1:5 (cid:2)0:9 XRF050714B....... 157 219 7:2þ1:2 (cid:2)5:8þ0:5 34.2/27 257 9.5 ; 105 2:9þ1:0 (cid:2)2:8þ0:3 21.9/17 þ1:0 (cid:2)0:6 (cid:2)0:8 (cid:2)0:4 XRF050819......... 147 202 <0.4 (cid:2)2:3þ0:2 7.3/10 239 6.3 ; 105 <2 (cid:2)2:2þ0:3 17.7/11 (cid:2)0:3 (cid:2)0:4 XRF050824......... ... ... ... ... ... 6.2 ; 103 2.1 ;106 2:4þ1:0 (cid:2)2.2(cid:10)0.2 29.4/39 (cid:2)0:9 XRF060219......... 126 5.7 ; 104 3:2þ6:9 <(cid:2)2.6 8.3/9 146 6.9 ; 105 3:2þ1:1 (cid:2)3:1þ0:4 23.4/19 (cid:2)2:9 (cid:2)0:9 (cid:2)0:5 XRF060428B....... 212 418 0.3(cid:10)0.1 (cid:2)2.8(cid:10)0.1 126.9/121 622 1.0 ; 106 <0.2 (cid:2)1.9(cid:10)0.1 17.2/30 XRF060512......... 110 155 0:6þ0:7 (cid:2)4:4þ0:6 13.9/10 3.7 ; 103 3.5 ; 105 <0.3 (cid:2)1:9þ0:1 24.6/15 (cid:2)0:5 (cid:2)0:7 (cid:2)0:2 XRF060923B....... ... ... ... ... ... 139 6.0 ; 103 3þ2 (cid:2)2:0þ0:4 2.6/8 (cid:2)1 (cid:2)0:5 XRF060926......... 66 875 25þ(cid:2)2187 (cid:2)1:9þ(cid:2)00::23 11.4/15 4.3 ; 103 2.8 ; 105 <40 (cid:2)1:8þ(cid:2)00::24 10.0/7 XRR050219B...... 3.2 ; 103 1.2 ; 105 0.6(cid:10)0.2 (cid:2)1:81þ0:08 152.6/161 9.1 ;103 3.2 ; 106 1:0þ0:6 (cid:2)2.0(cid:10)0.2 26.6/22 (cid:2)0:09 (cid:2)0:5 XRR050410......... 1.9 ; 103 7.9 ; 104 13þ18 <(cid:2)3.3 28.7/26 1.9 ; 103 9.2 ; 105 <8 (cid:2)1:7þ0:5 23.1/13 (cid:2)9 (cid:2)1:0 XRR050525A...... ... ... ... ... ... 5.9 ; 103 3.0 ; 106 2(cid:10)1 (cid:2)2.1(cid:10)0.2 31.8/41 XRR050713A...... 80 1.2 ; 104 2.4(cid:10)0.3 (cid:2)2:41þ0:08 146.5/166 4.3 ; 103 1.7 ; 106 2.5(cid:10)0.5 (cid:2)2.1(cid:10)0.1 57.6/78 (cid:2)0:09 XRR050815......... ... ... ... ... ... 89 1.8 ; 105 <2 (cid:2)1:8þ0:3 9.7/11 (cid:2)0:4 XRR050915B...... 150 6.5 ; 104 <0.5 (cid:2)2:6þ0:1 53.7/53 288 9.6 ; 105 <1 (cid:2)2:2þ0:2 25.7/24 (cid:2)0:2 (cid:2)0:3 XRR051021B...... 86 115 <10 (cid:2)1:2þ0:5 1.6/2 258 5.2 ; 105 <4 (cid:2)2:0þ0:2 9.1/14 (cid:2)1:1 (cid:2)0:4 XRR060111A...... 74 517 1.7(cid:10)0.1 (cid:2)2:33þ0:04 367.6/300 3.8 ; 103 7.6 ; 105 1:4þ0:5 (cid:2)2.2(cid:10)0.2 33.7/39 (cid:2)0:05 (cid:2)0:4 XRR060115......... 121 5.4 ; 103 <10 (cid:2)1:84þ0:08 78.9/85 616 4.6 ; 105 <8 (cid:2)2:3þ0:1 21.6/26 (cid:2)0:09 (cid:2)0:2 XRR060206......... 64 3.7 ; 104 14þ8 (cid:2)2:4þ0:1 72.3/79 1.7 ; 103 3.7 ; 106 12þ11 (cid:2)2:0þ0:1 46.5/45 (cid:2)7 (cid:2)0:2 (cid:2)10 (cid:2)0:2 XRR060211A...... 172 379 0.6(cid:10)0.2 (cid:2)1.95(cid:10)0.07 162.1/172 662 5.7 ; 105 1:3þ0:8 (cid:2)2.1(cid:10)0.2 16.2/23 (cid:2)0:7 XRR060510A...... 98 143 ... (cid:2)3.7 25.5/8 2.4 ; 104 5.7 ; 105 <0.4 (cid:2)2:03þ0:06 121.1/100 (cid:2)0:10 XRR060707......... 127 160 <6 (cid:2)1:8þ0:2 6.6/5 488 2.8 ; 106 10(cid:10)7 (cid:2)2.1(cid:10)0.1 33.6/39 (cid:2)0:3 XRR060814......... 163 5.2 ; 104 2.6(cid:10)0.2 (cid:2)2.01(cid:10)0.05 363.1/280 1.1 ;103 1.4 ; 106 3.1(cid:10)0.3 (cid:2)2.33(cid:10)0.08 169.6/158 XRR060825......... 199 1.1 ;105 <8 (cid:2)1:6þ0:5 5.4/4 92 5.9 ; 105 3þ4 (cid:2)1.9(cid:10)0.5 8.9/10 (cid:2)1:3 (cid:2)2 XRR060904A...... 97 2.1 ;103 1:8þ0:2 (cid:2)2:61þ0:07 255.7/208 5.4 ; 104 1.3 ; 106 3þ2 (cid:2)2:9þ0:5 10.3/10 (cid:2)0:1 (cid:2)0:08 (cid:2)1 (cid:2)0:8 XRR060927......... ... ... ... ... ... 147 2.1 ;105 <37 (cid:2)1.8(cid:10)0.2 6.7/12 GRB050124......... ... ... ... ... ... 1.1 ;104 5.0 ; 106 <0.8 (cid:2)1:9þ0:2 13.0/14 (cid:2)0:3 GRB050128......... ... ... ... ... ... 4.5 ; 103 9.9 ; 104 0:7þ0:3 (cid:2)2.1(cid:10)0.1 83.6/82 (cid:2)0:2 GRB050219A...... 112 5.7 ; 103 1:8þ0:5 (cid:2)2.1(cid:10)0.2 50.7/55 456 3.2 ; 106 <8 (cid:2)1:8þ0:5 6.6/4 (cid:2)0:4 (cid:2)1:3 GRB050326......... 3.3 ; 103 9.9 ; 103 0:9þ0:7 (cid:2)2:0þ0:2 22.3/25 5.0 ; 103 5.3 ; 105 0:6þ0:6 (cid:2)2.0(cid:10)0.2 27.3/26 (cid:2)0:6 (cid:2)0:3 (cid:2)0:5 GRB050401......... 133 8.5 ; 103 14(cid:10)2 (cid:2)1.91(cid:10)0.04 277.1/266 8.1 ;103 1.1 ;106 21þ17 (cid:2)2.0(cid:10)0.2 22.9/25 (cid:2)11 GRB050603......... ... ... ... ... ... 3.4 ; 104 1.8 ; 106 6(cid:10)4 (cid:2)1:98þ0:12 29.0/49 (cid:2)0:06 GRB050716......... 105 7.6 ; 104 <0.1 (cid:2)1:34þ0:03 208.9/202 4.1 ;103 1.8 ; 106 0.6(cid:10)0.5 (cid:2)2.1(cid:10)0.2 43.3/36 (cid:2)0:05 GRB050717......... 91 2.7 ; 104 1:8þ0:7 (cid:2)1.5(cid:10)0.1 110.7/105 4000 6.0 ; 105 <2 (cid:2)1:5þ0:2 23.6/15 (cid:2)0:6 (cid:2)0:3 GRB050922C...... 116 6.2 ; 104 <2 (cid:2)2.02(cid:10)0.07 107.9/124 3998 5.9 ; 105 7(cid:10)3 (cid:2)2:53þ0:07 60.2/49 (cid:2)0:08 GRB051109A...... 128 1.7 ; 104 <4 (cid:2)2.0(cid:10)0.1 42.9/32 3.4 ; 103 1.5 ; 106 5(cid:10)3 (cid:2)2.08(cid:10)0.07 130.7/129 GRB060105......... 97 4.6 ; 103 1.6(cid:10)0.1 (cid:2)1.99(cid:10)0.03 527.6/496 1.0 ; 104 3.8 ; 105 1.7(cid:10)0.4 (cid:2)2.2(cid:10)0.1 84.8/94 GRB060204B...... 103 1.8 ; 104 1.9(cid:10)0.2 (cid:2)2:28þ0:08 122.5/129 4.0 ; 103 8.1 ;105 1.3(cid:10)0.3 (cid:2)2:3þ0:1 54.9/56 (cid:2)0:09 (cid:2)0:2 GRB060813......... 85 7.6 ; 104 1.1(cid:10)0.4 (cid:2)1.88(cid:10)0.08 167.1/163 4.1 ;103 2.6 ; 105 1.3(cid:10)0.4 (cid:2)2.0(cid:10)0.1 105.1/102 GRB060908......... 80 1.3 ; 104 <8 (cid:2)2.3(cid:10)0.2 18.9/26 1.2 ; 103 1.1 ;106 <11 (cid:2)2:0þ0:2 13.7/14 (cid:2)0:3 a Thedefinitionofthephotonindex,(cid:3),isbasedonthespectralmodel: f(E)¼KE(cid:3). BATSEsampleissystematicallyhighercomparedwiththeGRB knownredshiftGRBsissmall,wehaveconfirmedtheexistence samplesof theHETE-2andtheBATbecauseof lackingsensi- andtheextensionof theEsrc -E relationtoXRFsandXRRs peak iso tivitybelow20keVforBATSE. (GRBswithEsrc <100keV)fortheSwiftGRBs(Amatietal. peak Figure9showsthecorrelationbetweenthepeakenergyinthe 2002;Lambetal.2005;Sakamotoetal.2004,2006). GRBrestframeEsrc ((cid:8)(1þz)Eobs)andtheisotropicradiated peak peak energy Eiso. We calculated Epsercak and Eiso for the nine known 4. X-RAYAFTERGLOW EMISSION redshiftGRBs18inoursampleusingtheBATdata(Table2).For The spectral and temporal properties of the 41 X-ray after- theseGRBs,E isderiveddirectlyfromthespectralfittingus- iso glowsaresummarizedinTables3and4. ingtheBandfunctionandintegratingfrom1keVto10MeVat theGRBrestframe.Esrc iscalculatedfromEobs basedonaCPL Figure10isacompositeplotoftheX-rayafterglowlightcurves. fit.TheEsrc andE vpeaalkuesfortheremainingpSeawkiftGRBsareex- Figures11,12,and13showthelightcurvesineachGRBclass.As peak iso we subsequently discuss in detail, we find that C-GRBs in our tracted from Amati (2006). The values for the pre-Swift GRBs sampletendtohaveafterglowswithshallowdecayindicesatearly are also extracted from Amati (2006). Although our sample of timesfollowedbysteeperindicesatlatertimesandthatthebreaks 18 WeexcludeGRB060512becauseof alesssecuremeasurementof its betweenthesetwoindicesoccuratabout103Y104s.Ontheother redshift. hand,XRFafterglowsshowafairlyshallowdecayindexuntilthe
Description: