ebook img

ApJ, 663, 103, 2007 PDF

15 Pages·2007·1.7 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ApJ, 663, 103, 2007

TheAstrophysicalJournal,663:103Y117,2007July1 #2007.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. THE INTRINSICALLY X-RAY WEAK QUASAR PHL 1811. I. X-RAY OBSERVATIONS AND SPECTRAL ENERGY DISTRIBUTION1 Karen M. Leighly HomerL.DodgeDepartmentofPhysicsandAstronomy,UniversityofOklahoma,440WestBrooksStreet, Norman,OK73019;[email protected] Jules P. Halpern DepartmentofAstronomy,ColumbiaUniversity,550West120thStreet,NewYork,NY10027-6601 Edward B. Jenkins PrincetonUniversityObservatory,Princeton,NJ08544-1001 Dirk Grupe DepartmentofAstronomyandAstrophysics,PennsylvaniaStateUniversity,525DaveyLab,UniversityPark,PA16802 and Jiehae Choi2 and Kimberly B. Prescott HomerL.DodgeDepartmentof PhysicsandAstronomy,UniversityofOklahoma,440WestBrooksStreet,Norman,OK73019 Received2006March24;accepted2006October16 ABSTRACT Thisisthefirstoftwopapersreportingobservationsandanalysisoftheunusuallybright(m ¼14:4),luminous b (M ¼(cid:1)25:5),nearby(z¼0:192)narrow-linequasarPHL1811,focusingontheX-raypropertiesandthespectral B energydistribution.TwoChandraobservationsrevealaweakX-raysourcewithasteepspectrum.Variabilitybya factorof4betweenthetwoobservationsseparatedby12dayssuggeststhattheX-raysarenotscatteredemission.The XMM-Newtonspectraaremodeledinthe0.3Y5keVbandbyasteeppowerlawwith(cid:1)¼2:3(cid:2)0:1,andtheupper limitonintrinsicabsorptionis8:7;1020cm(cid:1)2.Thespectralslopesareconsistentwithpower-lawindicescommonly observedinNLS1s,anditappearsthatweobservethecentralengineX-raysdirectly.IncludingtworecentSwiftToO snapshots,afactorof(cid:3)5variabilitywasobservedamongthefiveX-rayobservationsreportedhere.Incontrast,theUV photometry obtained by the XMM-Newton OM and Swift UVOT, and the HSTspectrum reveal no significant UV variability.The(cid:1) inferredfromtheChandraandcontemporaneousHSTspectrumis(cid:1)2:3(cid:2)0:1,significantlysteeper ox thanobservedfromotherquasarsofthesameopticalluminosity.Thesteep,canonicalX-rayspectra,lackofabsorption, and significant X-ray variability lead usto conclude that PHL 1811 isintrinsically X-ray weak. We also discuss an accretiondiskmodelandthehostgalaxyof PHL1811. Subject headingsg: quasars: emission lines — quasars: individual (PHL 1811) — X-rays: galaxies 1. INTRODUCTION ofannulilocallyemittingasblackbodies,thecontinuumspectrum fromtheaccretiondiskshoulddependontheblackholemassand The standard model for active galactic nuclei (AGNs) and accretionrate(e.g.,Franketal.1992).Moresophisticatedaccre- quasi-stellarobjects(QSOs)proposesthatthebroadbandoptical tion disk models that include a range of physical processes ex- and UV continuum originates in an accretion disk. The X-ray pectedtobeimportantalsopredictarangeofshapes(e.g.,Kato emissionisaseparatecomponent,producedinacoronalocatedin et al. 1998). Another complication is that the type of accretion thevicinityofthedisk,thatcreatestheX-raysbyinverseCompton diskpresentispredictedtodependontheaccretionraterelative scatteringthediskphotons.Thisbroadbandcontinuumisthen totheEddingtonvalue(e.g.,Chenetal.1995),andthetypeof thoughttoilluminatethegasthatformsthebroad-lineregion, accretiondiskcanbedifferentatdifferentradii(e.g.,Svensson& causingittoemitlinesviaphotoionization. Zdziarski1994).TheX-rayemittingcoronaaddsanotherdimen- Despitethecommonalityoftheoriginoftheopticalthrough sionofcomplication,asitsoriginandgeometryarenotverywell X-raycontinuumemissionandemissionlines,therearetheoret- understood.Thus,inprinciple,thecoronalemissionmayormay icalreasonsthatthespectrashouldvaryamongindividualobjects. notbeimportantdependingonhowmuchoftheaccretionenergy Theoriginofdifferencesmaybeextrinsic;forexample,thebright- isfunneledtoit,andindeed,weseeevidenceforarangeofcoro- nessand,tosomeextent,theshapeofthecontinuumspectrumof nalactivityinX-raynovae(e.g.,Kubota&Done2004). theaccretiondiskshouldvarywithviewingangle(e.g.,Laor& Inadditiontothetheoreticalexpectationofarangeofpredicted Netzer1989).Theoriginmayalsobeintrinsic.Evenforverysim- spectralenergydistributionsamongAGNs,thereisobservational plediskmodels,inwhichthespectrumisconstructedfromasum evidence thatsucha range exists.In astudy ofthemultiwave- lengthpropertiesofanX-rayselectedheterogeneoussampleof 1 BasedonobservationsobtainedwithXMM-Newton,anESAsciencemis- quasars, Elvis et al. (1994) observed a wide range of spectral sionwithinstrumentsandcontributionsdirectlyfundedbyESAMemberStates energy distributions (SEDs). Wilkes et al. (1994) and more re- andNASA. 2 Currentaddress:DepartmentofAstronomy,NewMexicoStateUniversity, centlyBechtoldetal.(2003),Stratevaetal.(2005),andSteffen P.O.Box30001,MSC4500,LasCruces,NM88003-8001. etal.(2006)foundthat(cid:1)ox,thepoint-to-pointslopebetweenthe 103 104 LEIGHLY ETAL. Vol. 663 TABLE1 ObservingLog Exposure Bandpassor ExtractionRadius ObservatoryandInstrument Date (s) EffectiveWavelength (arcsec) ChandraACIS-S3............................................... 2001Dec5 9377 0.3Y10keV 3.94 ChandraACIS-S3............................................... 2001Dec17 9839 0.3Y10keV 3.94 XMM-NewtonPN................................................. 2004Nov1 27472 0.3Y12keV 27 XMM-NewtonMOS1........................................... ... 32126 0.5Y10keV 23 XMM-NewtonMOS2........................................... ... 32164 0.5Y10keV 23 XMM-NewtonOM(UVM2)................................ ... 25800 23108 12 SwiftXRT(PCmode)......................................... 2005Oct22 2462 0.3Y10keV 23.4 SwiftUVOT(UVW1)......................................... ... 787 26008 12 SwiftUVOT(UVM2)......................................... ... 844 22008 12 SwiftUVOT(UVW2)......................................... ... 844 19308 12 SwiftXRT(PCmode)......................................... 2006May12 1600 0.3Y10keV 23.4 SwiftUVOT(V).................................................. ... 130 54608 6 SwiftUVOT(B)................................................... ... 130 43508 6 SwiftUVOT(U).................................................. ... 130 34508 6 SwiftUVOT(UVW1)......................................... ... 259 26008 12 SwiftUVOT(UVM2)......................................... ... 372 22008 12 SwiftUVOT(UVW2)......................................... ... 526 19308 12 MDMMcGraw-Hill1.3+I+Templeton.......... 2004Oct14Y16 5,3,1a 80508 5.8Y10.0 MDMMcGraw-Hill1.3+V+Templeton......... ... 5,9,5a 53808 5.7Y10.1 MDMMcGraw-Hill1.3+B+Templeton......... ... 5,5,2a 43508 6.2Y10.0 MDMMcGraw-Hill1.3+U+Templeton......... ... 5,5,2a 36408 6.8Y10.2 a Numberofframesoneachofthethreedays. 25008and2keV,isinverselycorrelatedwiththeUVluminosity. XMM-Newton,andSwiftobservations,aswellastheresultsofa Inmanyobjects,thelargerangeofspectralenergydistributions 3dayopticalphotometryrunatMDMObservatory.Wealsocom- can be accounted for by extrinsic effects suchas reddening and pare the XMM-Newton spectrum of PHL 1811 with those from absorption(e.g.,Brandtetal.2000).However,theseextrinsicef- othernarrow-lineSeyfert1galaxies(NLS1s).Inx3wecomment fectscertainlycannotaccountfortherangeofSEDsinallobjects. onthelongtimescaleX-rayandUVvariability.Wepresentan PHL 1811 is a nearby (z¼0:192), luminous (M ¼(cid:1)25:5) updatedspectralenergydistributioninx4.Inx5,wediscussthe B narrow-linequasar.PHL1811wasfirstcatalogedasablueob- natureoftheintrinsicX-rayweaknessandpresentanaccretion ject in the Palomar-Haro-Luyten plate survey (Haro & Luyten diskmodelforPHL1811.Wealsocommentontheapparentspiral 1962). It was then rediscovered in the optical follow-up of the host galaxy discovered in the image presented by Jenkins et al. VLAFaintImagesoftheRadioSkyatTwentycm(FIRST)sur- (2005).Wesummarizeourfindingsinx6.PaperIIdescribesthe vey(Whiteetal.1997;Beckeretal.1995).Itisextremelybright HSTandground-basedopticalandUVobservationsandpresents (B¼14:4,R¼14:1);itisthesecondbrightestquasaratz>0:1 Cloudymodelsthatexploretheunusualemission-lineproperties. after3C273.Becauseitissobright,itisaverygoodbackground SomeoftheresultswerepresentedpreviouslyinLeighlyetal. source for studies of the intergalactic and interstellar medium; (2004),Choietal.(2005),andPrescott(2006).Weassumeaflat furthermore, a FUSE observation found its spectrum to have a universe with H ¼70 km s(cid:1)1 Mpc(cid:1)1 and (cid:2) ¼0:73 unless 0 vac rareLymanlimitsystemthathasbeenstudiedbyJenkinsetal. otherwisespecified. (2003,2005).Itwasodd,however,thatsuchabrightquasarwas notdetectedintheROSATAllSkySurvey(RASS).Incompari- 2. OBSERVATIONS AND ANALYSIS son with other quasars of its luminosity, the expected RASS count rate is about 0.5 s(cid:1)1; we placed an upper limit of 1:3; 2.1. Chandra Observations and Analysis 10(cid:1)2countss(cid:1)1(Leighlyetal.2001).ApointedBeppoSAXob- TheChandraobservationsweremadeinimagingspectroscopy servationdetectedtheobject,butitwasstillanomalouslyweak. modewiththeimageofPHL1811placedontheACIS-S3de- Too fewphotonswereobtained in the BeppoSAXobservation tector.TheobservinglogisgiveninTable1.Weverifythatthe tounambiguouslydeterminethecauseoftheX-rayweakness; positionoftheX-raysourceisconsistentwiththatofthequasar Leighlyetal.(2001)speculatedthateitheritisintrinsicallyX-ray (Fig.1). weak,oritisanearbybroadabsorptionlinequasarandtheX-ray Thelevel2eventfileswererecreatedusingthestandardpro- emissionisabsorbed,oritishighlyvariable,andwecaughtitboth cedure.Thesmallcorrectionforthetime-dependentgainwasap- timesinalowstate. pliedusingthecorr_tgainprogram,andthecorrectionforthe In this paper and the companion paper (Leighly et al. 2007, time-dependentancillarymatrixwasmadeusingtheIDLprogram hereafterPaperII)wereporttheresultsofseveralUVandX-ray acisabs.pro.3Thetotalcountratesobservedwithinacircular observationsofPHL1811designedtoexploretheoriginandcon- region3.9400inradiuswere9:7;10(cid:1)3and4:0;10(cid:1)2countss(cid:1)1 sequencesoftheX-rayweaknessofthisobject.First,coordinated fromthefirstandsecondobservations,respectively.Theserates ChandraandHSTobservationsweremadein2001.In2004,an arelowenoughthatpileupisnegligible.Between0.3and9.8keV, XMM-Newtonobservationwasmade,andmostrecently,PHL 1811wasthetargetoftwoSwiftTargetofOpportunityobserva- tions.Inx2wedescribetheresultsandanalysisoftheChandra, 3 Seehttp://www.astro.psu.edu/users/chartas/xcontdir/xcont.html. No. 1, 2007 INTRINSICALLY X-RAY WEAK QUASAR PHL 1811. I. 105 Fig.1.—Chandraimage(left)andMDMopticalR-bandimage(right)showingthattheX-raysourceissecurelyidentifiedasPHL1811. atotalof 81and374photonswereobtained.Basedontheback- warmabsorber,andironlineasnecessary.Thus,theChandra groundcollectedfromsource-freeareasofthechips,weexpect1 spectrafromPHL1811,fittedover0.3Y5.0keV(0.36Y5.96rest and3ofthesephotonstooriginateinthebackground.Thus,we frame),areconsistentwiththehardX-raypowerlawfoundin canconcludethatweobserveasignificantchangeinfluxinthe ASCAspectraof NLS1s. objectbyaboutafactorof4betweenthetwoobservationssep- Thebest-fittingphotonindexissteeperforthesecond,brighter aratedby12days. observation,suggestingthatshape ofthe spectrumhas changed Asufficientnumberofphotonswerecollectedinthesecond betweenthetwoobservations.However,theuncertaintiesindicate observationtolookforshorttimescalevariability.Weusedthe thatthedifferenceisnotstatisticallysignificant.Fittingthespectra BayesianBlocksprogramavailableintheISISsoftware4butdid simultaneouslyandusingtheF-testshowsthattheimprovement not find any indication of variability during the observation at inthefitrepresentedbyachangeinthephotonindexissignificant significancelevelsgreaterthanabout1(cid:2).Wealsotriedbinning atonlythe68%confidencelevel.Figure2showsthesemodelfits. the light curve with 100 s bins and then grouping together by Inordertoseewhetherthereisanyevidenceforintrinsicab- handpointsthatappearedloworhigh.The(cid:3)2foraconstantmodel sorption,wenextfitthespectrumfromthesecondobservation was13.5for6degreesoffreedom(dof),indicatingthatvariability withamodelconsistingofapowerlaw,absorptionfixedatthe wasmarginallydetectedwithconfidenceof96.4%,althoughthe Galacticvalue,andabsorptionintherestframeofthequasar.We probabilitythatthisvariabilityissignificantmaybelowerbecause findnoimprovementinthefit,andthebest-fittingvalueofaddi- theresultsarebiasedbypreselectingthebinsizes.Notethatthe tionalintrinsicabsorptioniszero.The(cid:3)(cid:3)2 ¼2:71upperlimit (cid:3)(cid:3)2 ¼6:63uncertaintyonthefittedconstantmodelis14%,in- ontheintrinsicabsorptioncolumnis1:8;1020cm(cid:1)2.Theupper dicatingthatweareonlysensitivetovariationslargerthanthis limitisratherlowdespitethepoorphotonstatisticsinthespec- valueatthe99%confidencelevel.Suchhigh-amplitudevariations trumbecausethespectrumisconvex(Fig.2). arerarebutnotunprecedentedinluminousNLS1s(e.g.,Leighly Theconvexresidualsofthepower-lawfittothesecondobser- 1999a). vationsuggestthepresenceofasoftexcess(Fig.2).Softexcess The spectra were accumulated and grouped so there were componentsarecommoninthespectraofNLS1sandinthecase (cid:3)20photonsineachbin.Wefirstfittedeachspectrumbetween ofpoorstatisticscanbefittedadequatelybyablackbodymodel 0.3and5keVseparatelywithapowerlawandfixedGalacticcol- (e.g., Leighly 1999b). We add a blackbody component to the umn of 3:76;1020 cm(cid:1)2, obtained using the HEASARC n power-lawmodelforthesecondspectrumandfindthatthefit H tool.5WenotethattheGalacticLy(cid:1)lineinthemedium-resolution improves by (cid:3)(cid:3)2 ¼4:9, and the residuals are flat (Table 2). UVspectrumofPHL1811(Jenkinsetal.2005)isconsistentwith However,theimprovementinthefitisnotstatisticallysignificant; this value of N . This model fits both spectra well, yielding theF-testshowsthattheimprovementinfitissignificantatonly H photonindicesof 2:01þ0:37and2:58þ0:19forthefirstandsecond the 71% confidence level.Thus,wecannotconcludethata soft (cid:1)0:36 (cid:1)0:18 Chandraobservations,respectively.Thesephotonindicesare excessispresent,becauseofthepoorstatistics. consistentwiththoseobservedfromNLS1sbyASCA(Leighly Thepower-lawindexforthepowerlawplusblackbodyfitto 1999b).NotethattheASCAphotonindicesweretakenfrommod- the second observation is flatter than for the power law alone els spanning the (cid:3)0.5Y10 keV band that include a soft excess, (2:22(cid:2)0:34 vs. 2:58þ0:19) and is now completely consistent (cid:1)0:18 withthatofthefirstobservation(2:01þ0:37).Thissuggeststhat (cid:1)0:36 4 Seehttp://space.mit.edu/CXC/analysis/SITAR/index.html. thespectralvariabilityoriginatesasanemergenceoftheblack- 5 Availableathttp://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3nh/w3nh.pl. bodycomponentwhentheobjectisbrighter.Toinvestigatethis 106 LEIGHLY ETAL. Vol. 663 possibility,wefitbothspectrasimultaneouslywithapowerlaw plusblackbodymodel,fixingthenormalizationoftheblackbody forthefirstobservationtozero.Themodelfitsthedataadequately ((cid:3)2 ¼0:67for16dof).Thejointlyfittedphotonindexis2:12(cid:2) (cid:4) 0:25, and for this parameterization, the normalizations of the powerlawdifferbyafactorof3.5. Spectralratiosprovideacomplementaryandmodel-independent approachtothequestionofspectralvariability.Werebinthespec- trumfromthesecondobservationtothebinningofthefirstspec- trumandtaketheirratio(Fig.2,inset).Thisshowsthatthespectral variabilityispredominatelyinthesoftestband,supportingourhy- pothesisthatavariablesoftexcessisresponsibleforthespectral variability. In this case, the variability of the power-law compo- nentisafactorof3.5.The(cid:3)2foraconstant-ratiomodelis3.8for 3degreesoffreedom,whichsignificantatthe71%confidence level. To summarize the results of the Chandra observations, we findconclusiveevidenceforfactorof(cid:3)4variabilitybetweenthe twoobservationsseparatedby12days.Detailedanalysisisham- peredbypoorstatistics;however,wefindmarginalevidence(2(cid:2)) forvariabilityontimescalesofthousandsofsecondsinthesecond observation,whentheobjectwasbrighter.Spectralfittingreveals asteepspectrumwithnoevidenceforintrinsicabsorption,and Fig. 2.—Top:Unfoldedbest-fittingpower-lawmodelsforthespectrafrom marginalevidenceforspectralvariabilitybetweentheobserva- thetwoChandraobservations.Bottom:Residualsfromapower-lawmodelfitto thespectrumfromthesecondobservation,withaconvexshapesuggestingthe tions, with the spectrum becoming steeper when the object is presenceofasoftexcess.Inset:Ratioof thesecondspectrumtothefirstspec- brighter.Thespectralfittingandtheratioofthespectrasuggest trumshowingthatthespectralvariabilityispredominatelyconfinedtothesoftest thatthespectralvariabilityiscausedbytheemergenceofasoft energies,suggestingtheemergenceofasoftexcesscomponentwhentheobjectis excesscomponentwhentheobjectisbright.Themeasuredspec- bright. tralindicesrangebetween2.0and2.6,dependingonthemodel. TheyareconsistentwiththephotonindicesmeasuredinASCA observationsof NLS1s(Leighly1999b).Thisfactsuggeststhat weseetheintrinsicX-rayemissionfromthecentralengineand TABLE2 ChandraSpectralFittingResults Parameter 2001Dec5 2001Dec17 Power-LawModel,SpectraFittedSeparately Photonindex.................................................. 2:01þ0:37 2:58þ0:19 (cid:1)0:36 (cid:1)0:18 Normalizationa............................................... (1.17(cid:2)0.02) ; 10(cid:1)5 (5.10(cid:2)0.45) ; 10(cid:1)5 Flux(0.3Y5keV;ergcm(cid:1)2s(cid:1)1)................... 5.2 ; 10(cid:1)14 2.3 ; 10(cid:1)13 Luminosity(0.3Y5keV;ergs(cid:1)1).................. 5.6 ; 1042 2.4 ; 1043 (cid:3)2/dof............................................................. 1.96/2 13.2/15 PowerLaw+Blackbodyb Photonindex.................................................. ... 2.22(cid:2)0.34 Power-lawnormalizationa.............................. ... 4:4þ0:83;10(cid:1)5 (cid:1)1:0 Blackbodytemperature(keV)....................... ... 0:096þ0:040 (cid:1)0:081 Blackbodynormalizationc.............................. ... 1:5þ1 ;10(cid:1)6 (cid:1)1:1 (cid:3)2/dof............................................................. ... 8.36/13 PowerLaw+Blackbody,bJointFit Photonindex.................................................. 2.12(cid:2)0.25d 2.12(cid:2)0.25d Power-lawnormalizationa.............................. (1.17(cid:2)0.22) ; 10(cid:1)5 4:14þ0:79;10(cid:1)5 (cid:1)0:84 Blackbodytemperature(keV)....................... 0:10þ0:035d 0:10þ0:035d (cid:1)0:042 (cid:1)0:042 Blackbodynormalizationc.............................. 0e 1:5þ2:7 ;10(cid:1)6 (cid:1)0:82 (cid:3)2/dof............................................................. 10.8/16d 10.8/16d a InunitsofphotonskeV(cid:1)1cm(cid:1)2s(cid:1)1at1keVintheobservedframe. b Theblackbodytemperatureisgivenintherestframe. c InunitsofL /D2,whereL isthesourceluminosityinunitsof1039ergs(cid:1)1,andD isthedistanceto 39 10 39 10 theobjectinunitsof10kpc. d Parameterfittedjointly. e Fixedparameter. No. 1, 2007 INTRINSICALLY X-RAY WEAK QUASAR PHL 1811. I. 107 TABLE3 XMM-NewtonSpectralFittingResults Parameter Measurement Photonindex...................................................................... 2:28þ0:12 (cid:1)0:11 PNnormalizationa,b............................................................ 1.16(cid:2)0.98 MOS1normalizationoffseta.............................................. 1:25þ0:21 (cid:1)0:19 MOS2normalizationoffseta.............................................. 1:32þ0:22 (cid:1)0:20 Flux(0.3Y5keV;ergcm(cid:1)2s(cid:1)1)........................................ 5.1 ;10(cid:1)14 Luminosity(0.3Y5keV;ergs(cid:1)1)....................................... 5.4 ; 1042 (cid:3)2/dof................................................................................. 74.7/79 a ThespectralmodelwasCexp½NH(Gal)(cid:2)(E)(cid:4)E(cid:1)(cid:1),whereallparameterswere tiedtogetherexceptfortheconstantC,whichwasfixedto1forthePNandallowed tovaryfortheMOS1andMOS2.Unexpectedopticalloadingplausiblycausesthe MOSspectratohaveahighernormalization;therefore,wequotefluxandlumi- nosityvaluesfromthePNdataonly. b InunitsofphotonskeV(cid:1)1cm(cid:1)2s(cid:1)1at1keVintheobservedframe. Fig. 3.—XMM-Newtonbackground-subtractedlightcurvecomposedofthe 0.5Y5keVphotonsfromtheMOS1,MOS2,andPNdetectors.Thelowerlight curveshowstheestimatedbackgroundinthesourceextractionregion.Thereis 10(cid:1)3countss(cid:1)1.Thelightcurveisstatisticallyconsistentwithno nostrongevidenceforvariabilityoverthe31ksobservation. variability((cid:3)2 ¼33:4for30dofforaconstantmodel).Notethat the(cid:3)(cid:3)2 ¼6:63uncertaintyonthefittedconstantmodelis9%, that the X-rays are powered by inverse Compton scattering of indicatingthatweareonlysensitivetovariationslargerthanthis softphotonsasinotherAGNs. valueatthe99%confidencelevel.Suchhigh-amplitudevariations arerarebutnotunprecedentedinluminousNLS1s(e.g.,Leighly 2.2. XMM-Newton Observation and Analysis 1999a). Thespectrawereextractedusingtheregionsdescribedabove PHL1811wasobservedbyXMM-Newtonon2004November1 and grouped so that there were 15photonsper energybin.We usingtheEPICPN(Stru¨deretal.2001)andMOS(Turneretal. simultaneouslyfitthePNinthe0.3Y5keVrangeandMOSinthe 2001) instruments and the Optical Monitor (OM; Mason et al. 0.5Y5keVband.Thespectrayield611,191,and204sourcepho- 2001).TheEPICobservationswerecarriedoutusingthethinfil- tonsforthePN,MOS1,andMOS2,respectively.Thespectraare terinPrimeFullWindowmode.Thedatawerereducedusingstan- fittedverywellwithamodelconsistingofaconstant,apowerlaw, dardselectioncriteria.Theobjectwasobservedfor32.1ksusing andaGalacticabsorptioncolumndescribedinx2.1.Theresults theMOSdetectorsandfor27.5ksusingthePN.Thedetailsofthe arelistedinTable3,andthemodelfitisshowninFigure4.Note observationaregiveninTable1. thatunlikethesecondChandraobservation,theresidualsareflat, BackgroundflaresareaconcerninXMM-Newtondataanaly- andthereisnoevidenceforasoftexcesscomponent. sis,andweobservedthebackgroundtovaryduringtheobserva- Thespectraareadequatelyfittedusingasteeppowerlaw((cid:1)¼ tion.Formostoftheobservation,thebackgroundwasrelatively 2:3(cid:2)0:1), typical of that from NLS1s observed by ASCA lowandstable.However,evenatthelowestrate,itappearstobe slightlyelevatedcomparedwiththequiescentrate6byafactorof (Leighly 1999b). There is no evidence for additional absorp- tion.Weaddaneutralabsorptioncomponentattheredshiftof approximately2.3forthePNand1.4intheMOS1+MOS2in boththesoft(0.5Y2.0keV)andhard(2.0Y10keV)bands.Inad- PHL1811tothemodelbutfindnosignificantreductionin(cid:3)2. The90%confidenceupperlimit((cid:3)(cid:3)2 ¼2:7)onadditionalab- dition,forthefirst3000sinthePNdetector,andthefirst5000s sorptionisN ¼8:7;1020 cm(cid:1)2. for the MOS detector, there occurred a small background flare H thatwashigherthanthequiescentratebyafactorof2Y3.Weex- tractedandanalyzedspectrawithandwithoutthisflaringperiod andconcludethattheflareissosmallthatitdoesnotadversely affecttheresults.Therefore,weanalyzetheentireexposure. WeextractlightcurvesfromthePNandMOSdetectors.The target is relatively weak, so we use a source extraction region with a radius corresponding to an encircled energyfunction of 80%;theradiuswas2700 forthePNand2300 fortheMOS1and MOS2.Backgroundlightcurvesandspectrawereextractedfrom nearby,source-freeregionsofthedetector.Thebackgroundspec- trumisflatterthanthesourcespectrum,andwefindthattheback- groundcontributiontotheemissionintheextractionapertureis equaltothatofthetargetat(cid:3)5keV.Thebackgrounddominatesat higherenergies;therefore,weextractlightcurvesinthe0.5Y5keV band. We use a bin size of 1000 s, which yields an average of (cid:3)30sourcecountsperbin,andthebackgroundcontributesabout 12%ofthetotalcounts.Theresultingbackground-subtractedlight curveisshowninFigure3.Themeancountrateisð2:8(cid:2)0:17Þ; Fig. 4.—XMM-NewtonMOS1,MOS2,andPNspectra(opensquares,open 6 SeeXMM-NewtonUser’sHandbook,x3.3.8(http://heasarc.gsfc.nasa.gov/ triangles,andfilledcircles,respectively),wellfittedusingapowerlawandGalactic docs/xmm/uhb/node38.html). absorption.TheupperlimitonintrinsicX-rayabsorptionis8:7;1020cm(cid:1)2. 108 LEIGHLY ETAL. Vol. 663 Theconstantinthemodelisfixedtoavalueof1forthePN the(cid:3)2is70.5for70degreesoffreedom.Thebest-fittingphoton spectrumandallowedtobefreefortheMOS1andMOS2spec- index is 2:36þ0:12, again typical of an NLS1 (Leighly 1999b). (cid:1)0:11 tra.ItcanbeseeninTable3thatthebest-fittingnormalizationsof Wenoticethatthenormalizationforthespectrumfromthefirst MOS1andMOS2spectraare25%and32%higherthanthatof ChandraobservationisidenticaltothatoftheXMM-NewtonPN thePN,respectively.Thisdifferencecannotbeexplainedbyre- spectrum; if we tie these two parameters together, there is no sidual calibration uncertainty between the XMM-Newton EPIC changein(cid:3)2((cid:3)2 ¼70:5for71degreesoffreedom).Thesetwo instrumentsasthatisnowquitelow(Stuhlingeretal.2006).We spectraseemtodescribetheobjectinthesamestate(seealsox3), analyzetheX-rayspectrafromanotherobjectinthefield(located soweleavetheirparameterstiedtogetherthroughouttheremain- at R:A:¼21h54m41s, decl:¼(cid:1)9(cid:5)2604900) that is about 50% derofthissection. brighterthanPHL1811.ThenormalizationsoftheEPICspec- Next, we allow the photon index of the second, higher flux traforthisobjectwerecompletelyconsistentwithoneanother Chandraobservationtobefittedindependentofthatofthefirst (MOS1constant:1:00(cid:2)0:12;MOS2constant:1:00þ0:13).An- ChandraspectrumandtheXMM-Newtonspectrum.Weobtaina (cid:1)0:12 otherobjectinthefieldofviewwasindependentlyanalyzedby somewhatbetterfitwith(cid:3)2 ¼64:1for70degreesoffreedom. anotheroftheauthors(D.Grupe)withthesameresult. However,thedecreasein(cid:3)2issignificantatonlythe63%level WhilethesmallnumbersofphotonsinthePHL1811spectra accordingtotheF-test.Theresultingphotonindicesare2:22(cid:2) meanthatthedifferenceinnormalizationsamongthemodelsfor 0:14 for the low state (first Chandra observation and XMM- thedifferentEPICspectraisnotstatisticallysignificant,therestill Newton PN spectrum) and 2:57þ0:19 for the second, brighter (cid:1)0:18 seems to be a problem with the spectra that needs to be under- Chandraobservation.Theseindicesarestillwithintherangeof stood.Webelievethattheproblemoriginatesinopticalloading. power-lawindicesobservedfromNLS1s(Leighly1999b).Inad- ThenominallimitforopticalloadingusingthethinfilterisV (cid:6) dition,itisoftenfoundthattheNLS1spectrasoftenaswhenthey 12forboththePNandtheMOS(Smith2004;Altieri2003).PHL are brighter (e.g., Fig. 4 of Leighly 1999a); thus, intrinsic soft- 1811isafainteropticalsource(B¼14:4,R¼14:1);however,it eningofthespectrumisaplausibleexplanationforthemarginal hasaverybluespectrumandisaveryweakX-raysource,andthus spectralvariabilityweobserve. isanunusualobjectcomparedwiththestellarcalibrationsources Itispossiblethatthevariabilityresultsfromvariablecoldab- usedtodeterminetheloadinglimits.Anotherpointthatsupports sorption.Wetestthisscenariobyconstrainingthephotonindices ourcontentionthatopticalloadingisimportantisthefacttheop- andnormalizationstobethesameforallthreespectra,andin- ticalloadingintheMOS2isobservedtobeabout7%largerthan cludinganeutralabsorptioncolumninthequasarrestframein that in the MOS1, possibly due to variations in the filter trans- themodel,allowingtheabsorptioncolumntovary.Thismodel mission(Altieri2003);wealsoobserveahighernormalizationfor gives a very poor fit; the reduced (cid:3)2 ¼2:57 for 70 degrees of the MOS2 spectrum. However, the degree of contamination by freedom.Thus,wecanrejectonstatisticalgroundstheideathat opticalphotonscannotbeverylarge,becausetheMOSspectrado thespectralandfluxvariabilityoriginatessolelyinvariableneu- notshowanyobservabledistortion;apower-lawfittothemalone tralabsorption.Allowingthenormalizationstoalsobefreeyields yieldsanidenticalphotonindexwiththatobtainedfromthePN. agoodfit((cid:3)2 ¼65:3for69degreesoffreedom),althoughitisnot Nevertheless, given the fact that the MOS spectra are possibly asignificantimprovementovertheno-absorptionmodel((cid:3)(cid:3)2 ¼ contaminatedbyopticalloading,wemeasurethefluxfromthePN 5:2, significant at the 58% confidence level according to the spectrum,notingthatwecannotbesurethatthisspectrumisun- F-test). The additional absorption is consistent with zero for contaminatedbyopticalloadingaswell,andmayrepresentanup- thebrighterChandraobservationwithanupperlimitof1:4; perlimitonthefluxforthisobservation. 1020 cm(cid:1)2 and is equal to 5:0þ3:9 ;1020 cm(cid:1)2 for the fainter (cid:1)3:6 PHL 1811was observed using the Optical Monitor withthe Chandra observation and the XMM-Newton observation. Al- UVM2filter.Tenexposures,eachwithdurationof 2580s,were thoughthismodel(variablecoldabsorptionplusvariablepower- made.TheSAStaskomichainwasruntoreprocessthedata.The lawnormalization)fitsthespectrawell,thescenarioseemsunlikely countrateinformationwasextractedfromtheomichainoutput. becauseitrequiresthatabsorbervariabilitybecoordinatedwith Inaddition,thecountrateswereextractedfromtheimagesus- intrinsicfluxvariability. ingtheIRAFtaskphot.Thecountrateswerethenconvertedto flux using the conversion factor for the UVM2 filter (2:17; 2.4. The X-Ray Spectra of NLS1s: How Does 10(cid:1)14ergs(cid:1)1cm(cid:1)28(cid:1)1count(cid:1)1).Theresultsfromthetwoex- PHL 1811 Compare? tractionprocedureswereconsistenttowithin2%,andtherefore ASCA observations of NLS1s demonstrate that their spectra hereafterwediscusstheresultsfromtheomichainoutput. cangenerallybedescribedbyahardpowerlawwithanaverage OneofthegoalsoftheOMobservationwastolookforUV indexof2:19(cid:2)0:10andasoftexcessthatcanbemodeledusing variability.Aconstantmodelfittothelightcurveyielded(cid:3)2 ¼ a blackbody component. The strength of the soft excess varies 16:86for9degreesoffreedom.Thus,aconstantmodelisrejected fromobjecttoobject,withtheobjectshavingtheoverallsteepest atthe94.9%confidencelevel.However,wedonotconsiderthis spectraalsoshowingthehighestamplitudevariability(Leighly evidence for marginally significant UV variability, because the 1999b). fluctuationsaredifferentfortheomichainandIRAF-reduceddata. XMM-Newton,withitslargeeffectivearea,hasrevolutionized The mean flux of the 10 observations was ð2:773(cid:2)0:007Þ; ourunderstandingoftheX-rayspectraofAGNs.Softexcesses 10(cid:1)14 ergs(cid:1)1cm(cid:1)28(cid:1)1. arenowseentoberelativelycommoninquasarsingeneral(e.g., Porquet et al. 2004). NLS1 spectra are still found to have soft 2.3.Joint Chandra and XMM-Newton Modeling excessthatsometimescanbemodeledbyadualComptonization In principle, better constraints on spectral variability can be model,inwhichsoftphotonsarescatteredbyComptonizingme- obtainedbyjointlyfittingtheChandraandXMM-Newtonspec- diaoftwo differenttemperatures. Examplesofobjectswiththis tra.WefirstfitwithapowerlawplusGalacticabsorptionmodel, typeofspectrumareTonS180(Vaughanetal.2002)andMrk896 allowingthenormalizationstobefreeamongthetwoChandra (Pageetal.2003).Inothercases,theX-rayspectrumisverycom- spectraandtheXMM-NewtonPNspectrum,butwiththephoton plex,withaveryprominentsoftexcessandcomplexabsorption indicesconstrainedtobeequal.Thespectraarefittedadequately; features at high energies. These spectra can be modeled using No. 1, 2007 INTRINSICALLY X-RAY WEAK QUASAR PHL 1811. I. 109 1811 resembles an average NLS1 without a soft excess. The power-law X-ray spectrum is believed to be produced by Comptonupscatteringofsoftphotonsinahotplasma.Thisisthe sameprocessbelievedtooperateinAGNsingeneral;thereason thatthephotonindexissteeperinNLS1sthaninbroad-linequa- sarsisthatthehotplasmahasbeenComptoncooled(e.g.,Pounds etal.1995). IsthelackofcomplexityinthePHL1811spectrumduetothe lowfluxandpoorstatistics,ordoesitreallyhaveasimplespec- trum?Wecanobtainsomeanswerstothisquestionbyextracting sufficiently short segments of XMM-Newton data from other NLS1ssothatweobtainspectrawithapproximately611photons between0.3and5keV.WeperformthisexerciseontwoNLS1s: TonS180and1H0707(cid:1)495. Ton S180 has a spectrum with a mild soft excess. Vaughan etal.(2002)modelitusingadualComptonizationmodel,andit wasclassifiedbyGallo(2006)asanNLS1witha‘‘simple’’spec- trum.TheTonS180dataareseeninthemiddlepanelofFigure5. Thisobjectissobrightthatweneedanexposureofjust51.52sto obtain572photonsbetween0.34Y5.61keV(theobserved-frame rangecorrespondingtotherest-framerangeof0.36Y5.96keVfor thisz¼0:062object).Wefitthespectrumwithapowerlawplus Galacticabsorptionandobtainagoodfit,withaphotonindexof Fig.5.—ComparisonoftheXMM-NewtonPNspectrumfromPHL1811with 3:04þ0:17and(cid:3)2 ¼0:99for33degreesoffreedom.Thefactthat spectrafromotherNLS1sfromsegmentsofdatashortenoughforthestatisticsto (cid:1)0:16 (cid:4) thereduced(cid:3)2islessthanonemeansthatthereisnostatistical besimilar.Ineachpanel,theratioofthedatatoapowerlawplusGalacticab- sorptionmodelisplotted.Theresultingpower-lawindexand(cid:3)2isgivenineach evidenceforspectralcomplexity;inaddition,weseenosugges- (cid:4) panel.ThetoppanelshowsthatPHL1811isstatisticallywelldescribedbya tiveresidualsinthedata-to-modelratio.However,incontrastto power-lawmodel.Thephotonindexistypicalofthepower-lawindicesobserved PHL1811,thephotonindexissignificantlysteeperthantheav- fromASCAobservationsof NLS1s(Leighly1999b).Inthemiddlepanel,Ton eragefromNLS1sobservedbyASCA,clearlybecauseinthis S180,anNLS1classifiedashavinga‘‘simple’’spectrumbyGallo(2006),is statisticallywelldescribedbyapowerlaw;however,theindexissteep,sug- spectrumwearefittingthesoftexcesscomponentpredominantly. gestingthatalongerexposurewouldrevealahardtail(asitdoes;Vaughanetal. If thisweretheonlyX-rayspectrumthatwehadofthisobject, 2002).Inthebottompanel,1H0707(cid:1)495,anNLS1classifiedashavinga‘‘com- wewouldsuspectthatspectralcomplexitymaybepresentanda plex’’spectrumbyGallo(2006),showsaverysteepspectrumandsignificant hardtailmightbeseeninalongerobservation,asitis(Vaughan residuals,confirmingthenecessityofacomplexmodel(e.g.,Galloetal.2004b; etal.2002). Tanakaetal.2004). 1H0707(cid:1)495hasacomplexspectrumthatwasmodeledby Galloetal.(2004b)usingpartialcovering,andwasclassifiedby partialcovering(e.g.,Tanakaetal.2004)orreflection(Miniutti Gallo(2006)asanNLS1witha‘‘complex’’spectrum.Notethat & Fabian 2004). Examples of this type of object include 1H thisistheclassthatGallo(2006)observestobesomewhatX-ray 0707(cid:1)495(Galloetal.2004b;Tanakaetal.2004),IRAS13224(cid:1) weak. The 1H 0707(cid:1)495 data are seen in the bottom panel of 3809 (Boller et al. 2003), and PHL 1092 (Gallo et al. 2004a). Figure5.Inthiscase,asegment289sinlengthyieldedaspec- Gallo(2006)splitNLS1sintotwoclasses:thosewithandwithout trumwith602photonsbetween0.34and5.73keV(theobserved- significantcomplexfeaturesintheirhigh-energyspectra.Hefinds frame range corresponding to the rest-frame range of 0.36Y thatobjectswithcomplexhigh-energyspectratendtobeX-ray 5.96keVforthisz¼0:041object).Wefitthespectrumwitha weak and proposes that the X-ray weakness is consistent with powerlawplusGalacticabsorption.Inthiscase,theresulting eitherattenuationinthepartialcoveringscenarioorthefocusing photonindexisevensteeperthanforTonS180((cid:1)¼4:17þ0:18), (cid:1)0:17 X-raysawayfromourlineofsightinthereflectionscenario. the reduced (cid:3)2 is significantly greater than 1 ((cid:3)2 ¼1:61 for (cid:4) HowdoestheXMM-Newtonspectrumof PHL1811compare 34degreesoffreedom),andsignificantresidualsareseeninthe with those from other NLS1s? It is important to note that the ratio. Clearly, despite the poor statistics in the spectrum, the quality of our spectrum is much poorer than those from many needforacomplexmodelisevident.Itisalsoclearthatalthough XMM-Newtonobservationsof NLS1s,suchasthosementioned thisobjectisX-rayweak,theX-rayspectrumisverydissimilarto above,duetoitslowX-rayflux.ThePNspectrumhas857pho- thatof PHL1811. tonsbetween0.3and5keVintheobservedframe,corresponding ThisexerciseshowsthattheX-rayspectrumof PHL1811is to0.36Y5.96keVintherestframe.Ofthese,246arebackground, clearlydifferentfromthoseoftwootherNLS1s,TonS180and leaving611netsourcephotons.Thisspectrumisadequatelymod- 1H0707(cid:1)495.Theseobjectsarerepresentativeofthecomplex- eledwithapowerlawandabsorptionoriginatinginourGalaxy. ity of spectra from NLS1s observed by XMM-Newton. The Thereduced(cid:3)2is0.94for51degreesoffreedom,andthephoton XMM-Newton spectrum from PHL 1811, a simple power law indexis2:25(cid:2)0:15.Theratioofthedatatothepowerlawplus withaphotonindexconsistentwiththemeanhardX-rayindex GalacticabsorptionmodelisshowninFigure5.Thisfigureshows fromNLS1sobservedbyASCA,suggeststhattheX-rayemis- thattherearenoresidualsthatsuggestamorecomplexmodel,and sion mechanism is simple Compton upscattering of soft pho- indeed,becausethereduced(cid:3)2islessthanone,amorecomplex tonsinahotplasma,asinotherAGNs,andthatthespectrumis modelwouldoverparameterizethedataandwouldnotbejustified unaltered by any extrinsic effects such as partial covering or statistically.Itisimportanttonotethatthisphotonindexisconsis- reflection. tentwiththeaveragehardX-rayphotonindexobservedinASCA ItmayalsobeimportantthatPHL1811ismoreUV-luminous spectra from NLS1s (2:19(cid:2)0:10; Leighly 1999b). Thus, PHL thanotherNLS1s.Themonochromaticluminosityat25008is 110 LEIGHLY ETAL. Vol. 663 TABLE4 SwiftUVOTResults FluxDensity(10(cid:1)14ergs(cid:1)1cm(cid:1)28(cid:1)1)a Observation UVW2 UVM2 UVW1 U B V 2005Oct22............... 3.75(cid:2)0.03 2.75(cid:2)0.02 2.45(cid:2)0.02 ... ... ... 2006May12.............. 3.66(cid:2)0.03 2.71(cid:2)0.03 2.47(cid:2)0.03 1.89(cid:2)0.04 0.99(cid:2)0.02 0.61(cid:2)0.02 a Observedfluxes;uncorrectedforGalacticreddening. 30.9(PaperII);thus,itisseentobeabout5timesmoreluminous October15,asthesamplinganddataqualitywasmuchworseon thanthemostluminousobjectshowninFigure2ofGallo(2006). October16. AlsonotethataverysimilarfigureisshowninLeighly(2001)and The images were reduced using standard IRAF procedures. Matsumotoetal.(2004). AperturephotometrywasperformedonPHL1811andfourfield starsusinganaperturetwicethesizeoftheimagePSFFWHM. 2.5. Swift Observations and Analysis Theaperturewaschosentoensurethatessentiallyallofthepho- PHL1811wasobservedbytheSwiftGamma-RayBurstEx- tons from the object were measured, especially in cases where plorerMission(Gehrelsetal.2004)on2005October22starting theimagewasslightlytrailedduetocloudsandlossoftracking. at09:52UTforatotalof2.5ks.Theobservationswereperformed The ratio between PHL 1811 and thefieldstarswas computed simultaneouslywiththeX-RayTelescope(XRT;Burrowsetal. anderrorswerepropagated.PHL1811isabrightobject,sothe 2005)inthe0.3Y10.0keVenergyrangeandtheUV-OpticalTele- meansignal-to-noiseratiosintheseratiosarehigh,rangingfrom scope(UVOT;Romingetal.2005)inthe1700Y65008wave- 50to210. lengthrange.Itwasobservedagainon2006May12for1.6ks. We tested for variability in the ratio light curves using the ThedetailsoftheobservationsaregiveninTable1. ‘‘excessvariance,’’atechniquecommonlyusedinX-rayastron- The XRT data reduction was performed by the task omy.Theexcessvarianceisameasureoftheobservedvariance xrtpipeline,version0.9.9,whichisincludedintheHEAsoft in the light curve subtracting the variance due to measurement package,version6.0.4.Sourcephotonswereselectedinacircle errors.Innearlyallcases,thismeasurewasnegative.Weconclude witharadiusof23.400 andthebackgroundphotonsinasource- thatnoevidenceforopticalvariabilitywasfound. free region close by with a radius of 9500. Those photons were extractedandreadintoseparateeventfileswithXSELECT,ver- 3. LONG TIMESCALE X-RAYAND UV VARIABILITY sion 2.3. Twenty-two photons were detected during the first PHL1811hasnowbeenobservedintheX-raybandpassseven observation,and10weredetectedduringthesecondobserva- timesbetween1990and2006:duringtheROSATAllSkySurvey, tionforcountratesof(8:8(cid:2)1:9);10(cid:1)3s(cid:1)1and(6:2(cid:2)2:0); byBeppoSAXin2000(Leighlyetal.2001),andinthetwoChan- 10(cid:1)3 s(cid:1)1,respectively. draobservations,theXMM-Newtonobservation,andthetwoSwift In the 2005 October 22 observation, the UVOT photometry observationsreportedhere.InFigure6weshowthelong-termlight wasperformedwiththeUVfiltersUVW1,UVM2,andUVW2. curvecomposedofthesecuremeasurements,i.e.,thelastfiveob- Duringthe 2006May 12 observation, all six (optical andUV) servations.WedonotplottheRASSupperlimitortheBeppoSAX filterswereused.ThedetailsaregiveninTable1.Aftertheas- observationthat,withthelargedetectorPSF,wascertainlycon- pect correction the exposures in each filter were co-added into taminatedbyX-rayemissionfromneighboringobjects.Forthe one image with uvotimsum, and the magnitudes and fluxes in ChandraandXMM-Newtonobservations,theX-rayfluxdensities eachfilterweredeterminedwiththetaskuvotsource.There- sults (observed fluxes, uncorrected for Galactic reddening) are listedinTable4. 2.6. MDM Optical Photometry Optical photometry data were taken on PHL 1811 at MDM Observatory using the 1.3 m McGraw-Hill telescope on the nights of 2004 October 14, 15, and 16 as part of a project to searchforopticalvariabilityinthenarrow-linequasarPHL1092 (Galloetal.2004a).WeusedthethinnedCCD‘‘Templeton’’and thetelescopeinthef/7.6configuration,yieldingaangularsizeof 0.5000pixel(cid:1)1.TheweatherwasgoodonOctober14,withtypical seeingof1.700,althoughtheskywasnotphotometric.Theseeing was worse on October 15 (average of 2.300) and it was inter- mittentlycloudy.OnOctober16,theweatherhaddeteriorated further,andfewusableframeswereobtained. WeobservedPHL1811usingtheI,V,B,andUfilters,obtain- ingseveralexposuresineachfilter.Thetotalnumberofframes Fig. 6.—Long-termX-rayfluxvariabilityofPHL1811intermsof(cid:4)F at (cid:4) analyzedwere9,19,12,and11fortheI,V,B,andUfilters,re- 2keVintherestframe.Theuncertaintiesforthespectroscopicdata(Chandraand XMM-Newton)arepropagated1(cid:2)errorsinthepower-lawnormalizationand spectively.Withineachnight,theobservationswereallobtained index.Forthedetectiondata(Swift)theuncertaintiesareproportionaltothecount withinatimespanofabout30minutes,sowecouldtestthein- rateerror.Notethelogarithmicfluxaxis.Alsoshownisthepredictedfluxfor terday optical variability principally between October 14 and (cid:1)ox¼(cid:1)1:6basedontheUVfluxfromtheHSTobservations. No. 1, 2007 INTRINSICALLY X-RAY WEAK QUASAR PHL 1811. I. 111 Fig.7.—XMM-NewtonOMandSwiftUVOTphotometrypointsoverlaidon theobservedmergedopticalandHSTUVspectrumobserved2001December3 anddiscussedinPaperII.NostrongevidenceforUVvariabilityisseenamong Fig.8.—SpectralenergydistributionofPHL1811,plottedasafunctionofthe theobservations,whichspan4.5yr. rest-framefrequency.ContoursfromeachofthetwoChandraobservationsare shown,generatedbysuccessivelysettingeachparametertoits(cid:3)(cid:3)2¼2:71value andcomputingthemodel,thendeterminingthemaximumandminimumofallof were estimated from the best-fitting power-law models, and the themodels.Thedashedlineshowstheexpected2keVfluxforanaveragequasarof uncertainties were obtained by propagation of the errors on the thisluminosity,basedontheregressionpresentedbyWilkesetal.(1994),whilethe dottedlineshowstherangeobservedbyWilkesetal.(1994).Theaveragequasar normalizationsandphotonindices.FortheSwiftobservations,the SEDfromElvisetal.(1994)scaledtothe1(cid:5)minflectionisalsoshown. fluxdensitieswereestimatedfromthecountratesusingPIMMS,7 assumingtheXMM-Newtonphotonindex((cid:1)¼2:3)andGalactic absorption, and the uncertainties in the flux densities were as- The effective wavelengths of the Swift UVOT photometry sumedproportionaltotheuncertaintyinthecountrate. pointsarelistedinTable1,andtheinferredfluxesareplottedin WefindthatPHL1811hasvariedsignificantlybyafactorof Figure7.NotethatthefiltertransmissionfunctionsintheSwift (cid:3)5 in this time period. The first Chandra observation and the UVOTaredifferentfromthoseintheXMM-NewtonOM,even XMM-Newtonobservationfoundittobeinarelativelylowstate, thoughthefilternamesarethesame;hence,theeffectivewave- with(cid:4)F(cid:4)at2keVrestframeequalto(cid:3)1:0;10(cid:1)14ergs(cid:1)1cm(cid:1)2; lengthsaresomewhatdifferent.LiketheXMM-NewtonOMpho- thefluxesinthesetwoobservationsareconsistentwitheachother. tometry,thecorrespondencebetweentheUVOTphotometryand ThesecondChandraobservationandthetwoSwiftobservations the HSTspectrum is very good, with the exception of the pho- showasignificantlyhigherfluxbyafactorof3.5Y5.5,andthe tometryusingtheUVW2filter.Thatfilterisespeciallydifficultto fluxesofthesethreeareroughlyconsistentwithoneanother,al- calibrateasthecompletefiltertransmissioncurveisnotknown9 thoughtheuncertaintiesareevaluateddifferently.Althoughthere andbecauseofthepaucityofsuitablecalibrationtargets.There- areonlyfivepoints,thesedatasuggestthattheX-rayfluxoscil- fore,wedonotconsiderthedisagreementwiththeHSTspectrum latesbetweentwostatesthatdifferbyafactorof4Y5.TheNLS1 indicativeofaspectralchange.Weconcludethatweobserveno 1H 0707(cid:1)495 seems to behave the same way, oscillating be- evidenceforanyUVvariabilitybetweenthefourUVobservations tweentwofluxstatesthatdifferbyafactorof(cid:3)10(Leighlyetal. thatspanatimeperiodof4.5yr. 2002). Tosummarize,PHL1811hasnowbeenobservedseventimes Aswillbediscussedinx4,quasarswithPHL1811’soptical intheX-raysoveraperiodspanning16yr.Duringthistime,the luminosityarestatisticallyexpectedhavevaluesof(cid:1)ox8equalto X-ray flux has been observed to vary by a factor of (cid:3)5, but it (cid:1)1.6.ThedashedlineinFigure6showsthepredictedX-rayflux remainswellbelowthatofatypicalquasarof itsUVluminosity. for(cid:1)ox ¼(cid:1)1:6basedontheUVfluxoftheHSTspectrum.Al- Incontrast,thefourUVobservationsmadeoveraperiodof4.5yr though PHL 1811 varies significantly, it never approaches the donotshowanyconvincingevidenceof UVvariability. nominalX-rayfluxforanobjectofitsUVluminosity. WehavefourepochsofUVobservations:theHSTSTISspec- 4.THE SPECTRAL ENERGY DISTRIBUTION troscopicobservationmade2001December3(discussedinde- tailinPaperII),theXMM-NewtonOMobservationmade2004 WepresentedthefirstspectralenergydistributionofPHL1811 November1,andthetwoSwiftUVOTobservationsmade2005 inLeighlyetal.(2001)basedonanopticalspectrum,aROSAT October22and2006May12.WesearchforpossibleUVvaria- upperlimit,aBeppoSAXobservation,andmultiwavelengthpho- bility by comparing the latter three photometry measurements tometry.InFigure8,wepresentanupdatedspectralenergydis- withtheHSTspectrum. tribution.FortheopticalandUV,weusedthemergedspectrum The effective wavelength of the XMM-Newton OM UVM2 describedinPaperII.TheChandraresultsarerepresentedbyre- filter is 2310 8. We plot the observed fluxes on the observed- gionsontheSEDplotthatwereconstructedusingthethirdjoint framemergedHSTandopticalspectrumfromPaperIIinFigure7. model fit (Table 2). The contours were constructed by succes- Wefindthatthephotometryfluxiscompletelyconsistentwiththe sively setting each variable parameter to its (cid:3)(cid:3)2 ¼2:71 value observedspectrum. and computing the model, then determining the maximum and minimumofallthemodels. 7 Availableathttp://cxc.harvard.edu/toolkit/pimms.jsp. 8 Theparameter(cid:1) isdefinedasthepoint-to-pointslopebetween25008 9 Seehttp://swift.gsfc.nasa.gov/docs/heasarc/caldb/swift/docs/uvot/uvot_caldb_ ox and2keV;i.e.,(cid:1)ox¼log(F2500/F2keV)/2:61. filtertransmission_02.pdf. 112 LEIGHLY ETAL. Vol. 663 From the best-fit Chandra model and the merged HST and independent, so in this scenario we would expect to see the in- opticalspectrum,wecompute(cid:1) tobe(cid:1)2.40forthefirstob- trinsicpowerlawwithattenuatedflux.InSeyfert2s,theelectron ox servation,whichwasnearestintimetotheHSTobservation,and scatteringoccursoveranextendedarea,andthuswhiletheintrin- (cid:1)2.19forthesecondobservation.AsseeninFigures6and7,the sicX-rayemissionmayvary,thescatteredemissiondoesnot,be- ChandraandHSTfluxesarecomparablewiththeXMM-Newton cause variability is washed out as it scatters over the extended and Swift fluxes, so we confine our discussion to the Chandra region.Thefactthatweseesignificantvariabilitybetweenthetwo andHSTdataherewithoutlossofgenerality. Chandraobservations,separatedby12days,arguesthatweare Wilkes et al. (1994) computed a regression between optical notseeingscatteredlight. Thisconclusiondependsonthe com- luminosityand(cid:1) foraheterogeneoussampleofquasars.Using pactnessofthe electron-scattering mirror;ifunusually compact, ox theircosmology(H ¼50kms(cid:1)1Mpc(cid:1)1,q ¼0),weobtainalu- observationofvariabilitywouldbepossible.Regardless,theob- 0 0 minositydistanceforPHL1811of1261Mpcandacorresponding servationofsignificantvariabilitybetweentwoobservationssep- luminositydensityat25008of1:44;1031 ergs(cid:1)1Hz(cid:1)1.Then aratedby12daysfromthisluminousquasarsuggeststhatweare using their regression, we predict (cid:1) to be (cid:1)1.6. We plot the seeingtheintrinsicemissionfromtheAGN. ox predictedX-rayfluxassumingthisvalueof(cid:1) onFigure8,aswell Narrow-line Seyfert 1 galaxies are known for their high- ox asaverticalbarthatindicatestherangeof X-rayluminositiesob- amplitudeX-rayvariability(e.g.,Leighly1999a).Asdiscussed servedbyWilkesetal.(1994). inLeighlyetal.(2001)itwaspossible,atthattime,whenwe Morerecently,Stratevaetal.(2005)andSteffenetal.(2006) hadonlytheRASSupperlimitandtheBeppoSAXdata,thatwe updated the (cid:1) regression using a large sample of optically hadcoincidentallyonlyobservedPHL1811whileitwasinatran- ox selected active galaxies that span a large range in redshift and sient low state. In this paper, we report five more X-ray obser- luminosityyethavehighlycomplete X-ray data.Fortheircos- vations, all of which find it to be a significantly weak X-ray mology(H ¼70kms(cid:1)1Mpc(cid:1)1,(cid:2) ¼0:3,and(cid:2) ¼0:7)we source.Thus,theprobabilitythatwecoincidentallyobserveit 0 M (cid:4) obtain a luminosity distance of 936 Mpc and a corresponding inalowstateisdecreasing.PHL1811appearstobeintrinsically luminositydensityat25008of 7:92;1030ergs(cid:1)1Hz(cid:1)1.Their X-rayweak. regression yields a predicted (cid:1) of (cid:1)1.60 as well. From their ox Figure4,wefindthattheenvelopeof(cid:1)oxobservedforquasarsof 5. DISCUSSION this luminosity spans approximately (cid:1)1.75 to (cid:1)1.4. Our ob- servedX-rayluminositydensitiesarefactorsof 130Y450below 5.1. PHL 1811 is Intrinsically X-Ray Weak thehighvalueand13Y45belowthelowvalue.Thus,PHL1811 InLeighlyetal.(2001)wereportedthefirstX-raydetection isobservedtobesignificantlyX-rayweakcomparedwithother of PHL1811byBeppoSAX.ThatobservationshowedthatPHL quasars. 1811appearedtobeX-rayweak,butthe65netphotonspectrum Brandtetal.(2000)compilethedistributionof(cid:1) 10fromthe wasnotsufficienttodeterminetheoriginoftheX-rayweakness. ox PG quasar sample studied by Boroson & Green (1992). They WepresentedthreealternativesfortheX-rayweakness:(1)PHL findasuggestionofabimodaldistributionwith10ofthe87ob- 1811isaBALQSO,andtheX-rayemissionisabsorbed;(2)since jectsclassifiedasX-rayweakwith(cid:1) (cid:7)(cid:1)2.Thentheyfinda PHL1811 isanNLS1,itishighlyX-ray variable, and wehap- ox connectionbetween(cid:1) andthepresenceofsignificantCivab- penedtocatchitinalowstate;or(3)PHL1811isintrinsically ox sorptionlines,suchthatmostofthesoftX-rayweakobjectshave X-rayweak.TheHSTobservationdiscussedinPaperIIandthe absorption-line equivalent widths greater than 5 8. They infer ChandraobservationsreportedhereshowthatitisnotaBALQSO, theseresultstoimplythatX-rayabsorptionistheprimaryorigin asthereisnoevidenceforUVabsorptionlines.Furthermore,there ofsoftX-rayweaknessinAGNs. isnoevidenceforabsorptionintheX-rayspectrum,andthesig- ClearlyPHL1811doesnotfollowthetrendobservedbyBrandt nificantvariabilitybetweenthetwoChandraobservationssuggests etal.(2000).ItissoftX-rayweak,but,asdiscussedinPaperII, thattheX-rayemissionisnotscattered.Sothefirsthypothesisis thereisnoevidenceforanysignificantintrinsicCivabsorption firmlyruledout. lines.IntheBrandtetal.(2000)sample,objectswithsimilar(cid:1) We can never conclusively rule out the second hypothesis, ox asobservedfromPHL1811haveCivabsorptionlineequivalent thatPHL1811ishighlyX-rayvariableandwealwaysjusthap- widthsof5Y208. pentocatchitinalowstate.However,ithasnowbeenobserved Furthermore, the X-ray spectrum shows no evidence for in- seventimesbetween(cid:3)1990(duringtheROSATAllSkySurvey) trinsicabsorption.IflowYcolumn-density absorption werepre- and 2006 May (in a Swift observation), and it has never been sent,wewouldexpecttoobserveaflatspectrum;incontrast,for observed to be bright. In fact, since it has already varied by a asinglepower-lawmodel,wemeasurephotonindicesof 2Y2.6, factorof(cid:3)5amongtheobservationsreportedhere,itmayhave consistentwithunabsorbedquasars,andanupperlimitonintrin- alreadybeenasbrightasitcanget.Itseemsincreasinglyunlikely sicabsorptionof8:7;1020 cm(cid:1)2. thatitwilleverbeasX-raybrightasotherquasars. AnotherpossibilityisthatahighYcolumn-densityorCompton- Thus,weconcludePHL1811isintrinsicallyX-rayfaint.Most thickabsorberispresentinourlineofsight,sothatweseenodi- quasars are bright X-ray sources, so what property of the PHL rectcontinuumemission.Ourspectradonotprobehighenough 1811centralenginecausesittobeX-rayfaint?Aswepointedout energiestoseewhetherthereisahighlyabsorbedcomponent,as inLeighlyetal.(2001;alsoGrupeetal.2001),thereisnoob- hasbeenfoundinbroadabsorptionlinequasars(BALQSOs;e.g., vious reason why intrinsically X-ray weak quasars should not Gallagheretal.2002;Greenetal.2001).Ifthecontinuumemis- exist.Briefly,aquasararguablycannotexistwithoutaccretionasa sionwerecompletelyabsorbed,thentheX-rayspectrumthatwe sourceoffuel.InanobjectsuchasPHL1811,thataccretionpro- seemighthavebeenscatteredintoourlineofsight(i.e.,similarto bablyoccursthroughanopticallythick,geometricallythinaccre- a Seyfert 2 galaxy or BALQSO). Electron scattering is energy tiondiskthatemitstheobservedstrongopticalandUVcontinuum (Fig.8).SuchadiskwouldneverbehotenoughtoemitX-rays, whichareprobablyemittedbythecorona,aseparatecomponent. 10 Brandtetal.(2000)useanalternativedefinitionof(cid:1) usingthefluxdensity at30008ratherthan25008.Theyestimatethat(cid:1)ox(250ox0)¼1:03(cid:1)ox(3000)(cid:1) We postulated that there may be situations in which the corona 0:03(cid:1) ,where(cid:1) istheslopeofthespectrumbetween2500and30008. maynotexistormaybeweak. u u

Description:
accretion rate (e.g., Frank et al. 1992). More sophisticated .. 2001) and MOS (Turner et al. 2001) instruments 2001). The EPIC observations were carried out using the thin fil- . spectrum, noting that we cannot be sure that this spectrum is un- flux using the conversion factor for the UVM2 filter
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.