ebook img

Anyons in Infinite Quantum Systems PDF

240 Pages·2012·0.98 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Anyons in Infinite Quantum Systems

Anyons in Infinite Quantum Systems ˘ ¯ QFT in d 2 1 and the Toric Code PROEFSCHRIFT terverkrijgingvandegraadvandoctor aandeRadboudUniversiteitNijmegen opgezagvanderectormagnificusprof. mr. S.C.J.J.Kortmann volgensbesluitvanhetcollegevandecanen inhetopenbaarteverdedigenopdinsdag15mei2012 om13.30uurprecies door PieterNaaijkens geborenop12september1982 teTilburg Promotor: Prof.dr.N.P.Landsman Copromotor: Dr.M.Müger Manuscriptcommissie: Prof.dr.M.Fannes(KULeuven) Prof.dr.M.I.Katsnelson Dr.J.D.M.Maassen Prof.dr.K.-H.Rehren(Georg-August-UniversitätGöttingen) Prof.dr.R.F.Werner(LeibnizUniversitätHannover) This research was supported by the Netherlands Organisation for Scientific Re- search(NWO)underprojectno.613.000.608. MathematicsSubjectClassification(MSC)2010:81T05,18D10,46L60 GedruktdoorIpskampDrukkers,Enschede Contents Preface vii Introduction ix Localquantumphysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii Mainresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Organisationofthethesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi I Preliminaries 1 1 Operatoralgebras 5 1.1 Basictheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 vonNeumannalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Inductivelimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 HilbertspacesinvonNeumannalgebras . . . . . . . . . . . . . . . 16 2 Tensorcategories 19 2.1 Categorytheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Tensorcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Symmetryandbraiding . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Linearstructureandfusion . . . . . . . . . . . . . . . . . . . . . . . 27 2.5 Dualsanddimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6 Modulartensorcategories . . . . . . . . . . . . . . . . . . . . . . . . 34 2.7 TheDoplicher-Robertsreconstructiontheorem . . . . . . . . . . . 37 3 Localquantumphysics 39 3.1 Finitequantumsystems . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Algebraicquantumfieldtheory . . . . . . . . . . . . . . . . . . . . . 42 3.3 Fieldnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 Quantumlatticesystems . . . . . . . . . . . . . . . . . . . . . . . . . 54 iii Contents 4 Topologicalquantumcomputers 63 4.1 Quantumcomputing . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 Topologicalquantumcomputing . . . . . . . . . . . . . . . . . . . . 67 4.3 Fibonaccianyons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5 Thequantumdoubleofafinitegroup 77 5.1 Quantumdoublesoffinitegroups . . . . . . . . . . . . . . . . . . . 78 5.2 Representationtheory . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3 Dualsandribbonstructure. . . . . . . . . . . . . . . . . . . . . . . . 85 5.4 Rep D(G)ismodular. . . . . . . . . . . . . . . . . . . . . . . . . . . 86 f II Stringlikelocalisedsectorsind ˘2¯1 89 6 Stringlikelocalisedsectors 91 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.2 Stringlikelocalisedsectors . . . . . . . . . . . . . . . . . . . . . . . . 94 7 Extensionandrestriction 105 7.1 Thefieldnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.2 Extensiontothefieldnet . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.3 Non-abeliancohomologyandrestrictiontotheobservablealgebra 115 8 Categoricalaspects 119 8.1 Categoricalcrossedproducts . . . . . . . . . . . . . . . . . . . . . . 119 8.2 EssentialsurjectivityofH . . . . . . . . . . . . . . . . . . . . . . . . 123 8.3 Conclusionsandopenproblems . . . . . . . . . . . . . . . . . . . . 127 III Kitaev’smodel 129 9 Kitaev’squantumdoublemodel 131 9.1 Basicdefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 9.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 9.3 Ribbonoperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 10 Thetoriccode 139 10.1 Themodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10.2 Stringoperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 10.3 Localizedendomorphisms . . . . . . . . . . . . . . . . . . . . . . . . 146 10.4 Fusion,statisticsandbraiding . . . . . . . . . . . . . . . . . . . . . . 153 10.5 EquivalencewithRep D(Z ) . . . . . . . . . . . . . . . . . . . . . . 160 f 2 iv Contents 11 Toriccode:analyticaspects 163 11.1 Conealgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 11.2 Haagdualityforcones . . . . . . . . . . . . . . . . . . . . . . . . . . 165 11.3 Distalsplitproperty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 12 Thenon-abeliancase 175 12.1 Thegroundstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 12.2 Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 12.3 Openproblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 A Computingfusionrules 191 SamenvattinginhetNederlands 199 Waaromanyonen? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Kwantumveldentheorieind˘2¯1 . . . . . . . . . . . . . . . . . . . . . . 203 Kitaev’storiccode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Bibliography 207 Index 219 Curriculumvitae 222 v Preface This thesis is the result of the author’s PhD research, under supervision of Klaas Landsman and Michael Müger, the day-to-day supervisor. It was their expert- isethatallowedmetoquicklylearnthebasicsofoperatoralgebraandalgebraic quantumfieldtheory,bothnewtome. Thisthesiswouldnothavebeenpossible without the countless discussions, suggestions, corrections to manuscripts, ad- vice,etcetera,bymyadvisersMichaelMügerandKlaasLandsman.Ithankbothof themfortheirtremendoussupportduringvariousstagesoftheresearch,andfor givingmetheopportunitytodoresearchinmathematicalphysics. Theresearch wassupportedfinanciallybytheNetherlandsOrganisationforScientificResearch (NWO)underprojectno.613.000.608. I feel lucky to have been in the position that I could combine several of my interestsinmyresearch: quantumphysics, mathematics, andquantumcompu- tation. Ihadagreattimethelastfour(-plus)years, duringwhichIlearntagreat dealaboutphysicsandmathematics. Someofthosesubjects,namelythosethat serveasabackgroundtothemainresultsinthisthesis, areincludedinPartIof thisthesis. Ihopethatsomeofmyenthusiasmforthisfieldradiatestothereader ofthisthesis. Mathematics does not have to be a solitary exercise. Therefore, besides my advisers,Iwouldalsoliketothankmyothercolleagues.Inparticular,Iwouldlike tothanktheotherPhDstudents(androom-matesoverthepastyears): Ben,Bert, Dion,Joost,Jord,Maarten,Martijn,Matija,Michiel,Noud,Roel,Roberta,Ruben, Rutger, Sam, Sander (W.) and Sander (R.). Your presence livened up the atmo- sphereintheoffice,andyourcontributionswereessentialinmakingthePhDcol- loquiumandPhDseminarsasuccess.AndofcourseIshouldnotforgettomention theniceget-togethersoutsidework...IwouldalsoliketothankBerndSouvignier forhisinvolvementintheSprint-UpprojectandKarl-HenningRehrenforallhis advice,suggestionsandhelp. Althoughthisisperhapsnotalwaysapparent,lifeisnotallaboutresearch. I wouldliketothankmyfamily,andinparticularmyparents,foralwayssupporting meandstimulatingmetoexploretheworld.InadditionIthankthemanyfriends withwhomIhavespentmyfreetime. InparticularIwouldliketomentionMark & Jessica, Guido & Anneke and Twan for the great evenings, parties and dinners vii Preface spenttogether. IalsothankCees,JosandMarkforintroducingmeto(andbrew- ing!)manygreatbeers. Andlastly, andmostimportantly, IwanttothankKamilla. Fortoleratingme inbusyandstressfulperiods,foralwayssupportingmeinachievingmygoals,for justbeingthere,andforsomuchmore...Камилла,спасибобольшое! Utrecht January2012 PieterNaaijkens viii Introduction In the beginning of the 1980s the mathematician Manin [Man80, Introduction] andthephysicistFeynman[Fey82]suggested,amongothers,thatquantummech- anicalsystemscouldbeusedtodocomputations. Thissuggestionwasbasedon the observation that the (classical) simulation of a quantum mechanical system requiresanextraordinaryamountofcomputations. Perhaps,then,onecoulduse suchsystemsthemselvestodocomputations.1 Awell-knownexampleisShor’salgorithm[Sho94], whichprovidesapolyno- mialtimemethodforfactoringintegers. Thishasapotentiallybigimpactonthe security of most encryption schemes in use today, which rely on factoring be- inghard. Anarguablymoreimportantapplicationissuggestedbytheremarksof ManinandFeynmanmentionedabove: quantumcomputerscanbeusedtosim- ulatequantummechanicalsystems,forinstancethequantummechanicalbeha- viourofamolecule,whichisverydifficult(ifnotdownrightimpossibleforreason- ablycomplexmolecules)withtoday’stechnology. Understandingthisbehaviour isessentialinthedevelopmentofnewdrugs. Afull-fledgedquantumcomputer wouldthereforelikelytogreatlybenefitmedicineresearch. Despite this (potential) power of quantum computation, at the moment no suchquantumcomputerisavailable. Oneofthemainreasonsforthisisthatthe quantumsystemsnecessarytobuildaquantumcomputerareverysensitivetoin- teractionswiththeenvironment. Suchinteractionsleadtodecoherenceofquan- tum superpositions and hence to potential errors in the calculations. Even with theadventofquantumerrorcorrectionprotocols,therequiredaccuraciesareout ofreachofcurrenttechnology. Inrecentyears,however,anewapproachtoquantumcomputinghasemerged. Thisapproachisthoughttobeabletoaddressthisstabilityproblem. Independ- ently, Freedman[Fre98]andKitaev[Kit03]suggestedthattopological featuresof quantumsystemscanbeusedtoovercomethisdifficulty. Becauseoftheirtopo- 1Itshouldbenotedthatquantummechanicsdoesplayaroleinmoderncomputers:itplayedan importantpartinthedevelopmentoftransistors,thefundamentalbuildingblocksofacomputer. Thecomputationsthemselves, however, areclassical: theyworkonfinitebitstrings, withoutthe possibilityofsuperposition. Inaddition,insometypesofmodernflashstoragedevices,quantum mechanicaleffectsareemployedaswell. ix Introduction logical nature, these systems are inherently protected from influences from the environment. This can be seen as a kind of hardware error protection. Kitaev’s proposalisbasedonquantumspinsystems,whereasFreedmanusestopological quantumfieldtheory. Nevertheless,bothapproachesareintimatelyrelated: they bothrevolvearoundthepossibilityofnon-abeliananyons.2 Non-abeliananyonsareageneralisationofbothfermionsandbosons. Recall thatafermionisaparticleobeyingFermi-Diracstatistics(thisimpliesforexample that two identical fermions cannot be in the same state). Bosons satisfy Bose- Einsteinstatistics. The(quantummechanical)stateofasystemissymmetricun- der interchange of two identical bosons, and anti-symmetric under interchange ofidenticalfermions. Forlongitwasthoughtthatthese3 areinfacttheonlypos- sibilities,butintheseventiesitwasrealisedthatinlowdimensionsofspace-time moregeneralbehaviourispossible[LD71,LM77]. Anintroductiontoanyonsand reprintsofclassicpapersonthissubjectcanbefoundin[Wil90]. Inessence,anyonscanbeseenasexcitations(orquasiparticles4)thatbehave non-triviallyunderinterchange.Thisbehaviouriscalledthestatisticsofaparticle. Intuitivelyspeaking,itmeansthatinterchangingtwoidenticalanyonstwiceisnot the same as leaving them in place. This is quite unlike the usual Fermi or Bose statistics, where interchanging two particles twice has the same effect as doing nothingatall.Itturnsoutthatthispropertycanbeexploitedtoperformquantum computations. Itisperhapsinstructivetooutlinehowasystemwithanyonscouldbeusedto doquantumcomputations.Amorein-depthtreatmentcanbefoundinChapter4. Thebasicingredientsofquantumcomputationareasfollows: oneuses(asubset of)thestatesofaquantummechanicalsystemtorepresentthedifferent“inputs” toacomputation,analogouslytothebitsinaclassicalcomputer. Acomputation isperformedbyactingontheinputstatebymeansofunitarytransformations(ef- fected,e.g.,byturningonamagneticfield). Finally,ameasurementisperformed togetananswer.Itshouldbenotedthat,accordingtothelawsofquantummech- anics,theoutcomeofthismeasurementisprobabilistic.Henceonemighthaveto repeatthesamestepsanumberoftimes. So how does this work in a system with anyons? First of all, one once again initialisesthesysteminaknownstate. Thisisdonebycreatingpairsofananyon anditsantiparticlefromthevacuum.Wesupposethatwehavesomemechanism to move the anyons around each other, i.e. “braid” them. Moving them around willchangethestateofthesystem, justlikewhenweinterchangetwofermions. Mathematicallythisisdescribedbyactingwithaunitaryonthestateofthesystem. 2Alternativenamesincludenonabelionsandplektons. 3Andparastatistics,whicharealsorelatedtorepresentationsofthesymmetricgroup. 4Aquasiparticleisanemergentphenomenon,wherecomplexmicroscopiccaneffectivelybe describedbyfictitiousparticles.Awell-knownexampleisaCooperpairinasuperconductor.Inthis casetwoelectronspairupinsuchawaythatthepairessentiallybehaveslikeaboson. x

Description:
M.I. Katsnelson. Dr. J.D.M. Maassen . I also thank Cees, Jos and Mark for introducing me to (and brew- ing!) many great . Introduction. • Quantum field theory in d = 2 + 1, treated in the operator algebraic ap- In local quantum physics one usually deals with relativistic quantum theor- ies. In t
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.