ebook img

Antonio Giuliano Zippo Neuronal Ensemble Modeling and Analysis with Variable Order Markov ... PDF

157 Pages·2011·5.59 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Antonio Giuliano Zippo Neuronal Ensemble Modeling and Analysis with Variable Order Markov ...

Antonio Giuliano Zippo Neuronal Ensemble Modeling and Analysis with Variable Order Markov Models Ledizioni LediPublishing Antonio Giuliano Zippo Department of Mathematics University of Milan Via C. Saldini n.50 20133 Milan - Italy Advisors: Bruno Apolloni Department of Computer Science University of Milan Via Comelico 39, Milan, Italy Simone Bassis Department of Computer Science University of Milan Via Comelico 39, Milan, Italy Gabriele E. M. Biella Institute of Bioimaging and Molecular Physiology National Research Council Via Fratelli Cervi, Segrate, 20090 Milan, Italy Series Editors: Vincenzo Capasso, Coordinator of the PhD Program in Mathematics and Statistics for Computational Sciences; Alfredo Lorenzi, Coordinator of the PhD Program in Mathematics; Bernhard Ruf, Director of the Graduate School. Editorial Assistant: Stefania Leonardi © 2011 Antonio Giuliano Zippo Open Access copy available at air.unimi.it First Edition: April 2011 ISBN 978-88-95994-57-4 All rights reserved for the print copy. For the digital copy rights please refer to air.unimi.it Ledizioni LediPublishing Via Alamanni 11 – 20141 Milano – Italy www.ledipublishing.com; [email protected] Antonio Giuliano Zippo Neuronal Ensemble Modeling and Analysis with Variable Order Markov Models 2 Contents 1 Biological Background 19 1.1 The Central Nervous System: a survey . . . . . . . . 20 1.2 The Neurons . . . . . . . . . . . . . . . . . . . . . . 20 1.2.1 Elements of Neuronal Anatomy . . . . . . . . 20 1.2.2 Action Potentials and Signal Transmission . . 22 1.3 The Somatosensory System . . . . . . . . . . . . . . 28 1.3.1 A brief introduction to Thalamus Anatomy . 28 1.3.2 A brief introduction to Cortex Anatomy . . . 31 1.3.3 The Thalamo-cortico-thalamic loop. . . . . . 32 1.4 State of Consciousness . . . . . . . . . . . . . . . . . 34 1.4.1 Human Disorders of Consciousness . . . . . . 35 2 Computational Neuroscience Modeling 39 2.1 Multielectrode thalamocortical recordings . . . . . . 40 2.1.1 Spike Sorting . . . . . . . . . . . . . . . . . . 41 2.2 Neural Code. . . . . . . . . . . . . . . . . . . . . . . 46 2.2.1 Firing rate . . . . . . . . . . . . . . . . . . . 47 2.2.2 Spiking timing . . . . . . . . . . . . . . . . . 47 2.2.3 Population coding . . . . . . . . . . . . . . . 48 2.2.4 Stationarity issues . . . . . . . . . . . . . . . 48 2.3 Neuronal analytical Modeling . . . . . . . . . . . . . 49 2.3.1 Integrate-and-fire . . . . . . . . . . . . . . . . 50 2.3.2 Hodgkin-Huxley . . . . . . . . . . . . . . . . 50 3 4 CONTENTS 2.3.3 Izhikevich . . . . . . . . . . . . . . . . . . . . 52 3 Mathematical Modeling Methods 53 3.1 Symbol Sources . . . . . . . . . . . . . . . . . . . . . 54 3.1.1 Finite Markov Process . . . . . . . . . . . . . 56 3.1.2 Variable Order Markov Models . . . . . . . . 59 3.2 Lossless Compressor Codes . . . . . . . . . . . . . . 62 3.2.1 Prediction by Partial Matching . . . . . . . . 64 3.2.2 Context-Tree Weighting . . . . . . . . . . . . 65 3.2.3 Probabilistic Suffix Trees . . . . . . . . . . . 68 3.3 Estimation Framework . . . . . . . . . . . . . . . . . 70 3.4 VOMM’s model similarities . . . . . . . . . . . . . . 71 3.4.1 Average Log-Loss. . . . . . . . . . . . . . . . 72 3.4.2 Compressor-based similarity function . . . . . 73 3.4.3 Stationary Phase Detection . . . . . . . . . . 74 3.5 Neuronal Groups Discovery . . . . . . . . . . . . . . 75 3.5.1 Small-World Networks . . . . . . . . . . . . . 75 3.6 Graphs, Trees and Statistics . . . . . . . . . . . . . . 80 3.7 Modeling Intermittent Chaos . . . . . . . . . . . . . 81 3.7.1 Class Extraction . . . . . . . . . . . . . . . . 82 3.7.2 Information Analysis . . . . . . . . . . . . . . 82 3.7.3 Logistic Modeling . . . . . . . . . . . . . . . 83 3.7.4 Parameter Optimization . . . . . . . . . . . . 84 4 Experiments 85 4.1 Neuropathic Animal models . . . . . . . . . . . . . . 86 4.2 Patients with disorders of consciousness . . . . . . . 89 5 Implementations 91 5.1 Average Log-Loss Similarity . . . . . . . . . . . . . . 91 5.2 NCD Similarity . . . . . . . . . . . . . . . . . . . . . 92 5.2.1 NGD routine . . . . . . . . . . . . . . . . . . 93 CONTENTS 5 6 Results 95 6.1 Chronic Pain . . . . . . . . . . . . . . . . . . . . . . 98 6.1.1 Single Cell Analyses . . . . . . . . . . . . . . 102 6.1.2 Multiunit Analyses . . . . . . . . . . . . . . . 106 6.1.3 Discussion . . . . . . . . . . . . . . . . . . . . 108 6.2 Cortical Ongoing Activity . . . . . . . . . . . . . . . 111 6.2.1 Drifts . . . . . . . . . . . . . . . . . . . . . . 112 6.2.2 Intermittent Chaos in Spontaneous Cortical Activity . . . . . . . . . . . . . . . . . . . . . 115 6.2.3 Predictability of Higher order Synchrony. . . 121 6.3 Human Disorders of Consciousness . . . . . . . . . . 122 7 Conclusions 133 7.1 Future developments . . . . . . . . . . . . . . . . . . 136 6 CONTENTS List of Figures 1.1 A representation of neuron anatomy. . . . . . . . . . 22 1.2 A schematic representation of synapse. . . . . . . . . 23 1.3 A protein that functioning as ion channel. . . . . . . 24 1.4 The action potential and its ionic current components. 27 1.5 Cortical areas of human brain. . . . . . . . . . . . . 29 1.6 Thalamus within the human brain (left). Thalamus nuclei and their cortical projections (right). . . . . . 30 1.7 Thalamocortical loop. We can observe the involved neuronslikeTCneurons(relaycells)andgranular/pyramidal cortical neurons. The thalamic cells in red are RT neurons. . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.8 Thebrainsascendingreticularactivatingsystem(ARAS) isresponsibleforarousalandsubstainsthewakefulness. 36 2.1 Anelectrodethatrecordstheelectricalactivitywithin a micro-column. The dark blue circle represents the detectable region that vary with the electrode impe- dence. . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2 An example of the electrical activity recordings with microelectrodes.. . . . . . . . . . . . . . . . . . . . . 43 2.3 100 spike waveforms each of them with 64 samples . 44 7 8 LIST OF FIGURES 3.1 Atipicalbehaviouralpatternofathalamiccellduring tonic-bursting phases . . . . . . . . . . . . . . . . . . 58 3.2 The respective symbolic sequence where black cells represent spikes. . . . . . . . . . . . . . . . . . . . . 58 3.3 The estimation framework for VOMM with lossless compression algorithms. . . . . . . . . . . . . . . . . 70 3.4 InthepanelabovetheLogisticMapwithintheInter- mittent Chaos Region (α ∈ [3.8284,3.8287145]). In the central panel the average log-loss computed on slidingwindows of500units at50units. Inthepanel below the peaks of the derivative of average log-loss follow the chaotic region while the periodic phases represent low values of average log-loss. . . . . . . . 76 3.5 AnexampleofNCDmatrixfromathalamusofanex- perimentalchronicpainanimalmodel. Therecording gathers 33 neurons. . . . . . . . . . . . . . . . . . . . 77 3.6 AnexampleofNGDprocedurecomputedontheNCD matrix in Fig 3.5 with the 33x33 matrix. . . . . . . . 78 3.7 AnexampleofNGDprocedurecomputedontheNCD matrix in Fig 3.5. with an extract of 20 cells. . . . . 79 3.8 An example of small-world network . . . . . . . . . . 80 3.9 Another example of small-world network . . . . . . . 81 6.1 Preliminary evidences: Firing rate (above) and Cor- relation (below) throughout the experimental classes (CR, PI, SC, SL) and the recording sites (VPL and SS-I). . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 EEG power spectra for four different CPAs . . . . . 102 6.3 Rasterplotsfrom(respectively)SC,CRandSLanimals.103

Description:
tree to estimate the symbol probability by combining conditional probability of a symbol with a modeled by a Bernoulli stochastic process {Xt}t∈N, where Xt are. Bernoulli random variables with Xt . A solution to both problems is represented by Variable Order Markov. Models (VOMM, also knows as
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.