TheAstrophysicalJournal,655:1142Y1156,2007February1 Copyrightisnotclaimedforthisarticle.PrintedinU.S.A. IN/OUT PAIRS AND THE DETACHMENT OF CORONAL STREAMERS N. R. Sheeley, Jr. and Y.-M. Wang E.O.HulburtCenterforSpaceResearch,NavalResearchLaboratory,WashingtonDC; [email protected],[email protected] Received2006June27;accepted2006October19 ABSTRACT We previously described coronal events that originate in the 2Y6 R field of view of the LASCO white-light (cid:1) coronagraphandinvolvethesimultaneousejectionofmaterialinwardtowardtheSunandoutwardawayfromit. Now,inastudyofmorethan160in/outpairs,wehavefoundthatthesefeaturesaredensityenhancementsatthe leadingandtrailingedgesofdepletionsthatoccurwhenslowlyrisingcoronalstructuresseparatefromtheSun.The outwardcomponentisshapedlikealargearchwithbothendsattachedtotheSun,andtheinwardcomponentis oftenresolvedintoloops.Wealsofoundabout60additionaleventsinwhichtheoutwardcomponentsbegannear theedgeoftheoccultingdiskandinwardcomponentswerenotvisible,asiftheseeventswerein/outpairsthatoriginated belowthe2R radiusoftheoccultingdisk.Weconcludethatin/outpairsbelongtoabroadclassofstreamerdetachments, (cid:1) which include ‘‘streamer blowout’’ coronal mass ejections, and we suppose that all of these events occur when risingmagneticloopsreconnecttoproduceanoutgoinghelicalfluxropeandaningoingarcadeofcollapsingloops. Subject headinggs: Sun: corona — Sun: coronal mass ejections (CMEs) — Sun: magnetic fields 1. INTRODUCTION butmanyofthemdidnot.Now,inastudyof162in/outpairs,we havefoundthatatleast80%areprecededbya1Y2dayinterval ThispaperdescribesobservationsobtainedwiththeLargeAngle ofgradualcoronalexpansion,whichendswiththeonsetofthe SpectrometricCoronagraph(LASCO)ontheSolarandHelio- pair. (The remaining 20% are distributed evenly between inde- sphericObservatory(SOHO).LASCOincludestwowhite-light terminatecasesandcasesforwhichthepairliesinthewakeofa coronagraphs(C2andC3)withseparatefieldsof viewspanning theranges2Y6and4Y30R ,respectively,andhasobserveda sequenceofCMEs.)Inthenextsectionofthispaper,wedescribe (cid:1) thisnewdiscoveryandshowadditionaleventsthatmaybein/out varietyofcoronalstructuresandtransientssinceoperationsbegan pairsthatoriginatebelowtheoccultingdisk,wheretheinward inearly1996.Inadditiontocoronalmassejections(CMEs)and componentsarenotvisible.Inthefinalsection,wesummarize outwardmovingstreamer‘‘blobs,’’wehaveobservedmorethan theseobservationsandinterpretthemintermsofarisingarcade 10,000smallandusuallyfaintfeaturesmovingtowardtheSun. of loops that reconnect to form an outgoing helical flux rope About98%ofthesecoronalinflowsoccurinlong-livedstreams andaningoingsystemofcollapsingloops. atnorth-southexcursionsofthestreamerbelt.Theserainingin- flowsseemtoindicatetheongoingmagneticfieldlinereconnec- 2. OBSERVATIONS tionthatoccursasdifferentialrotationshearsthephotospheric 2.1. In/Out Pairs and Streamer Disconnection Events neutralline,weakenstheequatorialcomponentoftheSun’sdipole field,andgraduallyflattensthestreamerbelt(Sheeleyetal.2001; Figure1showseightsetsofC2andC3imagesofin/outpairs Sheeley&Wang2001).Liketheinflowsabovepostflareloops observedduringtheyears2000Y2005,arrangedindecreasing (McKenzie&Hudson1999;McKenzie2000;Gallagheretal. orderoftheirapparentsize.Eachframecontainsarunningdiffer- 2002;Innesetal.2003a,2003b;Asaietal.2004;Sheeleyetal. enceimage,obtainedbysubtractingthepreviousimageonthat 2004),theseraininginflowsdonothavevisibleoutwardcom- dayfromthecurrentimage.Suchdifferenceimagesshowsubtle ponents,perhapsbecausetheyarefaintandheadedupwardinto propermotionswithoutthedistractingeffectsofstationaryback- regionsofevenlowerdensity. groundfeatures.InthefirstfewC2frames,thein/outpairsappear About2%oftheLASCOinflows((cid:2)160)areaccompaniedby asoppositelydirectedarchesresemblingthejawsofanopenmouth. outwardcomponents(Wangetal.1999;Sheeley&Wang2002; TheC3imagesshowtheoutwardcomponentsafewhourslater Simnett2004).Unliketheraininginflows,whichbecomeless aslargearcheswhoselegsextendbacktowardtheSun.Aswe densethantheirsurroundingsastheymoveinward,theseparating havediscussedpreviously,theinwardandoutwardcomponents componentsofin/outpairsaredensityenhancements.Inaddition, moveatspeedsofabout100and300kms(cid:3)1,respectively,relative theiroutwardcomponentshavecharacteristicarch-shapedsig- tothecenteroftheSun,andthereforeseparatefromeachotherat natures.Inarecentpaperofthisseries(Wang&Sheeley2006, relativespeedsofabout400kms(cid:3)1(Sheeley&Wang2002).In hereafterPaperI),wedescribedobservationsandsimulations theserunningdifferenceimages,theinwardandoutwardcom- thatsuggestthattheoutwardcomponenthasthehelicalstructure ponentshavetheleading-white/trailing-blacksignaturesofden- ofamagneticfluxrope. sityenhancements,ratherthantheleading-black/trailing-white A puzzling aspect of the in/out pairs has been their origin. signaturesofthedarkloopsandtrailing‘‘tadpole-like’’features Unlike raining inflows, which were visible whenever a north- thataccompanyraininginflows. southsegmentofthestreamerbeltrotatedpasttheeastorwest AswelookthroughthesequenceofC2imagesinFigure1,we limb,thein/outpairsoccurredsporadicallywithnoapparentrela- seeachangeintheapparentsizeofthejaw-likeseparations,as tiontomagneticstructuresortheoccurrenceofCMEs.Somein/out ifwewereobtainingamoreobliqueviewoftheseevents.Even- pairsseemedtobetriggeredbyshockwavesfrommajorCMEs, tually,thepairsaresonarrowthattheyresemblethestreamer 1142 IN/OUT PAIRS AND DETACHMENT OF CORONAL STREAMERS 1143 Fig.1.—Runningdifferenceimages,showingaselectionofeightin/outpairsintheC2fieldofview(croppedto6R onaside)andtheoutwardcomponentsofthese (cid:1) pairsafewhourslaterintheC3field(croppedto15R onaside).Theseeventsarearrangedindecreasingorderoftheirangularspanstoshowtheapparenttrendfrom (cid:1) face-ontoedge-onviews. disconnectioneventsweobservedduringtherisingphaseofthe shape similar to that of a postflare loop system, the outgoing sunspotcycle(Wangetal.1999).Asweshownext,otherprop- componenthasacorrugated,cusplikeshape,consistentwiththe ertiesofin/outpairsarealsoconsistentwiththisideathattheyare helicaltopologyofafluxrope,asdescribedinPaperI.Intheright face-onviewsofstreamerdisconnectionevents. column,similarminimum-subtractedimagesshowthedepletion asitcontinuesoutwardthroughtheC3fieldofview(croppedto 2.2.Spontaneous In/Out Pairs 15R oneachside).Clearly,thisin/outpairleftthecoronaless (cid:1) Figure2referstoanin/outpairon2005October12.Intheleft densethanitwasbefore. column,therunningdifferenceimagesshowtheformationand Figure 3 shows height/time maps, obtained by observing the initialseparationoftheinwardandoutwardcomponentsasthey evolutionofthein/outpairthrougharadialslitandthenplac- movethroughthesouthwestquadrantoftheC2fieldofview(6R ingtheresultingstripsinchronologicalorder.Thisprocedurehas (cid:1) oneachside).Asusual,eachcomponenthastheleading-white/ beendescribedpreviouslybySheeleyetal.(1999).Ingeneral,we trailing-blacksignatureofadensityenhancement.Themiddle choseaslitwidthof17pixels,butforoneparticularlycomplicated columncontainsimagesobtainedbysubtractingamonthlymini- event (2004 January 20, shown in Figs. 6Y9), we increased the mumintensityfromeachpixel.Bysubtractingthemonthlymini- widthto25pixelstocapturethedetailsofthemotion.Running mumintensity,wereducethequasi-stationarycontributionsof differenceimageswereusedinthetoppanel,whichtracksspatial scatteredlightfromcircumsolardustandfromtheLASCOoptical fluctuationsofcoronalintensityastheymovethroughthefieldof train,aswedidwiththerunningdifferenceimages,butwithout view.A36hrintervalofgradualaccelerationfromaninitialspeed removingthecontributionsofcoronalstreamers. (cid:2)20kms(cid:3)1endswiththesuddenformationofthein/outpair.The These ‘‘minimum subtracted’’ images show a dark depletion tracksoftheinwardandoutwardcomponentsappearasatrailing betweentheingoingandoutgoingcomponentsofthepair.Be- boundaryoftheflowfield,whichdoesnotextendbeyondthem. causethedepletionexpandsrapidly,itsedgesovertakeandcom- Theslopeoftheupwardboundaryisapproximately360kms(cid:3)1. pressmaterialthatliesahead,causingthedensityenhancements Thebottompanelof Figure3containsaheight/timemap,ob- thatgiverisetotheleading-white/trailing-blacksignaturesinrun- tainedusingdifferenceimagesrelativetoafixed‘‘baseframe’’ ningdifferenceimages.Whiletheinwardcomponenthasaspiny near the start of the expansion, and indicates the accumulated 1144 SHEELEY & WANG Vol. 655 Fig.2.—C2runningdifferenceimages(left)andthecorrespondingminimum-subtractedimages(center)ofanin/outpairinthesouthwestquadrantofthecoronaon2005 October12.Theseimagesshowthatthein/outpairconsistsofapairofdensityenhancementsseparatedbyanexpandingdensitydepletion.C3minimum-subtractedimages (right)showthecontinuedexpansionofthisdepletionfartheroutinthecorona.AlloftheC3imagesinthispaperhavebeencroppedto15R onaside (cid:1) changes since that time. This map shows the slowly rising re- gionsofcoronalintensity,whosespatialfluctuationsproduced thetracksinthetoppanel.Thepairleavesadarkercoronainits wake. Figures4and5refertoaverynarrowin/outpairwhoseangular spanwasonly4(cid:4).Thisnarrow2005September17pairisthelast pairillustratedinFigure1.IntheC3imagesof Figure4(right), theoutwardcomponentsresemblethe‘‘streamerblobs’’thatwe studiedduringtherisingphaseofthesunspotcycle(Sheeleyetal. 1997).Thus,itisnaturaltoaskwhetherstreamerblobsmaybe in/out pairs whose inward components are unobserved below theoccultingdisk.Wethinkthisisunlikely.Streamerblobsemerge fromthetipsof helmetstreamerswithoutleavinginwardcom- ponentsbehind.Theyalsoaccelerategraduallyandreachtheir terminal speeds of 300Y400 km s(cid:3)1 beyond 15 R from Sun (cid:1) center.Bycomparison,theheight/timemapsinFigure5show thattheoutwardcomponentonSeptember17startedabruptly near5R witharelativelyhighspeedof300kms(cid:3)1andwas (cid:1) accompanied by a prominent inward component. Presumably, thesedifferenceshaveaphysicalorigin;theblobsarethoughtto beformedbyreconnectionbetweenopenandclosedfieldlines (Wangetal.1998),whereasthein/outpairsprobablyindicate reconnectionbetweentheclosedloopsofarisingarcade(PaperI). Fig. 3.—Height/timemapsconstructedfromrunningdifferenceimages(top) Inthe top panel ofFigure5,the tracksofthe gradual expan- anddifferenceimagesrelativetoafixedbasenearthestartofthegradualexpansion (bottom).The36hrinterval(2005October10Y12)ofgradualexpansionendswith sionareparticularlywellresolvedandlastforabout30hrbefore theformationofthein/outpair.Thepositionangleis221(cid:4). thepairforms.Intheupperbranch,thetrackslosetheiridentity No. 2, 2007 IN/OUT PAIRS AND DETACHMENT OF CORONAL STREAMERS 1145 Fig. 4.—C2(left)andC3(right)runningdifferenceimagesofaverynarrow in/outpairon2005September17.Thearrowsindicatetheinwardandoutward componentsnearthestartoftheeventat09:36UT. whentheyencounterandmergewiththesteepertrackoftheout- wardcomponent.Inthelowerbranch,thetrackslosetheiriden- titywhentheyencounterandmergewiththetrackoftheinward Fig.6.—C3runningdifferenceimagesofthenortheastquadrantofthecorona, component.ThisbehaviorisunaffectedbyaCMEwhoseshort, showingtheformationandmergingofseveral‘‘outcomponents’’inthewakeofa steeptrackcutsacrossthepatternat15:00UTonSeptember16. haloCMEon2004January20.Thearrowindicatesthefirstofthesearch-shaped featuresasitappearsbehindthedisturbancefromtheCME. Inthebottompanel,thefixed-baseheight/timemapshowsthe slowlyrisingintensitypattern,endingatthetimeofthepair.(We spatiallysmoothedthismaptoreduceperiodicdefectsassociated withthefinitewidthofthestackedstrips.) 2.3. Pairs Triggered by CMEs Theeventswehavejustdescribedoccurredspontaneouslywith- out the perturbing effects of CMEs. However, sometimes the disturbancefromamajorCMEwillterminatestreamergrowth prematurelyandtriggeranin/outpair.Fromasubsetof60well- observedin/outpairs,wefound30eventsthatseemedtobetrig- geredbyCMEs,25eventsthatseemedtooccurontheirown, andfiveindeterminateevents. Next,weshowanextremecaseinwhichthedisturbancefroma haloCMEon2004January20triggeredaseriesofin/outpairs. Although the bulk of the ejected mass went into the south- ernhemisphere,amajordisturbancepropagatedinalldirections Fig.5.—Height/timemapsforthepairinFig.4,againshowingthatthepair aroundtheoccultingdisk.TheC3runningdifferenceimagesin markstheendofalongintervalofcoronalexpansion.Inparticular,theindividual Figure6provideanoverviewofthisdramaticeventasitappeared tracksoftheflowfieldcontinuebothaboveandbelowthepairformationheight inthenortheastquadrant(croppedto15R oneachside).Thefirst untiltheyreachtheboundingtracksofthein/outpair.Thefixed-basemaphasbeen (cid:1) smoothedtoreduceperiodicdefects.Thepositionangleis75(cid:4). twopanelsshowthedisturbancemovingacrossthe4Y15R(cid:1)field 1146 SHEELEY & WANG Vol. 655 andthesubsequentformationofthein/outpairs.Thebottompanel showsanexpandedviewofthisaction,beginningwithapairof widelyspacedwhitetracksoftheCMEat01:00UT. The scenario is essentially the same as that observed in Fig- ure7.Thetracksofoneortwoslowlyrisingoutwardcomponents emergefromtheblurrypairofCMEtracksat01:00UT.Thetrack ofanother,fasteroutwardcomponentformsatabout04:00UT and overtakes the slower of the first two tracks at 06:00 UT. Around10:00UT,themergedtrackisovertakenbyathird,even steepertrack,whichseparatedfromaninwardtrackofpointed loops at 08:00 UT. By 10:00 UT, the height/time map shows littleflowbelow15R ,exceptfortheremnantsofthesecollaps- (cid:1) ingloops. InFigure9,theC2runningdifferenceimagesshowthenorth- eastquadrant(6R oneachside)during07:31Y12:30UT,when (cid:1) thefinaloutwardcomponentswereseparatingfromtheirinward counterparts.At07:31UT,theoutwardcomponentsarevisible astheymergeintoasinglecusp-shapedfeatureandseparatefrom anapparentarcadeofpointedloops(arrow).Theremainingim- agesshowthecollapseandprogressiveroundingoftheseloops. Inthispaper,wehaveshownin/outpairsthatformedsponta- neouslyandin/outpairsthatseemtohavebeentriggeredbythe disturbancefromaCME.However,wehavealsofoundcasesin whichaCMEtriggeredasinglein/outpairandothercasesin whichasequenceofpairsoccurredspontaneouslywithoutthe occurrenceofaCME.Butthecommoncharacteristicofallthese in/outpairsistheirlocationattheendofagraduallyrisingcoronal structure. 2.4. Events without Inward Components As mentioned above, some events have all of the proper- tiesofanin/outpair,exceptforanobservedinwardcomponent. Figure10showssuchaneventon2004October16Y17.Inthe left panels, the running difference images show the weak sig- natureofaslowlyrisingloopsystemat06:30UTandthestrong signatureofamuchfasterrisingarchduring22:30Y00:30UT. Thearchhastheleading-white/trailing-blacksignatureofaden- sityenhancement.Intherightpanels,theminimum-subtracted Fig.7.—C3minimum-subtractedimages,correspondingtothedifferenceim- imagesshowthisdensityenhancementandthedepletionleftbe- agesinFig.6andshowingthedensitydepletionsbehindtheindividualoutward hindit.Liketheoutwardcomponentsofmanyin/outpairs,this components. ‘‘loop’’hasthecorrugatedshapeofahelicalfluxropewhoselegs remainattached tothe Sun. The outward component looksso of view during 01:42Y02:42 UT. By 02:42 UT, a small arch- muchlikeaneruptiveprominencethatwewonderwhetheritis shapedfeature(arrow)hasbecomevisiblebehindthetrailingedge prominencematerialcarriedupfromthechromosphereandion- ofthiswave.Itisthefirstofseveralarchesthatformnear5R ized,asweoftenobserveforCMEswithathree-partstructure (cid:1) andthenmoveoutwardtocatchthepreviousones.By04:42UT (leadingedge,trailingcavity,andcentralcore),orwhetheritwas a second arch forms behind the first one, which has moved to producedinsituliketheoutwardcomponentsofthe(cid:2)160ob- about6R .Likealloutwardcomponentsseeninrunningdiffer- servedin/outpairs.Ofcourse,thisleadstotherelatedquestionof (cid:1) ence images, these arches have the leading-white/trailing-black whetherthetrailingdarkregionisarisingstreamercavityoranew signaturesofdensityenhancements.Thesecondarchmovesfaster depletioncreatedduringtheformationofanin/outpairbelow thanthefirstandovertakesitby06:42UTwhentwonewarches theoccultingdisk. becomevisiblenear5R .Thesenewarchesmoveevenmore Figure11showsthecorrespondingheight/timemaps.Likethe (cid:1) rapidly outward and begin to merge with the earlier ones at height/timemapsofin/outpairs (cf.Figs. 3 and 5), these maps 08:18UTtoformasingle,large,cusp-shapedloop,whichisstill show about 32 hr of gradual expansion ending with the steep visibleat10:20UTwhenthesequenceends. (330kms(cid:3)1)upwardtrackofanoutwardcomponent.However, Ifthesearchesarereallytheoutwardcomponentsofin/out inthisevent,theoutwardcomponentbeginsattheoccultingdisk pairs,thenminimum-subtractedimagesoughttoshowcoronal andaninwardcomponentisnotvisible,againraisingtheques- depletions behind these outward components. The minimum- tionofwhetherthiseventmaybeanin/outpairthatformedbe- subtractedimagesinFigure7showtheexpecteddepletions,even- lowtheoccultingdisk. tuallymergingintoasingledarkregion. Figures12and13provideanotherexample,thistimeon2003 Figure 8 shows running difference height/time maps for this April12Y13.Intheleftpanelsof Figure12,theC2runningdif- event.Thetoppanelreferstothe3dayinterval2004January18Y ferenceimagesshowthefamiliarcharacteristicsofanoutward 20andshowsthegraduallyrisingflowfieldforabout34hrbefore component:anarch-shapeddensityenhancementinthewakeof itendedwiththepassageoftheCMEat01:00UTonJanuary20 agradualexpansion.Intherightpanels,theminimum-subtracted No. 2, 2007 IN/OUT PAIRS AND DETACHMENT OF CORONAL STREAMERS 1147 Fig.8.—Runningdifferenceheight/timemaps,showing1.5daysofgradualexpansionpriortotheoccurrenceofthehaloCMEandthetriggeredin/outpairsonJanuary20 (top)andanexpandedviewofthetracksthatendedtheexpansion(bottom).Thewidthoftheslitusedtomaketheheight/timemapsis25pixelshere,butitis17pixelsforthe otherfiguresinthispaper.Inthebottompanel,thefinaloutwardcomponenttearsawayfrompointedloops,whichmoveinwardandbecomerounder. imagesshowthatthiscomponentwastornfromacoronalstreamer. aninwardcomponent(ifitoccurred)musthavenarrowlymissed Liketheoutwardcomponenton2004October16Y17inFigure10, detectionjustbelowtheoccultingdisk. thisfeaturehasacomplicatedfinestructure,suggestiveofaflux The preceding examples raise the question of whether some rope. in/outpairsmayformbelowtheoccultingdisk,wheretheirinward UnliketheOctober16Y17imagesinFigure10,theseApril12Y componentsescapedetection.Next,weexaminehistogramsof 13 minimum-subtracted images show only a slight depletion themeasuredstartingheightsof153in/outpairstoseewhether behindtheoutwardcomponent.However,whenthefullcomple- theyareconsistentwiththishypothesis.Weexcludedabout60 mentoftheseimagesisviewedinatime-lapsemovie,itshowsa additionalevents,suchasthoseinFigures10Y13,forwhichin- largedepletionintheregionbetweenthelegsofthearchinthe ward components were not observed. Figure 14 contains his- runningdifferenceimages.Inthestaticimages,thisdepletionis togramsoftheheightsoftheinwardandoutwardcomponentsat weakenedbyemissionfromtheremainingstreamermaterialalong thetimeswhentheinwardcomponentwasfirstseen.Italsocon- thelineofsight.Thisoverlappingintensityisgreatlyreducedin tainshistogramsoftheaverageofthesetwoheights(providing therunningdifferenceimagesanddoesnotmaskthevisibility anestimateofthecommonpointoforigin)andoftheirdifference. ofthefast,brightoutwardcomponent.However,theremaining Thedistributionofinwardstartingheights,r ,isasymmetric in streamermaterialdoescontributetothefainterheight/timetracks withasharppeaklocatedbelowthe3.3R averagevalueanda (cid:1) ofthegraduallyrisingfeature,whichextendslightlybeyondthe broadtailextendingabovethisaverage.Thesteepfalloffinthe steeper ((cid:2)400 km s(cid:3)1) and more intense track of the outward range2.0Y2.5R probablyreflectsthedecreasinginstrumental (cid:1) component,asshowninFigure13.Thestreamercontinuedtobe resolutiontowardtheoccultingdiskandsuggeststhatthedis- activeatthislocationonApril14whenanin/outpairat07:30UT tributionofallin/outpairs(unobscuredbytheoccultingdisk) wasfollowedbyasmallCME2hrlater. wouldpeakevenclosertotheSun.By comparison,thedistri- Thetoppanelof Figure13showsthatthetrackoftheoutward butionofoutwardstartingheights,r ,ismoresymmetricand out componentdidnotbeginattheoccultingdiskbutinsteadstarted broadlypeakedarounditsaveragevalueof5.3R .Inparticular, (cid:1) 0.5R aboveitatadistanceofabout2.5R fromSuncenter. itisnotthesimpleshiftoftheinwarddistributionthatonewould (cid:1) (cid:1) Wesupposethatthisisarealeffectandnotentirelytheresultof obtainifallofthestartingseparations,r (cid:3)r ,werethesame. out in thedecreasedresolutiontowardtheoccultingdiskbecausethe Thisimpliesthatthedistributionofstartingseparationsmustalso evenfainteroutwardcomponentshowninFigure11wasvisible bebroad,asonecanreadilyverifyinthebottomrightpanel.Here rightdowntotheoccultingdisk.Thiswouldmeanthattheout- thedistributionofstartingseparationsrangesfrom1to3R and (cid:1) wardcomponentformedintheC2fieldofviewanddidnotsimply hasapeakat2R .Thebreadthofthisdistributioniscausedby (cid:1) emergefromalocationbelowtheoccultingdisk.Consequently, temporal sampling of the LASCO observations, but the lower 1148 SHEELEY & WANG Vol. 655 Fig.10.—C2runningdifference(left)andminimum-subtracted(right)images on2004October16Y17,showinganarch-shapederuptionattheendofaninterval ofcoronalexpansion.Intheminimum-subtractedimages,thearchdevelopsa corrugatedstructure,similartothatofaneruptiveprominenceorhelicalmag- neticfluxrope. Itisplausible thatthegradually expanding coronal structures indicatetherisingloopsofagrowingmagneticfieldandthatthe in/out pairs are signatures of magnetic field line reconnection when the field stops growing and the detached field is carried away.Inthiscase,theheightofthereconnectionmightdepend onapropertyoftheexpansion,suchasitsstrengthorsize,so that‘‘strongerevents’’reconnectclosertotheSunand‘‘weaker events’’reconnectfartheroutinthecorona.Infact,our60events withoutinwardcomponentsdidtendtobelargerthantheevents withobservedinwardcomponents.(Forexample,50%ofthe Fig.9.—C2runningdifferenceimagesonJanuary20,showingpointedloops events without visible inward components had angular spans detachingfromtheiroutgoingcounterpartsandbecomingrounderastheycollapse. greaterthan50(cid:4),whichwastheupperlimitoftheangularspans oftheobservedin/outpairs.) limitat1R isarealeffect,probablyindicatingthatthesefea- Figure15showsoneoftheselargeeventson2004February13. (cid:1) turesareexceedinglyfaintwhentheyfirstappear.Inthebottom Intheleftpanels,therunningdifferenceimagesshowabroad left panel, the distribution of ‘‘extrapolated’’ starting heights, feature risingslowlyacrossthenorthernhemisphere. Itsdisrup- (r þr )/2,iscenteredatanaveragevalueof4.3R .Itslower tionbeginswhenasmalldarkarchemergesinthenorthwestand in out (cid:1) limitnear3R reflectstheinstrumentalcutoffof2.0Y2.5R for eventually spreads eastward to span the entire northern hemi- (cid:1) (cid:1) theinwardcomponentsplustheobservedseparationlimitofabout sphere.Noinwardcomponentisvisible.Intherightpanels,the 1.0R . minimum-subtractedimagesshowthedisruptionofacoronal (cid:1) No. 2, 2007 IN/OUT PAIRS AND DETACHMENT OF CORONAL STREAMERS 1149 Fig.11.—Height/timemapsoftheeventinFig.10.A1Y2dayintervalof gradualexpansionendswiththeoccurrenceofasteepoutwardcomponent,which extendsallthewaytotheoccultingdisk,butnoinwardcomponentisvisible.This mighthavebeenanin/outpairthatoriginatedbelowtheoccultingdisk.The positionangleis35(cid:4). streamer in the northwest and the formation of a depleted re- gionbehindtheexpandingloop.Figure16containsheight/time mapsobtainedatthreedifferentpositionanglesacrosstheevent. Theyshowabout16hrofslowexpansion,terminatedbyafaster (250kms(cid:3)1)depletion,butnoevidenceofaninwardcomponent. Wesupposethatthiseventhasaslowerprojectedspeedthanthe previous,smallereventsbecauseitismoreinclinedoutofthesky plane,likeahaloCME. Inselectingtheeventsofthissection,weconsideredproperties thataresimilartothoseofin/outpairssuchasthepriorinterval ofgradualexpansionendingwithasuddenoutwardejection.We triedtoavoideventsthathadthetraditionalthree-partstructure (leadingedge,trailingcavity,andcentralcore)ofCMEs.Because in/outpairssignifytheendofgraduallyacceleratingoutflows,we havethoughtofthemasCME-endingevents,butnotasCMEs themselves.InPaperI,wereferredtothemas‘‘failedCMEs.’’ Now,itisclearthatalloftheseeventsinvolvethedisruptionof Fig.12.—C2runningdifferenceimages(left)andminimum-subtractedimages coronalstreamersandthatsomeofthem(suchasthe2004Feb- (right)ofthesoutheastquadrantofthecoronaon2003April13,showingastreamer ruary13eventinFig.15)arestreamerblowoutCMEsobserved disruptionwithoutavisibleinwardcomponent. faceon. StreamerblowoutCMEsinvolvethegradualbrighteningand suddeneruptionofcoronalstreamersandoftenhavecharacteristic ‘‘bugle-like’’signaturesinCarringtonmapsofcoronalintensity (Howardetal.1985;Hundhausen1993;Vourlidasetal.2002 and references therein). Consequently, in Figure 17 we show Carringtonmapsofcoronalintensityat3R forthethreeevents (cid:1) ofthissection.Inthetoppanel,aneast-limbmapduringCarrington rotation2022showsaverticalfeaturenear200(cid:4) longitude,cor- responding to the event of 2004 October 16. The broad latitu- dinalextentofthisfeatureissimilartothosewehavefoundfor othersucheventsbutdiffersfromthebugle-likeappearanceof somestreamereruptions.Inthemiddlepanel,aneast-limbmap duringrotation2002showstheendofastreamer-relatedfeature near310(cid:4)longitude,correspondingtotheeventof2003April12. Thisfeaturehasthebugle-likesignatureofastreamereruption. Inthebottompanel,awest-limbmapofcoronalintensityduring rotation2012showsthedisruptionofastreamernear50(cid:4)longitude, correspondingtotheeventon2004February13.Thisfeature extendstothenorthpoleandcontinuesbackdowntolowerlati- Fig. 13.—Height/timemapsofthestreamerdisruptioneventinFig.12.The tudesnear210(cid:4) longitudeontheeast-limbmapofrotation2013 outwardcomponentformsabout0.5R abovetheoccultingdisk,butnoinward (cid:1) (notshownhere).BycomparingthesemapswithCarringtonmaps componentisvisible.Thepositionangleis115(cid:4). 1150 SHEELEY & WANG Vol. 655 Fig.14.—Histogramsofthestartingheightsof153observedin/outpairs,showingtheheightsoftheinwardcomponents(topleft)andoutwardcomponents(top right),theiraverages(bottomleft),andtheirdifferences(bottomright).Thebinsizeis0.45foreachdistribution.Relativetotheotherdistributions,thedistributionof startingheightsfortheinwardcomponentsisstronglypeakedandskewedtotheright.Thesuddendroptowardtheoccultingdiskat2.0R isinstrumentalandsuggests (cid:1) thatmanyunobservedpairformationsmayhaveoccurredclosertotheSun. ofthephotosphericfieldanditscoronalextension,wefoundthat geststhatthedisturbancemaypushthereconnectingfieldlines theSun’sfieldhadaprominenttwo-sectorstructure,correspond- together sooner than would otherwise happen and raises the ingtoadipolefieldwhoseaxiswastippedslightlytowardEarth question of what determines the time and place of the recon- onFebruary13.Thus,wesupposethatthislargeeruptionstarted nectionwhenthereisnoCME. atthewestlimbandspreadforabout160(cid:4) alongthenorthern- The events without visible inward components tend to be hemispherestreamerbelt,whichwasthenlocatedontheback biggerthanthosewithinwardcomponents,butotherwisethey sideoftheSun. have similar properties. The gradual expansion involves the samemarble-likefinestructure,thesame20kms(cid:3)1speed,and 3. SUMMARYAND DISCUSSION thesame1Y2dayduration.Theexpansionendsasacollection Intheprevioussection,wedescribetheresultsofexamining of loopstearsawayfromthestreamerandacquiresacorrugated, acollectionofmorethan160in/outpairsand60similarevents prominence-likestructuresimilartothatofahelicalmagneticflux whose inward components, if they occurred, were masked by rope.Thelargesteventshavecharacteristicbugle-likesignatures theoccultingdisk.Wefoundthattheinwardandoutwardcom- inCarringtonmapsofcoronalintensityandareprobablystreamer ponentsoccuralongtheleadingandtrailingedgesofdepletions blowoutCMEs(Howardetal.1985;Hundhausen1993;Sheeley thatformwhenslowlyexpandingcoronalstructuresfinallysep- etal.1997;Vourlidasetal.2002).Thus,in/outpairsandstreamer aratefromtheSun. blowoutCMEsseemtobepartofthesamebroadclassofstreamer However,wealsofoundthattheseparationisnotcomplete. eruptionevents,differingintheirstrengths,sizes,andcoronal Thelegsofthearch-shapedoutwardcomponentextendbackto- heightsofformation.Manyofthelargeeventswithoutinward wardtheoccultingdiskandapparentlyremainconnectedtothe componentsextendoverthepoles(suchasthe2004February13 Sun.Thisiswhatwewouldexpectiftheoutwardcomponentwere eventin Fig. 15) and therefore are probably streamer blowout ahelicalfluxrope,createdwhentheloopsofanexpandingarcade CMEsseenfaceon. reconnectwitheachotherinthemanneroriginallysuggestedby Anadvantageofthein/outpairsisthattheyshowtheseparation Gosling(1990).AsdiscussedinPaperI,theoutwardcomponent thatmarkstheendofthecoronalexpansion,ratherthanjustthe oftenhasacorrugatedstructurethatisconsistentwiththehelical ejectionoftheoutwardcomponent.Consequently,fortheseevents, configurationofamagneticfluxrope,andtheinwardcomponent weknowthatthecorrugatedoutwardcomponentsarecreatedinthe occasionallyresolvesintoasystemofcollapsingloops. coronaduringtheseparationandarenotsimplycarriedupfromthe Thefinalseparationofthestreamermaterialoftenoccursspon- chromosphere.Thissuggeststhattheeruptiveprominencesthat taneouslywithoutanobviouscause.However,almostequally accompanysomestreamerblowoutCMEsmayacquiretheirhelical often,theseparationseemstobetriggeredbythepassageofa shapesduringasimilarreconnectionprocessthatoccursmuch wavelikedisturbancefromalarge,high-speedCME.Thissug- closertotheSun. No. 2, 2007 IN/OUT PAIRS AND DETACHMENT OF CORONAL STREAMERS 1151 Fig.16.—Runningdifferenceheight/timemapsobtainedatthreeradialpo- sitionsinthe2004February13eventofFig.15,comparingtheevolutioninthe northeast(top),north(middle),andnorthwest(bottom)directions. Fig.15.—C2runningdifferenceimages(left)andminimum-subtractedimages (right),showingthegradualexpansionandeventualdisruptionofacoronalstructure on2004February13.Theevolutionbeginswiththecoronalstreamerinthenorthwest (upperright),buteventuallyspreadsalongthestreamerbelttospantheentirenorthern hemisphere. As mentioned above, we suppose that the slowly rising co- ronal structures indicate closed loops of a growing magnetic field,producedeitherbytheemergenceofnewfluxatthepho- tosphere or by the separation of the footpoints of a magnetic arcade byphotospheric motionsorreconnection between adja- centloopsystems.Infact,runningdifferencesbetweenclosely timed images sometimes show a crisscross pattern resembling the overlapping loops of a magnetic arcade seen in projection alongthelineofsight.Evidently,theLASCOobservationsare revealing the transient processthat occurs when thefield stops growing—namely, the reconnection of the fields in the rising arcade and the separation of the newly reconnected parts. This transient behavior is not included in a sequence of potential fields,whoserisingloopsbecomestationarywhenthefieldstops growing. However, a similar transient behavior is obtained when one retainsthetime-dependenttermsinMaxwell’sequationsandcal- culatestheevolutionofavacuumdipolefieldwhenitssource currentisgraduallyrampedupfromonestationaryvaluetoanother. This change produces an outgoing wave whose leading edge enhancesthebackgroundfieldandwhosetrailingedgereduces it(unpublishedcalculationsbyN.R.Sheeley1997,privatecom- munication).Theresultisabulgeatthefrontofthetransientand Fig.17.—Carringtonmapsofwhite-lightcoronalintensityat3R(cid:1).Thearrows indicateeventswithoutinwardcomponentson2004October16(top),2003April12 apinch-offattherearwheretheoutgoingwaveseparatesfrom (middle),and2004February13(bottom),whichwehaveshowninFigs.10,12,and thestrengtheneddipolefieldleftinitswake.Inthiscase,thesep- 14,respectively.Thelattertwoeventshavethecharacteristicsignaturesofstreamer arationisanunmistakableconsequenceofendingthegrowthand blowoutCMEs.
Description: