C(cid:131)(cid:189)(cid:145)(cid:231)(cid:189)(cid:231)(cid:221) III APX E Version2.0 Authors Gregory Hartman, Ph.D. DepartmentofAppliedMathema(cid:415)cs VirginiaMilitaryIns(cid:415)tute Brian Heinold, Ph.D. DepartmentofMathema(cid:415)csandComputerScience MountSaintMary’sUniversity Troy Siemers, Ph.D. DepartmentofAppliedMathema(cid:415)cs VirginiaMilitaryIns(cid:415)tute Dimplekumar Chalishajar, Ph.D. DepartmentofAppliedMathema(cid:415)cs VirginiaMilitaryIns(cid:415)tute Editor Jennifer Bowen, Ph.D. DepartmentofMathema(cid:415)csandComputerScience TheCollegeofWooster Copyright©2014GregoryHartman Licensed to the public under Crea(cid:415)ve Commons A(cid:425)ribu(cid:415)on-Noncommercial3.0UnitedStatesLicense P(cid:217)(cid:155)(cid:165)(cid:131)(cid:145)(cid:155) ANoteonUsingthisText Thankyouforreadingthisshortpreface. Allowustoshareafewkeypoints aboutthetextsothatyoumaybe(cid:425)erunderstandwhatyouwillfindbeyondthis page. ThistextisPartIIIofathree–textseriesonCalculus. Thefirstpartcovers materialtaughtinmany“Calc1”courses: limits,deriva(cid:415)ves,andthebasicsof integra(cid:415)on,foundinChapters1through6.1. Thesecondtextcoversmaterial o(cid:332)entaughtin“Calc2:”integra(cid:415)onanditsapplica(cid:415)ons,alongwithanintroduc- (cid:415)ontosequences,seriesandTaylorPolynomials,foundinChapters5through 8.Thethirdtextcoverstopicscommonin“Calc3”or“mul(cid:415)variablecalc:”para- metricequa(cid:415)ons,polarcoordinates,vector–valuedfunc(cid:415)ons,andfunc(cid:415)onsof morethanonevariable,foundinChapters9through13. Allthreeareavailable separately for free at www.vmi.edu/APEX. These three texts are intended to worktogetherandmakeonecohesivetext, APEXCalculus, whichcanalsobe downloadedfromthewebsite. Prin(cid:415)ngtheen(cid:415)retextasonevolumemakesforalarge,heavy,cumbersome book. One can certainly only print the pages they currently need, but some prefertohaveanice,boundcopyofthetext. Thereforethistexthasbeensplit intothesethreemanageableparts,eachofwhichcanbepurchasedforabout $10atAmazon.com. Aresultofthisspli(cid:427)ngisthatsome(cid:415)mesaconceptissaidtobeexploredin an“earliersec(cid:415)on,”thoughthatsec(cid:415)ondoesnotactuallyappearinthispar(cid:415)c- ulartext. Also,theindexmakesreferencetotopics,andpagenumbers,thatdo notappearinthistext.Thisisdoneinten(cid:415)onallytoshowthereaderwhattopics areavailableforstudy. Downloadingthe.pdfofAPEXCalculuswillensurethat youhaveallthecontent. APX–AffordablePrintandElectronicteXts E APX is a consor(cid:415)um of authors who collaborate to produce high–quality, E low–costtextbooks. Thecurrenttextbook–wri(cid:415)ngparadigmisfacingapoten- (cid:415)alrevolu(cid:415)onasdesktoppublishingandelectronicformatsincreaseinpopular- ity. However,wri(cid:415)ngagoodtextbookisnoeasytask,asthe(cid:415)merequirements alone are substan(cid:415)al. It takes countless hours of work to produce text, write examplesandexercises,editandpublish. Throughcollabora(cid:415)on,however,the costtoanyindividualcanbelessened,allowingustocreatetextsthatwefreely distributeelectronicallyandsellinprintedformforanincrediblylowcost.Hav- ing said that, nothing is en(cid:415)rely free; someone always bears some cost. This text“cost”theauthorsofthisbooktheir(cid:415)me,andthatwasnotenough. APEX CalculuswouldnotexisthadnottheVirginiaMilitaryIns(cid:415)tute,throughagen- erousJackson–Hopegrant,givenoneoftheauthorssignificant(cid:415)meawayfrom teachingsohecouldfocusonthistext. Each text is available as a free .pdf, protected by a Crea(cid:415)ve Commons At- tribu(cid:415)on-Noncommercial3.0copyright. Thatmeansyoucangivethe.pdfto anyoneyoulike,printitinanyformyoulike,andevenedittheoriginalcontent andredistributeit.Ifyoudothela(cid:425)er,youmustclearlyreferencethisworkand youcannotsellyoureditedworkformoney. Weencourageotherstoadaptthisworktofittheirownneeds. Onemight add sec(cid:415)ons that are “missing” or remove sec(cid:415)ons that your students won’t need.Thesourcefilescanbefoundatgithub.com/APEXCalculus. Youcanlearnmoreatwww.vmi.edu/APEX. Contents Preface iii TableofContents v 9 CurvesinthePlane 469 9.1 ConicSec(cid:415)ons . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 9.2 ParametricEqua(cid:415)ons . . . . . . . . . . . . . . . . . . . . . . . 483 9.3 CalculusandParametricEqua(cid:415)ons . . . . . . . . . . . . . . . . 493 9.4 Introduc(cid:415)ontoPolarCoordinates . . . . . . . . . . . . . . . . 503 9.5 CalculusandPolarFunc(cid:415)ons . . . . . . . . . . . . . . . . . . . 516 10 Vectors 529 10.1 Introduc(cid:415)ontoCartesianCoordinatesinSpace . . . . . . . . . 529 10.2 AnIntroduc(cid:415)ontoVectors . . . . . . . . . . . . . . . . . . . . 543 10.3 TheDotProduct . . . . . . . . . . . . . . . . . . . . . . . . . . 557 10.4 TheCrossProduct . . . . . . . . . . . . . . . . . . . . . . . . . 570 10.5 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580 10.6 Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590 11 VectorValuedFunc(cid:415)ons 599 11.1 Vector–ValuedFunc(cid:415)ons . . . . . . . . . . . . . . . . . . . . . 599 11.2 CalculusandVector–ValuedFunc(cid:415)ons . . . . . . . . . . . . . . 605 11.3 TheCalculusofMo(cid:415)on . . . . . . . . . . . . . . . . . . . . . . 618 11.4 UnitTangentandNormalVectors . . . . . . . . . . . . . . . . . 631 11.5 TheArcLengthParameterandCurvature . . . . . . . . . . . . 640 12 Func(cid:415)onsofSeveralVariables 651 12.1 Introduc(cid:415)ontoMul(cid:415)variableFunc(cid:415)ons . . . . . . . . . . . . . 651 12.2 LimitsandCon(cid:415)nuityofMul(cid:415)variableFunc(cid:415)ons . . . . . . . . . 658 12.3 Par(cid:415)alDeriva(cid:415)ves . . . . . . . . . . . . . . . . . . . . . . . . . 668 12.4 Differen(cid:415)abilityandtheTotalDifferen(cid:415)al . . . . . . . . . . . . 680 12.5 TheMul(cid:415)variableChainRule . . . . . . . . . . . . . . . . . . . 689 12.6 Direc(cid:415)onalDeriva(cid:415)ves . . . . . . . . . . . . . . . . . . . . . . 696 12.7 TangentLines,NormalLines,andTangentPlanes . . . . . . . . 705 12.8 ExtremeValues . . . . . . . . . . . . . . . . . . . . . . . . . . 715 13 Mul(cid:415)pleIntegra(cid:415)on 725 13.1 IteratedIntegralsandArea . . . . . . . . . . . . . . . . . . . . 725 13.2 DoubleIntegra(cid:415)onandVolume . . . . . . . . . . . . . . . . . . 735 13.3 DoubleIntegra(cid:415)onwithPolarCoordinates . . . . . . . . . . . . 746 13.4 CenterofMass . . . . . . . . . . . . . . . . . . . . . . . . . . 753 13.5 SurfaceArea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765 13.6 VolumeBetweenSurfacesandTripleIntegra(cid:415)on. . . . . . . . . 772 A Solu(cid:415)onsToSelectedProblems A.1 Index A.17 9: C(cid:231)(cid:217)(cid:242)(cid:155)(cid:221) (cid:174)(cid:196) (cid:227)(cid:171)(cid:155) P(cid:189)(cid:131)(cid:196)(cid:155) 9.1 Conic Sec(cid:415)ons TheancientGreeksrecognizedthatinteres(cid:415)ngshapescanbeformedbyinter- sec(cid:415)ngaplanewithadoublenappedcone(i.e.,twoiden(cid:415)calconesplaced(cid:415)p– to–(cid:415)passhowninthefollowingfigures).Astheseshapesareformedassec(cid:415)ons ofconics,theyhaveearnedtheofficialname“conicsec(cid:415)ons.” Thethree“mostinteres(cid:415)ng”conicsec(cid:415)onsaregiveninthetoprowofFigure 9.1. Theyaretheparabola, theellipse(whichincludescircles)andthehyper- bola. Ineachofthesecases,theplanedoesnotintersectthe(cid:415)psofthecones (usuallytakentobetheorigin). Parabola Ellipse Circle Hyperbola Point Line CrossedLines Figure9.1:NondegenerateConicSec(cid:415)ons When the plane does contain the origin, three degenerate cones can be formed as shown the bo(cid:425)om row of Figure 9.1: a point, a line, and crossed lines.Wefocushereonthenondegeneratecases. Whiletheabovegeometricconstructsdefinetheconicsinanintui(cid:415)ve,visual way, these constructs are not very helpful when trying to analyze the shapes Chapter9 CurvesinthePlane algebraicallyorconsiderthemasthegraphofafunc(cid:415)on. Itcanbeshownthat allconicscanbedefinedbythegeneralsecond–degreeequa(cid:415)on Ax2+Bxy+Cy2+Dx+Ey+F=0: While this algebraic defini(cid:415)on has its uses, most find another geometric per- spec(cid:415)veoftheconicsmorebeneficial. Eachnondegenerateconiccanbedefinedasthelocus,orset,ofpointsthat sa(cid:415)sfy a certain distance property. These distance proper(cid:415)es can be used to generateanalgebraicformula,allowingustostudyeachconicasthegraphofa func(cid:415)on. Parabolas .. Defini(cid:415)on40 Parabola . A parabola is the locus of all points equidistant from a point (called a focus)andaline(calledthedirectrix)thatdoesnotcontainthefocus. y of etr Figure 9.2 illustratesthis defini(cid:415)on. The pointhalfwaybetweenthe focus Axis ymm andthedirectrixisthevertex. Thelinethroughthefocus,perpendiculartothe S directrix,istheaxisofsymmetry,asthepor(cid:415)onoftheparabolaononesideof d (x;y) Focus } thislineisthemirror–imageofthepor(cid:415)onontheoppositeside. The defini(cid:415)on leads us to an algebraic formula for the parabola. Let P = p ...........} d (x;y)beapointonaparabolawhosefocusisatF =(0;p)andwhosedirectrix Vertex p isaty=(cid:0)p. (We’llassumefornowthatthefocusliesonthey-axis;byplacing Directrix thefocuspunitsabovethex-axisandthedirectrixpunitsbelowthisaxis,the vertexwillbeat(0;0).) WeusetheDistanceFormulatofindthedistanced betweenFandP: Figure 9.2: Illustra(cid:415)ng the defini(cid:415)on of 1 √ the parabola and establishing an alge- braicformula. d1 = (x(cid:0)0)2+(y(cid:0)p)2: Thedistanced fromPtothedirectrixismorestraigh(cid:414)orward: 2 d =y(cid:0)((cid:0)p)=y+p: 2 Thesetwodistancesareequal.Se(cid:427)ngd =d ,wecansolveforyintermsofx: 1 2 d =d √ 1 2 x2+(y(cid:0)p)2 =y+p Notes: 470 9.1 ConicSec(cid:415)ons Nowsquarebothsides. x2+(y(cid:0)p)2 =(y+p)2 x2+y2(cid:0)2yp+p2 =y2+2yp+p2 x2 =4yp 1 y= x2: 4p The geometric defini(cid:415)on of the parabola has led us to the familiar quadra(cid:415)c func(cid:415)onwhosegraphisaparabolawithvertexattheorigin.Whenweallowthe vertextonotbeat(0;0),wegetthefollowingstandardformoftheparabola. .. KeyIdea33 GeneralEqua(cid:415)onofaParabola 1. Ver(cid:415)calAxisofSymmetry:Theequa(cid:415)onoftheparabolawithver- texat(h;k)anddirectrixy=k(cid:0)pinstandardformis 1 y= (x(cid:0)h)2+k: 4p. Thefocusisat(h;k+p). 2. HorizontalAxisofSymmetry: Theequa(cid:415)onoftheparabolawith vertexat(h;k)anddirectrixx=h(cid:0)pinstandardformis 1 x= (y(cid:0)k)2+h: 4p Thefocusisat(h+p;k). Note:pisnotnecessarilyaposi(cid:415)venumber. y 2 ..Example273 Findingtheequa(cid:415)onofaparabola Givetheequa(cid:415)onoftheparabolawithfocusat(1;2)anddirectrixaty=3. x (cid:0)2 2 4 S(cid:202)(cid:189)(cid:231)(cid:227)(cid:174)(cid:202)(cid:196) Thevertexislocatedhalfwaybetweenthefocusanddirec- (cid:0)2 trix,so(h;k) = (1;2:5). Thisgivesp = (cid:0)0:5. UsingKeyIdea33wehavethe (cid:0)4 equa(cid:415)onoftheparabolaas 1 1 ............. (cid:0)6 y= (x(cid:0)1)2+2:5=(cid:0) (x(cid:0)1)2+2:5: 4((cid:0)0:5) 2 Figure9.3: TheparaboladescribedinEx- ample273. TheparabolaissketchedinFigure9.3. .. Notes: 471
Description: