Electron identification in and performance of the ND280 Electromagnetic Calorimeter by Antony Carver Thesis Submitted to The University of Warwick for the degree of Doctor of Philosophy Physics March 2010 Contents Acknowledgments vii Declarations viii Abstract ix Abbreviations x List of Figures i List of Tables xiv Chapter 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2 Neutrino Physics 3 2.1 Neutrino Phenomenology . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Neutrino Mass . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Oscillation Probability . . . . . . . . . . . . . . . . . . 5 2.1.3 Neutrino Oscillations in Matter . . . . . . . . . . . . . 8 ii 2.1.4 Current 3 flavour neutrino oscillation model . . . . . . 9 2.2 Neutrino Interaction Physics . . . . . . . . . . . . . . . . . . . 12 2.2.1 Charged Current Interactions . . . . . . . . . . . . . . 13 2.2.2 Neutral Current Interactions . . . . . . . . . . . . . . . 16 2.3 A review of Neutrino Oscillations . . . . . . . . . . . . . . . . 17 2.3.1 The Solar Neutrino Problem . . . . . . . . . . . . . . . 18 2.3.2 Neutrino Oscillation Experiments . . . . . . . . . . . . 25 2.4 T2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Chapter 3 T2K and the ND280 Detector 33 3.1 Introduction to T2K . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 J-PARC Neutrino Beamline . . . . . . . . . . . . . . . . . . . 36 3.3 INGRID on-axis detector . . . . . . . . . . . . . . . . . . . . . 37 3.4 Super-Kamiokande . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.1 Super-Kamiokande Reconstruction . . . . . . . . . . . 40 3.5 ND280 off axis near detector . . . . . . . . . . . . . . . . . . . 42 3.5.1 P0D (π0 Detector) . . . . . . . . . . . . . . . . . . . . 44 3.5.2 Fine Grained Detector . . . . . . . . . . . . . . . . . . 46 3.5.3 Time Projection Chamber (TPC) . . . . . . . . . . . . 48 3.5.4 Electromagnetic Calorimeter . . . . . . . . . . . . . . . 49 3.5.5 Side Muon Range Detector . . . . . . . . . . . . . . . . 52 3.5.6 Scintillator Detectors . . . . . . . . . . . . . . . . . . . 54 3.5.7 Multi Pixel Photon Counters . . . . . . . . . . . . . . 55 iii 3.5.8 ND280 Electronics . . . . . . . . . . . . . . . . . . . . 57 3.6 Data Acquisition (DAQ) . . . . . . . . . . . . . . . . . . . . . 61 3.7 ND280 Software Suite . . . . . . . . . . . . . . . . . . . . . . 61 3.7.1 oaEvent, oaRawEvent and oaUnpack . . . . . . . . . . 62 3.7.2 Monte Carlo simulation . . . . . . . . . . . . . . . . . 63 3.7.3 Reconstruction . . . . . . . . . . . . . . . . . . . . . . 65 Chapter 4 Particle Identification in the ECal 70 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 Monte Carlo simulation and Particle event types in the ECal . 71 4.2.1 Monte Carlo simulation of ECal . . . . . . . . . . . . . 71 4.2.2 Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2.3 Electromagnetic Showers . . . . . . . . . . . . . . . . . 75 4.2.4 Hadronic Showers . . . . . . . . . . . . . . . . . . . . . 76 4.3 Identification Techniques . . . . . . . . . . . . . . . . . . . . . 79 4.3.1 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.2 Artificial Neural Networks . . . . . . . . . . . . . . . . 82 4.4 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4.1 Track Reconstruction . . . . . . . . . . . . . . . . . . . 88 4.4.2 Shower Reconstruction . . . . . . . . . . . . . . . . . . 88 4.4.3 Angle Reconstruction . . . . . . . . . . . . . . . . . . . 89 4.5 ECal Particle Identification . . . . . . . . . . . . . . . . . . . 89 4.5.1 Particle Identification Variables . . . . . . . . . . . . . 89 iv 4.6 Particle Identification Technique . . . . . . . . . . . . . . . . . 104 4.6.1 PID algorithm description . . . . . . . . . . . . . . . . 104 4.6.2 Network Training . . . . . . . . . . . . . . . . . . . . . 106 4.6.3 Network Optimisation . . . . . . . . . . . . . . . . . . 106 4.7 Neural Network Performance . . . . . . . . . . . . . . . . . . . 109 4.7.1 Neural Network Validation . . . . . . . . . . . . . . . . 109 4.7.2 Predicted Efficiency . . . . . . . . . . . . . . . . . . . . 111 4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Chapter 5 T9 Testbeam 118 5.1 ECal Testbeam Introduction . . . . . . . . . . . . . . . . . . . 118 5.2 CERN T9 Beamline and ECal experimental layout . . . . . . 119 5.2.1 T9 beamline . . . . . . . . . . . . . . . . . . . . . . . . 119 5.3 Testbeam trigger and particle identification . . . . . . . . . . . 121 5.3.1 Time of Flight . . . . . . . . . . . . . . . . . . . . . . . 122 ˇ 5.3.2 Cerenkov counters . . . . . . . . . . . . . . . . . . . . 130 5.3.3 Determination of beam composition . . . . . . . . . . . 135 5.3.4 Sample selection . . . . . . . . . . . . . . . . . . . . . 137 5.4 Analysis of testbeam data . . . . . . . . . . . . . . . . . . . . 138 5.4.1 Data Calibration . . . . . . . . . . . . . . . . . . . . . 139 5.4.2 Cosmic Muon Calibration . . . . . . . . . . . . . . . . 141 5.4.3 Comparison of Cosmic Data to Monte Carlo . . . . . . 152 5.4.4 Comparison of electron data with simulation . . . . . . 156 v 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Chapter 6 Electron Neutrino Analysis 170 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.2 Neutrino Interactions in ND280 . . . . . . . . . . . . . . . . . 170 6.2.1 Neutrino interactions in the FGD . . . . . . . . . . . . 174 6.3 Electron Neutrino Analysis - Event Selection . . . . . . . . . . 176 6.3.1 Lepton Selection . . . . . . . . . . . . . . . . . . . . . 177 6.3.2 Particle Identification . . . . . . . . . . . . . . . . . . . 178 6.4 Analysis Performance . . . . . . . . . . . . . . . . . . . . . . . 186 6.4.1 Systematic Errors . . . . . . . . . . . . . . . . . . . . . 192 6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Chapter 7 Conclusions 196 vi Acknowledgments Thank you to Steve Boyd and Gary Barker for all their help over the past 31 2 years. Your wisdom and inspiration has been invaluable during my time on T2K. I would also like to thank everyone in T2K for the help and advice I have received over the years. In particular from the ECal software group and the electron neutrino analysis group. I would also like to thank those I have worked with at Warwick; Martin, Phil, Leigh and Andy. Thank you to my Mum, Dad and Grandma for all your support over the years. Finally, thank you to my wonderful fianc´ee, Alice, for all your understanding over the past few months. vii Declarations This work has been carried out as part of the T2K neutrino oscillation ex- periment. The first chapter is a review of the theory and current status of neutrino oscillation experiments and the second chapter describes the T2K experiment. The following three chapters describe the author’s contribution to the experiment. The third chapter describes techniques used to separate classes of event and then the algorithm designed and implemented by the au- thor. The development of the trigger and identification algorithms used in the testbeam analysis were also original work, as was the data to simulation com- parison and energy resolution measurement carried out. The electron neutrino analysis presented in the final chapter was also implemented by the author as part of the T2K electron neutrino analysis group. viii Abstract T2K is an off axis neutrino beam experiment with a baseline of 295 km to the far detector, Super-Kamiokande. The near detector, ND280, measures the flux and energy spectra of electron and muon neutrinos in the direction of Super-Kamiokande. An electromagnetic calorimeter constructed from lead and scintillator surrounds the inner detector. Three time projection chambers and two fine grained scintillator detectors sit inside the calorimeter. This thesis describes the development of a particle identification algorithm for the calorimeterandstudieshowitcanenhanceasimpleelectronneutrinoanalysis. Aparticleidentificationalgorithmwaswrittenfortheelectromagneticcalorime- ter to separate minimally ionising particles, electromagnetic and hadronic showers. A Monte Carlo study suggested that the algorithm produced an electron sample with a relative muon contamination of 10−2 whilst maintain- ing an electron efficiency of 80%. Data collected at CERN was then used to make comparisons between the Monte Carlo simulation used to train the particle identification, and experimental data. A reasonable agreement was found between the electron data and the Monte Carlo simulation, given that the available calibration framework was still preliminary. Cosmic data agreed well with simulation. The energy resolution of the DsECal for electromagnetic showers was estimated at 9%/√E. An electron neutrino analysis was devel- oped that could be performed on T2K data from the first day of data taking. This analysis anticipated finding 33 10(sys) 6(stat) CCQE electron neu- ± ± trino events and 92 28(sys) 10(stat) CCnQE electron neutrino events in ± ± the FGD after 12 months of nominal running. ix Abbreviations DsECal - Downstream Electromagnetic Calorimeter FGD - Fine Grained Detector PID - Particle Identification SMRD - Side Muon Range Detector P0D - Pi-0 Detector CERN - Organisation Europ´enne pour la Recherche Nucl´eaire TOF - Time Of Flight T2K - Tokai to Kamioka ND280 - Near Detector 280m C/N C - Charged/Neutral Current MLP - Multi Layered Perceptron CC(n)QE - Charged Current (non) Quasi-Elastic TPC - Time Projection Chamber MIP - Minimally Ionising Particle AMR - Axis Max Ratio MPPC - Multi Pixel Photon Counter x
Description: