ebook img

APEX Calculus III PDF

361 Pages·2014·5.85 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview APEX Calculus III

C(cid:131)(cid:189)(cid:145)(cid:231)(cid:189)(cid:231)(cid:221) III APX E Version2.0 Authors Gregory Hartman, Ph.D. DepartmentofAppliedMathema(cid:415)cs VirginiaMilitaryIns(cid:415)tute Brian Heinold, Ph.D. DepartmentofMathema(cid:415)csandComputerScience MountSaintMary’sUniversity Troy Siemers, Ph.D. DepartmentofAppliedMathema(cid:415)cs VirginiaMilitaryIns(cid:415)tute Dimplekumar Chalishajar, Ph.D. DepartmentofAppliedMathema(cid:415)cs VirginiaMilitaryIns(cid:415)tute Editor Jennifer Bowen, Ph.D. DepartmentofMathema(cid:415)csandComputerScience TheCollegeofWooster Copyright©2014GregoryHartman Licensed to the public under Crea(cid:415)ve Commons A(cid:425)ribu(cid:415)on-Noncommercial3.0UnitedStatesLicense P(cid:217)(cid:155)(cid:165)(cid:131)(cid:145)(cid:155) ANoteonUsingthisText Thankyouforreadingthisshortpreface. Allowustoshareafewkeypoints aboutthetextsothatyoumaybe(cid:425)erunderstandwhatyouwillfindbeyondthis page. ThistextisPartIIIofathree–textseriesonCalculus. Thefirstpartcovers materialtaughtinmany“Calc1”courses: limits,deriva(cid:415)ves,andthebasicsof integra(cid:415)on,foundinChapters1through6.1. Thesecondtextcoversmaterial o(cid:332)entaughtin“Calc2:”integra(cid:415)onanditsapplica(cid:415)ons,alongwithanintroduc- (cid:415)ontosequences,seriesandTaylorPolynomials,foundinChapters5through 8.Thethirdtextcoverstopicscommonin“Calc3”or“mul(cid:415)variablecalc:”para- metricequa(cid:415)ons,polarcoordinates,vector–valuedfunc(cid:415)ons,andfunc(cid:415)onsof morethanonevariable,foundinChapters9through13. Allthreeareavailable separately for free at www.vmi.edu/APEX. These three texts are intended to worktogetherandmakeonecohesivetext, APEXCalculus, whichcanalsobe downloadedfromthewebsite. Prin(cid:415)ngtheen(cid:415)retextasonevolumemakesforalarge,heavy,cumbersome book. One can certainly only print the pages they currently need, but some prefertohaveanice,boundcopyofthetext. Thereforethistexthasbeensplit intothesethreemanageableparts,eachofwhichcanbepurchasedforabout $10atAmazon.com. Aresultofthisspli(cid:427)ngisthatsome(cid:415)mesaconceptissaidtobeexploredin an“earliersec(cid:415)on,”thoughthatsec(cid:415)ondoesnotactuallyappearinthispar(cid:415)c- ulartext. Also,theindexmakesreferencetotopics,andpagenumbers,thatdo notappearinthistext.Thisisdoneinten(cid:415)onallytoshowthereaderwhattopics areavailableforstudy. Downloadingthe.pdfofAPEXCalculuswillensurethat youhaveallthecontent. APX–AffordablePrintandElectronicteXts E APX is a consor(cid:415)um of authors who collaborate to produce high–quality, E low–costtextbooks. Thecurrenttextbook–wri(cid:415)ngparadigmisfacingapoten- (cid:415)alrevolu(cid:415)onasdesktoppublishingandelectronicformatsincreaseinpopular- ity. However,wri(cid:415)ngagoodtextbookisnoeasytask,asthe(cid:415)merequirements alone are substan(cid:415)al. It takes countless hours of work to produce text, write examplesandexercises,editandpublish. Throughcollabora(cid:415)on,however,the costtoanyindividualcanbelessened,allowingustocreatetextsthatwefreely distributeelectronicallyandsellinprintedformforanincrediblylowcost.Hav- ing said that, nothing is en(cid:415)rely free; someone always bears some cost. This text“cost”theauthorsofthisbooktheir(cid:415)me,andthatwasnotenough. APEX CalculuswouldnotexisthadnottheVirginiaMilitaryIns(cid:415)tute,throughagen- erousJackson–Hopegrant,givenoneoftheauthorssignificant(cid:415)meawayfrom teachingsohecouldfocusonthistext. Each text is available as a free .pdf, protected by a Crea(cid:415)ve Commons At- tribu(cid:415)on-Noncommercial3.0copyright. Thatmeansyoucangivethe.pdfto anyoneyoulike,printitinanyformyoulike,andevenedittheoriginalcontent andredistributeit.Ifyoudothela(cid:425)er,youmustclearlyreferencethisworkand youcannotsellyoureditedworkformoney. Weencourageotherstoadaptthisworktofittheirownneeds. Onemight add sec(cid:415)ons that are “missing” or remove sec(cid:415)ons that your students won’t need.Thesourcefilescanbefoundatgithub.com/APEXCalculus. Youcanlearnmoreatwww.vmi.edu/APEX. Contents Preface iii TableofContents v 9 CurvesinthePlane 469 9.1 ConicSec(cid:415)ons . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 9.2 ParametricEqua(cid:415)ons . . . . . . . . . . . . . . . . . . . . . . . 483 9.3 CalculusandParametricEqua(cid:415)ons . . . . . . . . . . . . . . . . 493 9.4 Introduc(cid:415)ontoPolarCoordinates . . . . . . . . . . . . . . . . 503 9.5 CalculusandPolarFunc(cid:415)ons . . . . . . . . . . . . . . . . . . . 516 10 Vectors 529 10.1 Introduc(cid:415)ontoCartesianCoordinatesinSpace . . . . . . . . . 529 10.2 AnIntroduc(cid:415)ontoVectors . . . . . . . . . . . . . . . . . . . . 543 10.3 TheDotProduct . . . . . . . . . . . . . . . . . . . . . . . . . . 557 10.4 TheCrossProduct . . . . . . . . . . . . . . . . . . . . . . . . . 570 10.5 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580 10.6 Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590 11 VectorValuedFunc(cid:415)ons 599 11.1 Vector–ValuedFunc(cid:415)ons . . . . . . . . . . . . . . . . . . . . . 599 11.2 CalculusandVector–ValuedFunc(cid:415)ons . . . . . . . . . . . . . . 605 11.3 TheCalculusofMo(cid:415)on . . . . . . . . . . . . . . . . . . . . . . 618 11.4 UnitTangentandNormalVectors . . . . . . . . . . . . . . . . . 631 11.5 TheArcLengthParameterandCurvature . . . . . . . . . . . . 640 12 Func(cid:415)onsofSeveralVariables 651 12.1 Introduc(cid:415)ontoMul(cid:415)variableFunc(cid:415)ons . . . . . . . . . . . . . 651 12.2 LimitsandCon(cid:415)nuityofMul(cid:415)variableFunc(cid:415)ons . . . . . . . . . 658 12.3 Par(cid:415)alDeriva(cid:415)ves . . . . . . . . . . . . . . . . . . . . . . . . . 668 12.4 Differen(cid:415)abilityandtheTotalDifferen(cid:415)al . . . . . . . . . . . . 680 12.5 TheMul(cid:415)variableChainRule . . . . . . . . . . . . . . . . . . . 689 12.6 Direc(cid:415)onalDeriva(cid:415)ves . . . . . . . . . . . . . . . . . . . . . . 696 12.7 TangentLines,NormalLines,andTangentPlanes . . . . . . . . 705 12.8 ExtremeValues . . . . . . . . . . . . . . . . . . . . . . . . . . 715 13 Mul(cid:415)pleIntegra(cid:415)on 725 13.1 IteratedIntegralsandArea . . . . . . . . . . . . . . . . . . . . 725 13.2 DoubleIntegra(cid:415)onandVolume . . . . . . . . . . . . . . . . . . 735 13.3 DoubleIntegra(cid:415)onwithPolarCoordinates . . . . . . . . . . . . 746 13.4 CenterofMass . . . . . . . . . . . . . . . . . . . . . . . . . . 753 13.5 SurfaceArea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765 13.6 VolumeBetweenSurfacesandTripleIntegra(cid:415)on. . . . . . . . . 772 A Solu(cid:415)onsToSelectedProblems A.1 Index A.17 9: C(cid:231)(cid:217)(cid:242)(cid:155)(cid:221) (cid:174)(cid:196) (cid:227)(cid:171)(cid:155) P(cid:189)(cid:131)(cid:196)(cid:155) 9.1 Conic Sec(cid:415)ons TheancientGreeksrecognizedthatinteres(cid:415)ngshapescanbeformedbyinter- sec(cid:415)ngaplanewithadoublenappedcone(i.e.,twoiden(cid:415)calconesplaced(cid:415)p– to–(cid:415)passhowninthefollowingfigures).Astheseshapesareformedassec(cid:415)ons ofconics,theyhaveearnedtheofficialname“conicsec(cid:415)ons.” Thethree“mostinteres(cid:415)ng”conicsec(cid:415)onsaregiveninthetoprowofFigure 9.1. Theyaretheparabola, theellipse(whichincludescircles)andthehyper- bola. Ineachofthesecases,theplanedoesnotintersectthe(cid:415)psofthecones (usuallytakentobetheorigin). Parabola Ellipse Circle Hyperbola Point Line CrossedLines Figure9.1:NondegenerateConicSec(cid:415)ons When the plane does contain the origin, three degenerate cones can be formed as shown the bo(cid:425)om row of Figure 9.1: a point, a line, and crossed lines.Wefocushereonthenondegeneratecases. Whiletheabovegeometricconstructsdefinetheconicsinanintui(cid:415)ve,visual way, these constructs are not very helpful when trying to analyze the shapes Chapter9 CurvesinthePlane algebraicallyorconsiderthemasthegraphofafunc(cid:415)on. Itcanbeshownthat allconicscanbedefinedbythegeneralsecond–degreeequa(cid:415)on Ax2+Bxy+Cy2+Dx+Ey+F=0: While this algebraic defini(cid:415)on has its uses, most find another geometric per- spec(cid:415)veoftheconicsmorebeneficial. Eachnondegenerateconiccanbedefinedasthelocus,orset,ofpointsthat sa(cid:415)sfy a certain distance property. These distance proper(cid:415)es can be used to generateanalgebraicformula,allowingustostudyeachconicasthegraphofa func(cid:415)on. Parabolas .. Defini(cid:415)on40 Parabola . A parabola is the locus of all points equidistant from a point (called a focus)andaline(calledthedirectrix)thatdoesnotcontainthefocus. y of etr Figure 9.2 illustratesthis defini(cid:415)on. The pointhalfwaybetweenthe focus Axis ymm andthedirectrixisthevertex. Thelinethroughthefocus,perpendiculartothe S directrix,istheaxisofsymmetry,asthepor(cid:415)onoftheparabolaononesideof d (x;y) Focus } thislineisthemirror–imageofthepor(cid:415)onontheoppositeside. The defini(cid:415)on leads us to an algebraic formula for the parabola. Let P = p ...........} d (x;y)beapointonaparabolawhosefocusisatF =(0;p)andwhosedirectrix Vertex p isaty=(cid:0)p. (We’llassumefornowthatthefocusliesonthey-axis;byplacing Directrix thefocuspunitsabovethex-axisandthedirectrixpunitsbelowthisaxis,the vertexwillbeat(0;0).) WeusetheDistanceFormulatofindthedistanced betweenFandP: Figure 9.2: Illustra(cid:415)ng the defini(cid:415)on of 1 √ the parabola and establishing an alge- braicformula. d1 = (x(cid:0)0)2+(y(cid:0)p)2: Thedistanced fromPtothedirectrixismorestraigh(cid:414)orward: 2 d =y(cid:0)((cid:0)p)=y+p: 2 Thesetwodistancesareequal.Se(cid:427)ngd =d ,wecansolveforyintermsofx: 1 2 d =d √ 1 2 x2+(y(cid:0)p)2 =y+p Notes: 470 9.1 ConicSec(cid:415)ons Nowsquarebothsides. x2+(y(cid:0)p)2 =(y+p)2 x2+y2(cid:0)2yp+p2 =y2+2yp+p2 x2 =4yp 1 y= x2: 4p The geometric defini(cid:415)on of the parabola has led us to the familiar quadra(cid:415)c func(cid:415)onwhosegraphisaparabolawithvertexattheorigin.Whenweallowthe vertextonotbeat(0;0),wegetthefollowingstandardformoftheparabola. .. KeyIdea33 GeneralEqua(cid:415)onofaParabola 1. Ver(cid:415)calAxisofSymmetry:Theequa(cid:415)onoftheparabolawithver- texat(h;k)anddirectrixy=k(cid:0)pinstandardformis 1 y= (x(cid:0)h)2+k: 4p. Thefocusisat(h;k+p). 2. HorizontalAxisofSymmetry: Theequa(cid:415)onoftheparabolawith vertexat(h;k)anddirectrixx=h(cid:0)pinstandardformis 1 x= (y(cid:0)k)2+h: 4p Thefocusisat(h+p;k). Note:pisnotnecessarilyaposi(cid:415)venumber. y 2 ..Example273 Findingtheequa(cid:415)onofaparabola Givetheequa(cid:415)onoftheparabolawithfocusat(1;2)anddirectrixaty=3. x (cid:0)2 2 4 S(cid:202)(cid:189)(cid:231)(cid:227)(cid:174)(cid:202)(cid:196) Thevertexislocatedhalfwaybetweenthefocusanddirec- (cid:0)2 trix,so(h;k) = (1;2:5). Thisgivesp = (cid:0)0:5. UsingKeyIdea33wehavethe (cid:0)4 equa(cid:415)onoftheparabolaas 1 1 ............. (cid:0)6 y= (x(cid:0)1)2+2:5=(cid:0) (x(cid:0)1)2+2:5: 4((cid:0)0:5) 2 Figure9.3: TheparaboladescribedinEx- ample273. TheparabolaissketchedinFigure9.3. .. Notes: 471

Description:
Downloading the .pdf of APEX Calculus will ensure that you have all distribute electronically and sell in printed form for an incredibly low cost. Hav-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.