fluids Article Aorta Ascending Aneurysm Analysis Using CFD Models towards Possible Anomalies MarianaSimão1,*,JorgeM.Ferreira2,AntónioC.Tomás3,JoséFragata4andHelenaM.Ramos5 1 DepartmentofCivilEngineering,ArchitectureandGeoresources(DECivil),InstitutoSuperiorTécnico, UniversidadedeLisboa,1600-276Lisboa,Portugal 2 HospitalStaMaria,FacultyofMedicine,UniversidadedeLisboa,1649-028Lisboa,Portugal; [email protected] 3 CardiothoracicSurgeryDepartment,SantaMartaHospital,1169-024Lisbon,Portugal; [email protected] 4 NovaMedicalSchool,chronicdiseasesresearchcenter(CEDOC),1169-056Lisbon,Portugal; [email protected] 5 DepartmentofCivilEngineering,ArchitectureandGeoresources(DECivil),InstitutoSuperiorTécnico, UniversidadedeLisboa,1600-276Lisboa,Portugal;[email protected] * Correspondence:[email protected];Tel.:+351-218-418-151 Received:14March2017;Accepted:8June2017;Published:10June2017 Abstract: Computationalfluiddynamics(CFD)canbeseenascomplementarytoolalongsidethe visualizationcapabilitiesofcardiovascularmagneticresonance(CMR)andcomputedtomography (CT)imagingfordecision-making. InthisresearchCTimagesofthreecases(i.e., ahealthyheart pilot project and two patients with complex aortic disease) are used to validate and analyse the corresponding computational results. Three 3D domains of the thoracic aorta were tested under hemodynamic conditions. Under normal conditions, the flow inside the thoracic aorta is more streamlined. In the presence of ascending aortic aneurysm, large areas of blue separation zones (i.e., lowvelocities)areidentified, aswellasaninternalgeometrydeformationoftheaorticwall, respectively. Thisflowseparationischaracterizedbythereversalofflowandsuddendropofthe wallshearstress(WSS)intheaorta. Moreover,theaorticaneurysmsimulationsadverselyaffectthe flowbyincreasingthepressuredropandflowinefficiency,duetotheanatomicalconfigurationof theascendingaorta. Alteredhemodynamicsledtoavortexformationandlocallyreversedtheflow thateventuallyinducedalowflowvelocityandoscillatingWSSinthethoracicaorta. Significant changesinthehemodynamiccharacteristicsaffectthenormalbloodcirculationwithstrongturbulence occurrence,damagingtheaorticwall,leadingultimatelytotheneedofsurgicalinterventiontoavoid fatalevents. Keywords: aorticaneurysm;computationalfluiddynamic(CFD);hemodynamicanalysis;wallshear stress(WSS);cardiovascularmagneticresonance(CMR);computedtomography(CT) 1. Introduction Accordingtoanatomicalregions,thethoracicaortagoesfromthehearttothediaphragmwhereit enterstheabdominalregion,becomingtheabdominalaorta,whichrunsuntiltheaorticbifurcation. Theaortabeginsastheascendingaorta,turnsintotheaorticarchandtakesaninferiorcoursewherethe descendingaortastartsitsverticaltrajectorybeforeendingatthebifurcationofthetwocommoniliac arteries(Figure1). Theascendingaortaoriginatesintheupperpartoftheleftventricle,fromwhichis separatedbytheaorticvalve.Thisarea,designatedastheaorticroot,doesnothavetheclassicaltubular shape yet, but follows a bulb-shaped geometry [1]. This region is quite important as its particular shapeallowsthebloodthatrecoilstobecollectedandbedirectedtothecoronaryostia. Thetubular Fluids2017,2,31;doi:10.3390/fluids2020031 www.mdpi.com/journal/fluids Fluids2017,2,31 2of15 Fluids 2017, 2, 31 2 of 15 shape,typicaloftheaorta,beginsatthesinotubularjunction,whichmarksthetransitionbetweenthe between the root and the ascending aorta. The ascending aorta terminates on the aortic arch, which rootandtheascendingaorta. Theascendingaortaterminatesontheaorticarch,whichhasasteep has a steep curvature from where the supra-aortic vessels originate superiorly. It continues its course curvaturefromwherethesupra-aorticvesselsoriginatesuperiorly. Itcontinuesitscourserunning running dFlouiwds n20w17,a 2r, d31s to the diaphragm, being called the descending aorta [2]. 2 of 15 downwardstothediaphragm,beingcalledthedescendingaorta[2]. between the root and the ascending aorta. The ascending aorta terminates on the aortic arch, which has a steep curvature from where the supra-aortic vessels originate superiorly. It continues its course running downwards to the diaphragm, being called the descending aorta [2]. FigFuigreu r1e. 1P.hPyhsyisoiloolgogicicaal laaoorrttaa rroooott iinnt thheen noormrmalaclo cnodnitdioitni.on. Figure 1. Physiological aorta root in the normal condition. The TahseceaTnshcdee inandsgcine angdoairnotgrat aaaoanrnteaeu uarrnyyessummry siismst htiseh temh eom smtoocsostt m ccmoommomnmofoonr nmfo froomfr tmohfo torhafoc ritachcaoicor raatocicritcai cn aaeonurertuyicrsy msamn(T e(AuTAAryA)s()m6 0 %(T),AA) (60%f)o, lfloowl(l6oe0dw%b)e,y dfot hblleoywa tnehdeeu b rayyn stehmue roaynfesthumery dosmefs tcohefen t hddeine dsgecsaeconerndtdaiin(n3gg0 %aaoo)rrtaatn a(d3 (0t3%h0e)% aano) drat intchdea ratcohhret(i 1ca 0oa%rrct)hi,c w( 1a0hr%icle)h, t wh(1eh0irl%ee mt)h,a ewi nhinigle the rema1i0n%inagrre em1t0ahi%onri naacgri ce1-0 a%tbhd oaorrmea citnhicoa-rlaaabcnidce-uoabrmydsionmmasiln [a3al] n.aeTnuehureyrTysAsmmAss i[s[33d].] e.T fiThnehe deT AaTsAAa iAsd i dliaestf aindtieoedfn ianosef adt h deailasas tacate inodndi liaonftg atphtioeo rnti oonf the oftheaascoerntaditnhga tpaoffreticotns thofe sthege maeonrttab ethtwate eanfftehctes aothreti csvegamlveenat nbdetthweeebnr acthheio caeoprthica livcatlrvue nkan,dp rothdeu cing ascending portion of the aorta that affects the segment between the aortic valve and the anenblarragchediocveepshsaellicd itarumnekt,e prr1o.5duticminegs agnr eeantlearrgtheda nvtehsseeol rdigiaimnaeltedri a1m.5 ettimere(sF gigruearteer2 )th[4a–n6 t]h.eA onriagsicneanl ding brachiocephalic trunk, producing an enlarged vessel diameter 1.5 times greater than the original aortad,wiamithetear d(Fiaigmuerete 2r) b[4e–t6w].e Aenn a1s.1ceannddin1g. 5aotritma,e wsitthha at doifatmheeteorr bigeitnwaelesni z1e.1, aisndco 1n.5s itdimereesd thtaot bofe tdhiel ated. diameter o(rFigiginuarl es iz2e), [i4s –co6n].s iAdenre ads tcoe bned diinlagte ado. Trthae, twypiitchal ap rdoigarmesseitoenr o bf eantw aneeeunr y1s.m1 ainn tdh e1 a.5or ttaim beegsi ntsh at of the Thetypicalprogressionofananeurysmintheaortabeginswithhighbloodpressure,whichincreases original swizieth, ihsi gcho bnlosiodde prreedss utore ,b we hdicihla itnecdre.a Tsehs eth tey ppriecsasul rpe rwoagvreess osfi oblno oodf aagnai nasnt ethuer wysamlls oinf ththe ea oarotar.t a begins thepressurewavesofbloodagainstthewallsoftheaorta. Thepresenceofatheroscleroticdiseasealso The presence of atherosclerotic disease also causes the wall of the aorta to lose its elasticity which withc haiugshe sbtlhoeowd aplrleosfstuhreea, owrthaitcohl ionscerietsaseelass tthiceit yprweshsicuhrem weaanvsetsh oaft ibtsloaobdil iatygatoindsitl athteea wndalrlesc oofi ltwheit haorta. means that its ability to dilate and recoil with each pressure wave of blood induced by the heartbeat The pearcehsepnrecses uorfe awthaveeroosfcbleloroodticin dduisceeadsbey atlhseo hceaaurtsbeesa tthised wecarella soefd t.hEev eanotrutaal ltyo, thloeseel aisttsi cemlaesmticbirtayn ewshich is decreased. Eventually, the elastic membranes and smooth muscle within the aortic wall deteriorate meanasn dthsaamnt doito tsht hae bmvielusistseycll detoiwa mditiehltaientre itn hacenreadaos rretesi cc[7ow]i.l a wllidteht eeraiocrha tperaensdsutrhee wveasvseel odfi abmloeotedr iinncdrueacseeds [b7y]. the heartbeat is decreased. Eventually, the elastic membranes and smooth muscle within the aortic wall deteriorate and the vessel diameter increases [7]. (a) (b) Figure 2. Aneurysm of the ascending thoracic aorta: (a) Patient 1; (b) Patient 2. Figure2.Aneurysmoftheascendingthoracicaorta:(a)Patient1;(b)Patient2. Understanding the physiology of patients with aorta disease is crucial not only for Uunnddeerrssttaannddiningg lothcael phheymsioodlyongaymoifcsp ainti ecnotmspwleitxh aanoarttoamdiiesse, abseuti saclsrou crieaflinniontgo tnhley faosrseussnmdeenrst taonf ding localihnedmivoidduyanl apmatiicesntisn [(c8ao]).m Cparledxioavnasactuolmari ems,agbnuettaicl sroesroenfiannicneg (CthMeRa)s asnedss cmomenptuo(tbefd)i n tdomivoidguraaplhpya (tCieTn)t s[8]. Cardiiomvaagsicnugl haarvme abgeenne vtiecryre ussoenfualn icne e(vCaMluaRti)nagn bdlocoodm flpowut echdatroamcteorgisrtaicps h[9y–(1C1]T. A)ilmthaoguginhg thhias vimeabgeienng very usefutlecinhneivqFuaielgu u(air.teei.n ,2 gC. MAblnRoe)o updrryoflsvomiwd eoscf h at ah3reDa ac fstlecorewins dtmiicanspg[ o9thf– o1th1rea] .cbiAlco laotohdr octuair:gc (uhal)at htPioiasntii emannatd g 1ci;an (ngb )bt eeP cauhtsineedinq ttu o2e .e (xip.ela.,inC MR) complex hemodynamic scenarios, simulating multiple conditions for the same patient is still Understanding the physiology of patients with aorta disease is crucial not only for understanding local hemodynamics in complex anatomies, but also refining the assessment of individual patients [8]. Cardiovascular magnetic resonance (CMR) and computed tomography (CT) imaging have been very useful in evaluating blood flow characteristics [9–11]. Although this imaging technique (i.e., CMR) provides a 3D flow map of the blood circulation and can be used to explain complex hemodynamic scenarios, simulating multiple conditions for the same patient is still Fluids2017,2,31 3of15 Fluids 2017, 2, 31 3 of 15 Fluids 2017, 2, 31 3 of 15 providesa3Dflowmapofthebloodcirculationandcanbeusedtoexplaincomplexhemodynamic scernealartiiovse,lys ilmonugl a(1ti5n gmimn)u. lAtidpdleiticoonnaldlyit,i ownitsh floimr ittheed sspaamtieal praestioelnuttioisn sctoimllpraerleadti vtoe lCyTl,o dnegsp(i1t5e tmhei n). relatively long (15 min). Additionally, with limited spatial resolution compared to CT, despite the Adeedffffiootirrottssn iainnl l ayac,cccweellieetrhraatltiiinmnggi t44eDDd ssseepqqauuteeiannlccereess s [[o112l2u]],,t innooontt acalolll m ccllipinnaiicrceaaldl ccteeonntCtrreeTss, aadrreees ppprriotoeffiictchiieeenntet fiifnno urutsssiinnigng ttahhciicsse ttleeeccrhhanntiiinqquguee4 D seq[[88u]]e.. nTTchheuusss,,[ C1C2FF]DD,n aaonntaaallyyllssiicssl rirneevivceeaaalllssc tetoon btbreee aas rraeerlleeevvpaarnnottfi ppcooietteennntttiiianall uccllsiininniiccgaaltl httooisoollt tetooc hppnrreeidqdiuiccett mm[8aa]l.l ffTuuhnnuccttsii,ooCnnssF ooDrr ffauunttuaulrryees is anomalies. revaenaolmstaolibese. arelevantpotentialclinicaltooltopredictmalfunctionsorfutureanomalies. Computational fluid dynamics are capable to predict different scenarios at a patient-specific CoCmompuptuattaiotinoanlalfl fuluididd dyynnaammiiccss aarree ccaappaabbllee ttoo pprreeddiicctt ddififffeerreennt tscsecnenarairoiso sata at apaptaietniet-nstp-sepcieficci fic level [13]. Nevertheless, for computational models to be potentially integrated into clinical practice levleelv[e1l 3[]1.3N]. eNveevrtehrtehleesless,sf,o frocro cmompuptuattaiotinonalalm mooddeleslst otob beep pootetenntitaialllylyi ninteteggrraatteedd iinnttoo cclliinniiccaall pprraaccttiiccee or or used as clinical data (i.e., for decision-making) they need to be validated. Thus, in the present useodr uassecdli naisc acllidnaictaal (di.ea.t,af o(ir.ed.,e fcoisri odne-cmisiaokni-nmg)akthinegy) nteheedy tnoebede vtoa libdea vteadli.dTahteuds., Tinhuthse, ipnr ethseen ptrreesseenatr ch research two computational models were developed: one representative of a complex aortic twroesceoamrcphu ttawtioo ncaolmmpoudtealtsiownearl emdeovdeellos pwede:reo ndeerveeplroepseedn:t aotinvee orefparceosemnptaletixvea oortfi cap actohmoplolgexy ,waoirthtict he pathology, with the presence of aneurysms, and another illustrative of a normal heart condition. prepsaetnhcoeloogfya, nweiuthry tshme ps,reasnedncaen ooft haenreuilrluyssmtras,t iavnedo afnaonthoerrm ilalulshteraatritvceo onfd ai tnioonrm. al heart condition. 2. Materials and Methods 2. M2. Matearteiarliaslasn adndM Metehthooddss 2.1. Patient Data 2.12..1P.a PtiaetnietnDt aDtaata Patients with aortic pathology underwent CT evaluation of cardiac anatomy and function. The PaPtiaetnietnstsw witihtha aoorrttiicc ppaatthhoollooggyy uunndedrewrwenetn CtTC eTvaelvuaatluioant ioofn caorfdicaacr daniaactoamnya taonmd yfuannctdiofnu. nTchteio n. computed axial tomography (CT), with a spatial resolution of 0.5–0.625 mm in the z-axis, and Thceomcopmutpeudt eadxiaalx itaolmtoogmraopghrya p(hCyT)(, CwTi)t,h wai tshpaatiaslp aretisaollurteisoonl uotfi o0n.5–o0f.602.55 –m0.m62 5inm thme izn-axthise, azn-adx is, approximately 0.5 mm in the x to y-axes, showed that, morphologically, two of the patients presented anadpappropxriomxaimtelayt e0l.y5 m0.m5 minm thei nx ttoh ey-axxteos, ys-haoxwese,ds thhoatw, medortphhaot,lomgiocarpllyh,o tlwogoi ocfa tllhye, ptwatoienotfs tphreespenatteiedn ts aneurysms in the thoracic artery trunk. Figures 3–5 show the CT derived anatomical data. aneurysms in the thoracic artery trunk. Figures 3–5 show the CT derived anatomical data. presentedaneurysmsinthethoracicarterytrunk. Figures3–5showtheCTderivedanatomicaldata. FiFFgiiugguruerree3 .33.P. PPaaatitteiieennnttt 1 11 ( ((777333 yyyeeeaaarrrsss ooolllddd))) wwwiiittthhh aaa ttthhhooorrraaaccciicicc aaaooorrtrtaat a aananneeuueruryyrssymmsm.. . FiFgiugruere4 .4P. Pataiteienntt2 2( 7(766y yeeaarrss oolldd)) wwiitthh aann aasscceennddiinngg aaoortrata aanneueuryrsymsm. . Figure 4. Patient 2 (76 years old) with an ascending aorta aneurysm. Figure 5 shows the aortic root with the aortic diameter almost constant along the entire Figure 5 shows the aortic root with the aortic diameter almost constant along the entire thoracic thoracicFicgouurres 5e .shows the aortic root with the aortic diameter almost constant along the entire thoracic course. course. Fluids2017,2,31 4of15 Fluids 2017, 2, 31 4 of 15 Fluids 2017, 2, 31 4 of 15 Fluids 2017, 2, 31 4 of 15 FFiigguurree 55.. HHeeaalltthhyy ppaattiieenntt ((ppiilloo tt)) ((6622 yyeeaarrss oolldd)) wwiitthhoouutt aaoorrttaa ddiissee aassee.. Figure 5. Healthy patient (pilot) (62 years old) without aorta disease. 22..22.. MMooddeell GGeeoommeettrryy aanndd MMeesshh Figure 5. Healthy patient (pilot) (62 years old) without aorta disease. 2TT.2hh. eeM aaonndeaaltt Goommeomiicce tmmryoo addneedl lM wwesaahss ddeerriivveedd ffrroomm tthhee CCTT ssccaann ooff tthhee tthhrreeee ppaattiieennttss.. 33DD vvoolluummeess ooff tthhee tthhoorraa2cc.2iicc. MaaToohorrdette aala nGwwaeeetoorrmeeme gtgirceey nnm aeenorrddaa Metteel dedws huua sss iidnneggr ittvhheeed cc oformmommm etehrrecc iiCaallT ss ooscfftatwwn aaorrfee t hCCeOO tMMhrSeSeOO pLLa MMtieuunltltstii.p p3hhDyy ssviiocclssu 44m..33e..sbb o((CfC tOOheMM SSOOLL IInncc..,, thBBouurrrallTciiinhnceg ga ttoaoornnntaa,,t woMMmerAAiec ,,g meUUnoSSdeAAreal)) t.e.w dTTa uhsh seedi nehhgriee tvmmheedoo c ddofrymyonnmmaa emmtrhciiecica Claa sTnno afastlclwyyasnasiri sseo fCii nntOhccMelluu tSddhOereedLde M fpfoouauulttirrie pnsshtttsyee.s pp3icssDs:: 4((v.ii3o)). lbutt hh(mCeee Osaa MooorrfS ttOtaah Levv eesssseell ggeeoommItnheecott.rrr, yyaBc oouicffr alttiohhnrgeetat opp wnaa,ett iirMeeenn gAttess, n;;U e((riiSiiaA))t ett)dhh. eeTu hs33ieDDn gh ii etmmhmeaao cggdoeeym dndmaaamtteaaric ciii nnaal nd dsaoiiglgfytiiwsttiaasall r iiienmm CclaaOuggdMiiennSdggO faaLonn uMddr u ccsltooteimmpphsmm:y s(uuii)cnn stii h4cc.aae3 tt.iiabooo (nnrCtssaO iiMnnve SmmsOseeeLldd iicciinnee ((DDIICCgIOOneMocM.m, ))Be ftoufrorrymrl imonafg attthtow enwa ,p saMarstei Aecrn,oe tUncso;sS (tnAirisu))t .ctr htuTeehcd t3eeD indh te imomin3aotgDode y a3dnnDaaatm atoa iicnmn aaditnciogagmlieytaoisclim s i mgeineatrocgylmiunudgese tiadrnny gdf o utcuhsoreim nsmgmte eputdshni:i ecc(a aim)lt iotoehpndees i ncainaos lrom tuaoe rpdvceieecnsiisn meesl oa guirncge ismofatwg(giDanerIogCem O3seDoMtrfySt) w lofiocfa errtmrhee 4a 3.tp6 Da.w2t i.ae;Ssn(l iitricsiee;) cr(toi hin)4e s.tt6h3r.Deu2 c.3;ptD ea(d iti imiiei)nna tgttoh-e s e3pd Dae3t cDaai fini ncap tgdaoeitmgioeiimtcna tleg -itsemrpoieamegsceiiwntfrigeyc r aeugnseedixo nctmgor ametchtmtreei udemnsi inecwdatithecioraeenln sou eipxnmet mnrea rescidcotaeiucldridnc eeio n m tahine (nsutemrei(emDorilaIciCgtahiOln odMgg o)rsm aofpfoatrhwimnya ar((tseS t Twe3rLDaes) o Sflrolieitrcchmeoorn ags4trt.)ra6;up.a2chnt.;e ydd( i( i(Siiin)vT t)tLoht )eh3 f Deo3r Dnmau npamaatt)ote;im reaincnitca-d slg p(deieovocmi)mf itechat iregny en wouumsmaiensetgmrr iietcehsas elhw demedoreemda ineacxdaintlr s awoicmptaeesudn l m asintoei usothrnhceesed w aenrde nimumageirnicga ls odfotmwaarine (3sDte reSolilciethr o4g.r6a.2p.h; y( i(iSi)T tLh)e f o3rDm apt)a;t aienndt -(sipve) cthifeic n guemoemriectarli edso mwearine wexatsr amcteesdh eidn atnhde psiemrfuolramtieodnso wnethree CpeFrDfoCrmOeMdS oOnL t-hMe uCltFipDh CysOicMsS4O.3.Lb-Mmoudlteipl.hTyosivcesr 4if.y3.bth mesopdeecli.fi Tcod vifeferirfeyn tchees ospfeacoirftiac sniummuelartiicoanl sd owmeraei np (esrtfeorremoleitdh oognr tahpeh Cy F(SDT LC)O foMrmSOaLt)-;M anudlt i(pivh)y tshiec sn 4u.m3.ber micaold deol.m Taoi nv ewriafsy mthees hspedec aifnidc pdaiftfheorelongceiess o(fF aiogrutrae psa6thaonldog7ie)sc o(Fmigpuarreesd 6 taontdh 7e)t cyopmicpaalraerdr atno gtheme teynpti,caanl aarorartnigcermooetnft,r oamn aaorhtieca rltohoyt dsiimffeurleanticoens so wf aeorret ap epraftohromloegdi eosn ( Fthigeu CreFsD 6 CanOdM 7S) OcoLm-Mpaurletidp htoy tshices t 4y.p3i.cba ml aordraenl.g Teom venerti, fayn t ahoer stipce rcoifoitc pfraotmie nat h(ie.ea.l,thwyi tphaotuietnato (rit.iec.,p watithhoolougt ya)owrtiacs paalsthoogleongeyr)a wteads (aFlisgou green8e).rated (Figure 8). fdroifmfe rae nhceeasl tohfy a poarttaie pnat t(hi.oel.o, wgiietsh (oFuigt uaorersti c6 panatdh 7o)l ocgoym) pwaares da ltsoo t gheen teyrpaitceadl a(Frriganugree m8)e. nt, an aortic root from a healthy patient (i.e., without aortic pathology) was also generated (Figure 8). (a) (b) Figure (6a. ) A(as)c ending aorta aneurysm (Patient 1): (a) compute(db )( bto)m ography (CT) data and Figure6.Ascendingaortaaneurysm(Patient1):(a)computedtomography(CT)dataandsegmentation; FigusFreeigg mu6re.e n tAa6t.s icoAenns; cdaeninnddg (i bng)a moaretosarh t.a a naenueuryryssmm ((PPaattiieenntt 11)): : (a(a) ) cocmompuptuedte dto mtoomgroapghrayp h(CyT )( CdTa)ta daantda and and(b)mesh. segmseengmtaetinotnat;i oann;d a n(bd) ( bm) emshes. h . (a) (b) Figure( a7). Ascending aorta aneurysm (Patient 2): (a) CT data an(bd) s egmentation; and (b) mesh. Fig(au)r e 7. Ascending aorta aneurysm (Patient 2): (a) CT data and( bse)g mentation; and (b) mesh. Figure7.Ascendingaortaaneurysm(Patient2):(a)CTdataandsegmentation;and(b)mesh. Figure 7. Ascending aorta aneurysm (Patient 2): (a) CT data and segmentation; and (b) mesh. Fluids2017,2,31 5of15 Fluids 2017, 2, 31 5 of 15 (a) (b) Figure 8. Healthy patient (pilot): (a) CT data and segmentation; and (b) mesh. Figure8.Healthypatient(pilot):(a)CTdataandsegmentation;and(b)mesh. The provided STL geometry presents some relatively complex surfaces, fillets, and blends, wThhiceh prreosuvlitd eind sSmTaLll gfaecoems eintr ysompree speanrttss soof mthee rmeloadtievl.e lTyhecsoem spmlaelxl fsaucrefsa cfoersc,efi tlhleet ste,ta-mndeshbelre nds, whi(cthetrraehseudlrtail nmsemsha lflofra 3cDes minodseolms) etop aurstes somfatlhleer meleomdeenl.tsT. hAe sseolsumtiaolnl ifsa cteos ufsoer ctehet hCeOtMetS-mOLe sher (tetrtaehtreadhreadlrmal emshesfhoirn3gD almgoorditehlms) tthoaut sfiersstm aaplplelirese lae mmeenshts o.nA asllo oluf ttihoen siusrtfoacuesse otfh aenC oObjMectS.O TLhitse mtreashhe dral mesihs itnhgena ulgsoedri ttoh mseetdh athtefi vrsotluampep lmieessha fmroems hwohnicha ltletorfahthedersaul erfleamceesntosf garnowo bejleecmt.enTtsh iinswmaerdshs. iAsst hen these tetrahedral elements intersect, their sizes are adjusted with the objective of keeping the elements usedtoseedthevolumemeshfromwhichtetrahedralelementsgrowelementsinwards. Asthese as isotropic (similar edge lengths and included angles) as possible and to have reasonably gradual tetrahedral elements intersect, their sizes are adjusted with the objective of keeping the elements transitions between smaller and larger elements [14]. However, when these algorithms attempt to asisotropic(similaredgelengthsandincludedangles)aspossibleandtohavereasonablygradual remove topological entities, they often need to modify the underlying NURBS (non-uniform rational transitionsbetweensmallerandlargerelements[14]. However,whenthesealgorithmsattemptto basis spline) surfaces and are, therefore, somewhat limited. An alternative in COMSOL Multiphysics removetopologicalentities,theyoftenneedtomodifytheunderlyingNURBS(non-uniformrational software is to use Virtual Operations, which can keep the existing geometrical representations as a basisspline)surfacesandare,therefore,somewhatlimited. AnalternativeinCOMSOLMultiphysics basis for constructing a new alternative topological structure purely for the purposes of meshing and softdweafirneinisg tthoeu psheyVsiicrst u[1a4l].O perations, which can keep the existing geometrical representations as abasisfoFrrocmon tshteru Vcitritnugala Onpeewraatilotenrsn oaptitvioentso, pthoelo Fgoicrmal sCtorumcptuosreitep Fuarecelys ffeoartuthree wpuarsp soesleecsteodf mreseushltiinngg and defiinni nthge tshaempeh gyesoimcse[t1ry4,] .but ignoring faces that lie between two adjacent domains, resulting in a single dFomroamin.t hLeasVtliyr,t uthael OMpeeshra Ctioonntsroolp Ptoioinntss,, tEhdegFeos,r FmacCeso,m anpdo sDitoemFaaicness fefeaatuturerse, whiadse speoleincttse,d edregseus,l ting in tfhaecess,a more dogmeoamines tdryu,ribnug tthige nsoetr-iunpg offa tchees pthhyasticlsi.e Hboewtweveeern, thtwesoe gaedojamceetnritc denotmitiaeisn ws,ilrl esstuilll tbine g in asinpgrelesednot dmuariinng. Lthaes tmlye,sthhinegM steesph. BCyo unstirnogl Pthoeisnet tsy,pEeds goef so,pFearcaetiso,nasn ddurDinogm thaein csomfepaututarteiso,nhail dmeepsho ints, of the anatomical models, greater control over the meshing process is done by designating geometric edges,faces,ordomainsduringtheset-upofthephysics. However,thesegeometricentitieswillstill entities for the control of the mesh size and distribution [14]. bepresentduringthemeshingstep. Byusingthesetypesofoperationsduringthecomputationalmesh Then, to assess the performance of each structure, two kinds of analyses were undertaken: mesh oftheanatomicalmodels,greatercontroloverthemeshingprocessisdonebydesignatinggeometric convergence and mesh sensitivity analysis. These two analyses are both based on the concept of entitiesforthecontrolofthemeshsizeanddistribution[14]. establishing the independence of the CFD results over the mesh quality. A mesh sensitive analysis Then, to assess the performance of each structure, two kinds of analyses were undertaken: was developed by refining the mesh until a critical result, such as the pressure, converges (i.e., does meshconvergenceandmeshsensitivityanalysis. Thesetwoanalysesarebothbasedontheconceptof not change significantly with each refinement) [15]. As shown in Figure 9 when the mesh number estaibnlcisrehainsegs ttho e20in0,d0e0p0,e tnhdee pnrceessoufreth aet tChFe Dcornedsiutilotsn oovf epreathk esymsteoslhic qcounavlietyrg.eAs tmo eas chonsestnasnitt ivvaeluaen.a Tlhyusiss, was devae lmopesehd wbyithr e2fi2n5,i0n5g9 tehleemmenestsh fuorn ati lnaorcmriatil caaolrrtea saunldt, 2s,u3c5h8,0a5s5t hanedp 2re4s2s,8u5r9e ,elceomnevnetrsg, eress(pi.eec.t,ivdeolyes, not chanfogre Psaigtinenifit c1a anntldy 2w, withereea ucshedre ifinn tehmis erneste)a[1rc5h].. A sshowninFigure9whenthemeshnumberincreases to200,00T0h,et hceonpvreersgseunrcee aatntahleyscios nwdaist idoonnoef bpeegainknsiynsgt owliitchc ao nvveeryrg ceosartosea mceosnhs taanndt ivnaclrueme.eTnhtiunsg, tahme esh withsm22o5o,t0h5n9esesl eomf tehnet msfeosrh abyn o2r5m%a floar oeartcah afunrdth2e,r3 5st8e,p05, r5eaanchdin2g4 21,5805%9 oefl etmhee anutsg,mreenspteedc tmiveeslhy ,dfeonrsPitayt ient [16]. 1and2,wereusedinthisresearch. The convergence analysis was done beginning with a very coarse mesh and incrementing the smoothness of the mesh by 25% for each further step, reaching 150% of the augmented mesh density[16]. Fluids2017,2,31 6of15 Fluids 2017, 2, 31 6 of 15 Figure 9. Mesh sensitivity analysis. Figure9.Meshsensitivityanalysis. 2.3. Boundary Conditions 2.3. BoundaryConditions The FEM involves dividing the problem into subdomains, each represented by a set of element TheFEMinvolvesdividingtheproblemintosubdomains,eachrepresentedbyasetofelement equations to the original problem, followed by systematically recombining all sets of element equationstotheoriginalproblem,followedbysystematicallyrecombiningallsetsofelementequations equations into a global system of equations for the final calculation. The global system of equations intoaglobalsystemofequationsforthefinalcalculation. Theglobalsystemofequationshasknown has known solution techniques and can be calculated from the initial values of the original problem solutiontechniquesandcanbecalculatedfromtheinitialvaluesoftheoriginalproblemtoobtain to obtain a numerical answer [7]. The 3D incompressible Navier-Stokes equations were used for blood anumericalanswer[7]. The3DincompressibleNavier-Stokesequationswereusedforbloodflow flow simulations, with the CFD software COMSOL-Multiphysics Equation (1): simulations,withtheCFDsoftwareCOMSOL-MultiphysicsEquation(1): (cid:2034)(cid:1874) (cid:2025) +(cid:2025)((cid:1874)∙∇)(cid:1874)−∇(cid:2026) =0 (cid:1861)(cid:1866)Ω(cid:3047), ∀(cid:1872)∈(cid:1835) ρ∂v(cid:2034)(cid:1872)+ρ(v·∇)v−∇σ =0 inΩt, ∀t ∈ I ∂t (1) (1) (cid:2008)∇∙·v(cid:1874)==00 in(cid:1861)(cid:1866)ΩΩt,(cid:3047), ∀∀t(cid:1872)∈∈I(cid:1835) wwhheerree I(cid:1835)==[[00,,T(cid:1846)]]i sist hteheti mtimeien tienrtveravlaaln adnρdi s(cid:2025)t hies dtheen sditeynosiftyb looof db.loTohde. uTnhken uownknnvoawrina bvlaesriaarbeletsh earbelo tohde vbeloloocdi tyv,evlo,caintyd, th(cid:1874)e, panreds stuhree pthraestsduerpe etnhdast odneptheendCsa uocnh ythset rCesasu,cσh(yv ,spt)r,edsse,s c(cid:2026)r(i(cid:1874)b,e(cid:1868)d)b, ydeasccorinbsetdit ubtyiv ea constitutive relation that characterizes the rheology of the fluid. In the case of Newtonian fluids the relationthatcharacterizestherheologyofthefluid. InthecaseofNewtonianfluidsthetotalstress tteontaslo srtrisesssi mtepnlsyord iesfi snimedplbyy dσe(fvin,epd) b=y −(cid:2026)P((cid:1874)I,+(cid:1868))2=µD−((cid:1842)v(cid:1835)),+µ2i(cid:2020)s(cid:1830)th((cid:1874)e)d, y(cid:2020)n aism tihcev disycnoasmityic ovfisbcloosoidty, oanf dbloDodis, tahneds t(cid:1830)ra iins rtahtee tsetrnasionr ,rgaitvee tnenbsyoDr, (gvi)v=en(cid:0) ∇byv +(cid:1830)(∇(cid:1874))v=T(cid:1)(/(cid:2008)2(cid:1874). I+n(cid:2008)th(cid:1874)i(cid:3021)s)r⁄e2se. aIrnc ht,htihs erevsisecaorcshit,y tihsev avriisacbolseitayn ids variable and depends on the shear rate [17]: dependsontheshearrate[17]: (cid:113) γ(cid:2011)==(cid:3493)22t(cid:1872)r(cid:1870)((D(cid:1830)2(cid:2870))) (2(2) ) TThhuuss,, ffoorr aa nnoonn--NNeewwttoonniiaann flfluuiidd,, tthhee ttoottaall ssttrreessss tteennssoorr iiss ggiivveenn bbyy:: (cid:2026)((cid:1874),(cid:1868))=−(cid:1842)(cid:1835)+2(cid:2020)(cid:0)((cid:2011).(cid:4662)(cid:1))(cid:1830)((cid:1874)) (3) σ(v,p) = −PI+2µ γ D(v) (3) Different non-Newtonian models have been proposed in expert literature, describing different speciDfiicfafetiroennst onfo tnh-eN veiwsctoosnitiya nfumncotdioenls (cid:2020)h(a(cid:2011)v)e. bIne ecnasper oofp bolsoeoddi fnloewxps etrhtel iftoecruastu wreil,ld faelslc orinb itnhge bdoifufenrdeendt svpiseccoifisictayt iloanwsso, futshinegv Cisacorrseituy’sf ushnecatiro-nthµin(nγi)n.gIn mcoadseelo Efqbuloaotidonfl o(4w) s[1th7]e: focuswillfallonthebounded viscositylaws,usingCarreu’sshear-thinningmodelEquation(4)[17]: (cid:3041)(cid:2879)(cid:2869) (cid:2020) =(cid:2020) +((cid:2020) −(cid:2020) )(1+((cid:2019)(cid:2011))(cid:3028)) (cid:3028) (4) (cid:2998) (cid:2868) (cid:2998) where γ is the rate of the deforµm=atiµo∞n +ten(µso0r− gµiv∞e)n (cid:0)b1y+ E(qλuγa)taio(cid:1)nn− a(15) for a 3D Cartesian coordina(4te) system [18]: FFlluuiiddss 22001177,, 22,, 3311 77 ooff 1155 where γ is the rate of the(cid:2034)d(cid:1874)e(cid:3051)fo(cid:2870)rmat(cid:2034)io(cid:1874)n(cid:3052) t(cid:2870)ensor(cid:2034)(cid:1874)g(cid:3053)iv(cid:2870)en by(cid:2034)E(cid:1874)q(cid:3051)uat(cid:2034)io(cid:1874)(cid:3052)n ((cid:2870)5) fo(cid:2034)r(cid:1874)a(cid:3051)3D(cid:2034)C(cid:1874)(cid:3053)ar(cid:2870)tesian coordinate (cid:2011) =(cid:3429)2(cid:3421)(cid:3436) (cid:3440) +(cid:4678) (cid:4679) +(cid:3436) (cid:3440) (cid:3425)+(cid:4678) + (cid:4679) +(cid:3436) + (cid:3440) system[18]: (cid:2034)(cid:1876) (cid:2034)(cid:1877) (cid:2034)(cid:1878) (cid:2034)(cid:1877) (cid:2034)(cid:1876) (cid:2034)(cid:1878) (cid:2034)(cid:1876) (cid:2870) (cid:2869)⁄(cid:2870) (5) γ=(cid:34)2(cid:40)(cid:18)∂vx(cid:19)2+(cid:18)∂vy(cid:19)2+(cid:18)+∂(cid:4678)v(cid:2034)z(cid:2034)(cid:1874)(cid:19)(cid:1878)(cid:3052)2(cid:41)++(cid:2034)(cid:2034)(cid:1874)(cid:1877)(cid:18)(cid:3053)(cid:4679)∂v(cid:3433)x + ∂vy(cid:19)2+(cid:18)∂vx + ∂vz(cid:19)2+(cid:18)∂vy + ∂vz(cid:19)2(cid:35)1/2 (5) ∂x ∂y ∂z ∂y ∂x ∂z ∂x ∂z ∂y TThhee ccoonnssttaannttss ffoorr tthhee CCaarrrreeaauu mmooddeell wweerree eessttaabblliisshheedd ffrroomm iinn vviivvoo ddaattaa aaccccoorrddiinngg ttoo [[1177]]:: (cid:2020) =0.042(cid:1842)(cid:1853).(cid:1871) (cid:2019)=3.31(cid:1871) (cid:2868) µ0 =0.042Pa.s λ =3.31s (6) (cid:2020) =0.00345(cid:1842)(cid:1853).(cid:1871) (cid:1866)=0.375 (6) (cid:2998) µ∞ =0.00345Pa.s n =0.375 in which the coefficients (cid:2020) and (cid:2020) are the asymptotic viscosities, that depend on the lowest shear (cid:2868) (cid:2998) rinatwesh, iwchhtihche ccooerfrfiecsipeonntsdµs 0toan tdheµ ∞lowareestth peraessysmurpet odtricopv iisnco as iptiiepse, tfhloatwd eapnedn odno nthteh ehliogwheers tsshheeaarr rraatteess,, rwehspicehctciovrerleys.p Honerdesinto, ath =e 2lo, wfoers tthper eCsasrurreeud mroopdienl aanpdip λe flaonwd nan adreo npathraemheigtehresr tsoh ebaer ersattiems,arteesdp. eIcf tλiv =e l0y. oHre nr e=i n1,, ath=e v2,isfcoorsitthye isC caornresutamnto adnedl tahned Nλeawntdonniaanr empoadrealm ise rteecrsovtoerbeed ewsittihm tahtee dv.isIcfoλsi=ty 0(cid:2020)or. Tnh=es1e, (cid:2868) pthaeravmisecotesritsy reispcroensesntatn tthaen rdeltahxeaNtioenw ttoimniea n(λm), oi.dee.,l tihseryec doevteerremdiwneit hthteh veavliuseco (cid:2011)si tayt µwh.Tichhe tsheep laorwam sehteearrs 0 rraetper eesnednst [t1h9e]r. eTlahxea ptioownetirm laew(λ i)n,di.eex., (tnh)e yredperteesremnitns eththe eslvoaplue eofγ tahtew rahpicidhltyh-edelocwreasshienagr praotretieonnd osf[ t1h9e]. cTuhrevpe oawnder tlhaew sihnadpeex p(na)raremperteesre n(ats) tihs ethsleo psheaopfet htrearnaspitiidolny -bdeetcwreeaesnin tghep ourptipoenr o(cid:2011)f tahnedc uthrvee raanpdidtlhye- isnhcarpeeaspinarga pmoertteiorn(a o)fi sththe ecushrvape e(it.rea.,n essittiimonabteedtw beye cnutrhvee ufipttpienrgγ ofa nexdptehreimraepnitdally d-iantcar,e saesein [g20p–o2r2t]i.o nof thecAur vteim(ie.e-v.,aersytiinmga tfeldowby rcauter vwefiastt iinmgpoofseexdp earti mtheen tianlldeta tbao,usened[a2r0y– 2c2o]n.dition. As for the outlet condAitiotinm, ea- pvareryssinugrefl wowavrea wteaws asseti m(bpoothse addaatpttheedi nfrloetmb o[2u3n]d). aTrhyec obnoduintidoanr.yA csonfodritthioenosu atrleet dceofnindeitdio inn, Faipgruerses u10re. wavewasset(bothadaptedfrom[23]). TheboundaryconditionsaredefinedinFigure10. 18 16 400 14 12 300 Q (ml/s) 200 810 P (kPa) 6 100 4 2 0 0 0 0.2 0.4 0.6 0.8 1 t (s) Q (ml/s) P (Pa) Figure 10. Boundary conditions used in both models. Figure10.Boundaryconditionsusedinbothmodels. The simulations used for WSS assessment typically assume that the arterial walls are rigid, ThesimulationsusedforWSSassessmenttypicallyassumethatthearterialwallsarerigid,which which greatly simplifies the simulation process. The effect of wall motion on velocity and WSS fields greatlysimplifiesthesimulationprocess. TheeffectofwallmotiononvelocityandWSSfieldsisoften is often assumed to be negligible. This may be reasonable in older subjects and certain patient groups assumedtobenegligible. Thismaybereasonableinoldersubjectsandcertainpatientgroupswith with increased vascular stiffness. Thus, for simplicity, and also due to the aging of the patients, the increasedvascularstiffness. Thus,forsimplicity,andalsoduetotheagingofthepatients,thevessel vessel walls were assumed to be rigid and the no-slip condition was considered. wallswereassumedtoberigidandtheno-slipconditionwasconsidered. 3. Results 3. Results 3.1. Blood Velocity 3.1. BloodVelocity Figure 11 shows normal streamlines velocities in the aorta system (between 0.1 m/s and 0.55 m/s) Figure11showsnormalstreamlinesvelocitiesintheaortasystem(between0.1m/sand0.55m/s) with the absence of vortex formation in the arch branches. withtheabsenceofvortexformationinthearchbranches. Fluids2017,2,31 8of15 FFlluuiiddss 22001177,, 22,, 3311 88 ooff 1155 Fluids 2017, 2, 31 8 of 15 FFFiiiggguuurrreee 111111... HHHeeeaaalllttthhhyyy pppaaatttiiieeennnttt::: vvveeellloooccciiitttyyy ssstttrrreeeaaammmllliiinnneeesss (((pppeeeaaakkk sssyyyssstttooollleee)))... Figure 11. Healthy patient: velocity streamlines (peak systole). FFFiiiggguuurrreee 111222 ssshhhooowwwsss lllooowww vvveeellloooccciiitttyyy vvvaaallluuueeesss iiinnn ttthhheee aaaooorrrtttaaa sssyyysssttteeemmm ( ((<<<000...333555 mmm///sss))) aaannnddd mmmaaarrrkkkeeeddd vvvooorrrttteeexxx fffooorrrmmmaaatttiiiooonnn lllooocccaaattteeeFdddig aaautttr tttehhh 1eee2 ppp srrrhooooxxxwiiimmms aaalolll wssseee ggvgmmemloeeencnnitttt yooo fffv tttahhhleuee eaaasrrr ttiteenerrr tyyyh (e((ccc aoooodddreeetddad sbbbylllusuuteeee)))m... (<0.35 m/s) and marked vortex formation located at the proximal segment of the artery (coded blue). FFiigguurree 1122.. PPaattiieenntt 11:: vveelloocciittyy ssttrreeaammlliinneess ((ppeeaakk ssyyssttoollee)).. FFiigguurree 1122.. PPaattiieenntt 11:: vveelloocciittyy ssttrreeaammlliinneess ((ppeeaakk ssyyssttoollee)).. FFiigguurree 1133 sshhoowwss llooww vveelloocciittyy vvaalluueess iinn tthhee aasscceennddiinngg aaoorrttaa ((<<00..22 mm//ss)) aanndd mmaarrkkeedd vvoorrtteexx ffoorrmmFaaFtitiigigoouunnrr eell oo11cc33aa ttseeshdhdoo waawtts stt lhhlooeeww bb evevggeeililnononcnciiiitnntyygg v vooaaffl l uuttehhesees iniddnee tsshtccheeeenn addasiiscnncegegnn daadiooninrrgttgaa a ao((cocroortatddaee (dd<(< 00bb.2.ll2uu meem))/.. / ssTT))h haaeenn dttdrr aammnnssaaiirrttkiikooeenndd ddvveeooggrrrrtteeeexeex bfbfooeerrttmwmwaeeateetiinnoo n ntthh loeeloc ddacatiisestttdeaadlal taaartrthcc hheth baaeenn gddbi en ppgnrriioonnxxngiiimmonfgaat llh oddefee dsstehccseeecnn edddneiidnnsigcgne gaanoodarroittnraatg acc hh(acaaoonnrdtggaeee dss( cbaaolbbudrreueu)dpp. tTtlblyhyl ue mmetr)aaa.k knTiisnnhiggtei o aatnllrmmadnooessgsittrt ei99oe00n bdd edeetgwgegrreeereeeensse btbbheeeetttwwwdeeieseeetnnna l ttthhahreeecmm hd..i a sTTnthhadlii sspa rrrreecoshsxuu ialmlttnssad iil nnpd drdeoisissxcttieuumnrrdabbleie ndddg e ffslaloocoewwrnt adaannicndhdga s snauuogddreddtsaeea nncbh ffralluoonpwwgtel ayascc maccbeeallreekurripaantttgliiyooa nnmlm ((accookosdditnee9gdd0 arrdleemeddgo)).r.s ete 9s0b detewgreeeens tbheetmw.eeTnh itshreemsu. lTtshiisn rdeissutultrsb iend dflisotwurbanedd fsluodwd aenndfl souwdadcecne lfelorawti oancc(ecloerdaetdiorne d(c)o.ded red). FFiigguurree 1133.. PPaattiieenntt 22:: vveelloocciittyy ssttrreeaammlliinneess ((ppeeaakk ssyyssttoollee)).. FFiigguurree 1133.. PPaattiieenntt 22:: vveelloocciittyy ssttrreeaammlliinneess ((ppeeaakk ssyyssttoollee)).. Fluids 2017, 2, 31 9 of 15 Fluids2017,2,31 9of15 Fluids 2017, 2, 31 9 of 15 3.2. Wall Shear Stress 33..22.. WWItaa llills SS hhweeaearrll S Strtrereecssossg nized that a higher or lower WSS (HWSS and LWSS) may cause intimal dysfuItn citsi own,e wll hrieccho gconuizlded r etshualtt ian thhieg hperro gorre slsoiwone ro fW atShSe r(oHscWleSroS siasn [d2 4L].W ExStSr)e mmealyy hciaguhs ev ailnuteims oafl ItiswellrecognizedthatahigherorlowerWSS(HWSSandLWSS)maycauseintimaldysfunction, WdySsSfu anrcet aiosnso, cwiahtiecdh wcoituhl dv ersesseul lrt eimn othdee lplirnogg rreessspioonns oibfl ea tfhoerr aonsceluerryossmis [in24it]i.a Etixotnr eamndel yp rhoiggrhe svsaiolune [s2 o5]f which could result in the progression of atherosclerosis [24]. Extremely high values of WSS are [W26S]S. Caroen avsesrosceilayt,e rde gwioitnhs voef slsoewl rWemSSo dcoelrlrienlga tree wspiothn sinibwlea rfodr v aansecuurlayrs mre minoitdiaetliloinng a anndd p trhoeg prreossgiroens s[i2o5n] associated with vessel remodelling responsible for aneurysm initiation and progression [25,26]. o[2f6 a]t.h Ceoronsvcelresreolsyi,s r [e2g7i]o. nAsl toefr leodw h WemSoSd cyonrraemlaitces wleidth t oin aw vaorrdte vxa fsocrumlaart iroenm aondde llloincagl layn rde vtheer sperso tghree fslsoiown, Conversely, regions of low WSS correlate with inward vascular remodelling and the progression wofh aitchhe reovsecnleturoaslilsy [2in7d].u Aceltse rleodw h aenmdo doyscniallmatiicnsg l eWd tSoS ai nv otrhteex t fhoorrmacaitci oano artnad. lIonc aclolmy rpeavreisrosens wthiet hfl othwe, of atherosclerosis [27]. Altered hemodynamics led to a vortex formation and locally reverses the swmhoicohth e avoernttau aarltlyer yin (dpuactieesn lto-pwil oatn, dF igouscriel l1a4ti)n, glo wW SWSS iSn vtahleu etsh oinr aPcaicti eanotrst a1. aInnd c 2o mcapna bries oonb swerivthe dt hine flow,whicheventuallyinduceslowandoscillatingWSSinthethoracicaorta. Incomparisonwiththe tshmeo aostche nadorintag atrhtoerrayc (ipc aatoierntat -(pFiilgout,r Fesig 1u5r ea n1d4) 1, 6lo).w WSS values in Patients 1 and 2 can be observed in smoothaortaartery(patient-pilot,Figure14),lowWSSvaluesinPatients1and2canbeobservedin the ascending thoracic aorta (Figures 15 and 16). theascendingthoracicaorta(Figures15and16). Figure 14. Patient-pilot: wall shear stress (WSS) contours (at peak systole). FFiigguurree 1144.. PPaattiieenntt--ppiilloott:: wwaallll sshheeaarr ssttrreessss ((WWSSSS)) ccoonnttoouurrss ((aatt ppeeaakk ssyyssttoollee)).. Figure 14 shows normal values of WSS located in the smooth curvature of the aorta artery. On Figure14showsnormalvaluesofWSSlocatedinthesmoothcurvatureoftheaortaartery. Onthe the coFnigtruarrey 1, P4 asthieonwtss 1n aonrmd 2a lp vraelsueenst voaf sWcuSlSa rl oacreaatesd e xinp othseed s tmo oloowth WcuSrSv oatvuerre t iomf eth, we ahoicrhta c aorntterriyb.u Otens contrary,Patients1and2presentvascularareasexposedtolowWSSovertime,whichcontributes ttoh ea c ovnatsrcaurlya,r P raetimenotdse 1l lainngd. 2H perreesienn,t tvhaesrceu lias r dairreeacst eexvpiodseendc eto o lfo wan W aSnSe uovryesrm tim, sei,n wceh ilcohc aclolyn-tarilbteurteeds to a vascular remodelling. Herein, there is direct evidence of an aneurysm, since locally-altered htoe ma ovdaysncuamlaric sr eamndod veelslisnegl .w Halelr peainr,a mtheetreer si,s i .de.i,r ethcte eovbisdeervnecde oovf earnt dainffeeurreynscme i, ns ivnacleu elso cbaeltlwy-eaeltne rtehde hemodynamicsandvesselwallparameters,i.e.,theobservedovertdifferenceinvaluesbetweenthe ahnetmeroidory naanmdi ctsh aen dp ovsetsesreiol rw valels psealr awmaeltle, ras,f fie.ec.t, tthhee ovbasescruveladr orveemrto ddieflfleirnegn caen idn, vcaoluneses qbueetwntelyen, tthhee anteriorandtheposteriorvesselwall,affectthevascularremodellingand,consequently,theaneurysm aanneteurriyosrm a ngdr otwhteh p[o27st]e. rFioigr uvree s1se5l swhoawll,s arfefgeicot ntsh eo f vlaoswcu WlarS Sr ecmorordeelalltiendg waintdh , thcoen pseroqgureenstsliyo,n t hoef growth[27]. Figure15showsregionsoflowWSScorrelatedwiththeprogressionofatherosclerosis. aatnheeurroysscmle rogsriosw. Athlt e[2re7d]. hFeimguordey 1n5a mshicosw lesd r teog iao vnos rotefx l foowrm WatSioSn c aonrdre lloatceadll yw rietvhe rthsee thpero fglorwes,s wiohni cohf Alteredhemodynamicsledtoavortexformationandlocallyreversetheflow,whichinduceslowand ianthdeurcoessc lloerwo sains.d A olstceirleladt ihnegm WodSSy nina mthiec st hleodr atcoi ca avoorrttae.x F fiogrumrea 1ti6o np raensden ltosc laolwly WrevSeSr vsea ltuhees falot wth,e w inhnicehr oscillatingWSSinthethoracicaorta. Figure16presentslowWSSvaluesattheinnercurvatureofthe cinudrvuacteusr leo wof atnhde othsocirlalactiicn ago WrtaS Sa nind t hheig thh oWraScSic a ato trhtea . lFeivgeul roef 1t6h ep raeosretnat sa rlochw, WwhSiSc hv amluaeys eaxt pthlaei inn ntheer thoracicaortaandhighWSSattheleveloftheaortaarch,whichmayexplaintheprogression/extension pcurorvgaretussrieo nof/ etxhtee nthsioorna coifc tahoer dtai saenadse hinig thh eW fSuStu arte .t he level of the aorta arch, which may explain the ofthediseaseinthefuture. progression/extension of the disease in the future. FFiigguurree 1155.. PPaattiieenntt 11:: wwaallll sshheeaarr ssttrreessss ((WWSSSS)) ccoonnttoouurrss ((aatt ppeeaakk ssyyssttoollee)).. Figure 15. Patient 1: wall shear stress (WSS) contours (at peak systole). Fluids2017,2,31 10of15 Fluids 2017, 2, 31 10 of 15 FFiigguurree 1166.. PPaattiieenntt 22:: wwaallll sshheeaarr ssttrreessss ((WWSSSS)) ccoonnttoouurrss ((aatt ppeeaakk ssyyssttoollee)).. 44.. DDiissccuussssiioonn TThhee ccoommppuuttaattiioonnaall ssiimmuullaattiioonnss ccoonncceerrnneedd tthhee pprrooffiilleess ooff vveelloocciittyy aanndd WWSSSS iinn tthhee tthhrreeee ccaasseess.. AAccccoorrddiinngg ttoo [[22]],, toto cchhaararactcetreirziez ethteh estsrutrcutcutruer oefo tfheth TeATAA,A th,et hmeamina gineogmeoemtriectarli cTaAlATA pAarapmareatmerest aerres mareeamsueraesdu: r(cid:1838)ed: L, the a,ntehueryasnmeu lreynsgmth,l eanngdt hD, and, thDe ma,xitmheumm adxiaimmuetmer doifa tmhee atenreuorfytshme. aTnheeu fraycstmor. (cid:2904)(cid:2885)(cid:2885) TAA (cid:2904)(cid:2885)(cid:2885) TAA Twhheicfhac atsosrewssheisc thhae slseensgstehs t(cid:1838)hele nagntdh tLhe diaamndettehre (cid:1830)diam eist ekrnDown aiss tkhneo swacncuaslatrh iensdaecxc u(l(cid:2011)a)r iEnqdueaxti(oγn) (cid:2904)(cid:2885)(cid:2885) TAA (cid:2904)(cid:2885)(cid:2885) TAA (E7q) u[a2t8i]o. nIf( 7th)e[2 s8a]c.cIufltahre isnadcceuxl aisr cinlodseex tios c1l,o tsheet oan1e,uthreysamne iusr syascmcuislasra c(scpuhlaerri(csaplh),e rbiucat li)f, bitu itsi fcliotsise ctloo s0e, tthoe0 ,atnheeuarnyesumr yissm miosrme ofuresiffuosrimfo.r mTh.eT hdeefdoerfmoramtioanti odniadmiaemteert errartea te(cid:2031) χcchhaararaccteterrizizeess tthhee nnoonnddeeffoorrmmeedd aaoorrttaa ddiiaammeetteerr ((d(cid:1856) )) wwitihtht htheem maaxximimuummd diaiammeetteerr ooff tthhee aanneeuurryyssmm.. AA nnoonnaanneeuurryyssmmaall aaoorrttaa iiss a(cid:2911)n(cid:2924)t(cid:2930)e(cid:2915)r(cid:2928)i(cid:2919)o(cid:2925)r(cid:2928) ddeeffiinneedd aass D(cid:1830) ==(cid:1856)d [[22]]:: T(cid:2904)A(cid:2885)A(cid:2885) (cid:2911)a(cid:2924)n(cid:2930)t(cid:2915)e(cid:2928)r(cid:2919)i(cid:2925)o(cid:2928)r β = r(cid:1870) R (cid:2010) = γ = DT(cid:1844)AA (7) LTAA (cid:1830) χ(cid:2011)==d(cid:1838)Dan(cid:2904)TteA(cid:2885)rAi(cid:2885)or (7) (cid:2904)(cid:2885)(cid:2885) Toevaluatetheasymmetryβoftheaneurysm,randRaredefinedastheratiomeasuredatthe (cid:1830) midsectionoftheTAAfromthelongitudinalz(cid:2031)-a=xisto(cid:2904)t(cid:2885)h(cid:2885)ep osteriorandanteriorwalls,respectively[29]. (cid:1856) Thus,β =1yieldsanazimuthalsymmetryandβ(cid:2911)=(cid:2924)(cid:2930)(cid:2915)0(cid:2928).(cid:2919)2(cid:2925)(cid:2928)isaTAAforwhichonlytheanteriorwallis dilateTdo, wevhaillueatthee tphoe satesyrimormweatrllyi s(cid:2010)n eoaf rtlhyefl aante[3u0r]y.sBma,s e(cid:1870)d aonndt h(cid:1844)e saerien ddiecfeins,eidt iassp tohses irbalteioto mideeansutirfeydt haet tthype emofidasneecutiroyns mofp rtehsee nTteAdAin feraocmh ptahtei enlotn(Tgaitbuldei1n)a.l z-axis to the posterior and anterior walls, respectively [29]. Thus, (cid:2010) =1 yields an azimuthal symmetry and (cid:2010) =0.2 is a TAA for which only the anterior wall is dilatedTa, bwleh1il.eG tehoem peotrsictealricohra rwacatlelr iisst incseaofrltyh eflaante [u3r0y]s.m Bsa.sed on these indices, it is possible to identify the type of aneurysm presented in each patient (Table 1). d D L Patient anterior r(cm) R(cm) TAA TAA χ β γ Type (cm) (cm) (cm) Table 1. Geometrical characteristics of the aneurysms. Pilot 2.80 1.40 1.40 2.80 - 1.00 1.00 - - (cid:2186) (cid:2200) (cid:2174) (cid:2160) (cid:2168) saccularwithazimuthal Patien1t (cid:1801)3((cid:1814)c.5(cid:1820)m(cid:1805)4(cid:1818))(cid:1809)(cid:1815) (cid:1818) 2.0(c6m) 2(.c7m0) (c4(cid:1794)m.(cid:1775)76(cid:1775)) (c(cid:1794)m6(cid:1775).(cid:1775)9)2 χ1 .35 0β. 76 0γ.6 9 symmetry(35%Toyfpdee formation) fusiformwithonlyanteriorwall Pilot2 22.6.890 0.516.40 31.3.430 23.8.808 1-1 .53 1.010.4 4 1.00.107 0-. 34 dilated(44%ofd- eformation) saccular with azimuthal 1 3.54 2.06 2.70 4.76 6.92 1.35 0.76 0.69 symmetry (35% of deformation) Accordingto[1,31–35],basedontheTAAshape,differentcriteriafortheTAAcollapsibilitycan fusiform with only anterior wall bea2p plied: 2(i.)69if theT0.A56A di3a.m33e ter3is.884 5%h11ig.5h3e rth1.a4n4 the0.1n7o n-d0.e3f4o rmedaortadiameter; (ii)ifthe dilated (44% of deformation) asymmetryindexfactoris β < 0.4; (iii)ifthedeformationdiameterratio χ > 3×d ; and(iv) anterior if theAscaccocrudlianrgi tnod [e1x,3γ1–3<5]0, b.6a.seHdo owne tvheer ,TtAhAe TshAaAped, idlaiftfieornenatn cdritpeoritae nfotira tlhreu TpAtuAre caollslaopdsiebpileintyd coann bthee ahpepmlioedd:y (ni)a mif itchleo aTdAsA.T dhiuasm,aeltteerr nisa 4ti5v%e mhiegthheord tshoafnT tAhAe nruonp-tduerefoarsmseesds maoerntat adrieamneeetdere;d (,iis)u icfh thaes ansuymmemriectarlya innadleyxs ifsacintovro ilsv i(cid:2010)ng<C0F.4D; (miii)o dife tlhset doedfoertemrmatiionne dthiaemWetSeSr rdaitsitor ib(cid:2031)u>tio3n×s(cid:1856)and flow; anpda t(tievr)n isf (cid:2911)(cid:2924)(cid:2930)(cid:2915)(cid:2928)(cid:2919)(cid:2925)(cid:2928) (tThaeb sleac2c)u.lar index (cid:2011) <0.6. However, the TAA dilation and potential rupture also depend on the hemodynamic loads. Thus, alternative methods of TAA rupture assessment are needed, such as