ebook img

Antiviral Research Present and future arboviral threats PDF

18 Pages·2009·2.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Antiviral Research Present and future arboviral threats

AntiviralResearch85 (2010) 328–345 ContentslistsavailableatScienceDirect Antiviral Research journal homepage: www.elsevier.com/locate/antiviral Review Present and future arboviral threats ScottC.Weavera,∗,WilliamK.Reisenb aDepartmentofPathologyandCenterforBiodefenseandEmergingInfectiousDiseases,UniversityofTexasMedicalBranch,Galveston,TX77555-0609,USA bCenterforVectorborneDiseasesandDepartmentofPathology,MicrobiologyandImmunology,SchoolofVeterinaryMedicine,UniversityofCalifornia,Davis,CA95616,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Arthropod-borneviruses(arboviruses)areimportantcausesofhumandiseasenearlyworldwide.All Received23August2009 arbovirusescirculateamongwildanimals,andmanycausediseaseafterspillovertransmissiontohumans Receivedinrevisedform1October2009 andagriculturallyimportantdomesticanimalsthatareincidentalordead-endhosts.Virusessuchas Accepted16October2009 dengue(DENV)andchikungunya(CHIKV)thathavelosttherequirementforenzooticamplificationnow produceextensiveepidemicsintropicalurbancenters.Manyarbovirusesrecentlyhaveincreasedin Keywords: importanceashumanandveterinarypathogensusingavarietyofmechanisms. Arbovirus Beginningin1999,WestNilevirus(WNV)underwentadramaticgeographicexpansionintotheAmer- Emergence icas.Highamplificationassociatedwithavianvirulencecoupledwithadaptationforreplicationathigher Epidemic Flavivirus temperaturesinmosquitovectors,hascausedthelargestepidemicofarboviralencephalitiseverreported Alphavirus intheAmericas.Japaneseencephalitisvirus(JEV),themostfrequentarboviralcauseofencephalitisworld- Climatechange wide,hasspreadthroughoutmostofAsiaandasfarsouthasAustraliafromitsputativeorigininIndonesia andMalaysia.JEVhascausedmajorepidemicsasitinvadednewareas,oftenenabledbyricecultureand amplificationindomesticatedswine.RiftValleyfevervirus(RVFV),anotherarbovirusthatinfectshumans afteramplificationindomesticatedanimals,undergoesepizootictransmissionduringwetyearsfollow- ingdroughts.WarmingoftheIndianOcean,linkedtotheElNin˜o-SouthernOscillationinthePacific,leads toheavyrainfallineastAfricainundatingsurfacepoolsandverticallyinfectedmosquitoeggslaidduring previousseasons.LikeWNV,JEVandRVFVcouldbecomeepizooticandepidemicintheAmericasifintro- ducedunintentionallyviacommerceorintentionallyfornefariouspurposes.Climatewarmingalsocould facilitatetheexpansionofthedistributionsofmanyarboviruses,asdocumentedforbluetongueviruses (BTV),majorpathogensofruminants.BTV,especiallyBTV-8,invadedEuropeafterclimatewarmingand enabledthemajormidgevectortoexpandisdistributionnorthwardintosouthernEurope,extending thetransmissionseasonandvectorialcapacityoflocalmidgespecies. Perhapsthegreatesthealthriskofarboviralemergencecomesfromextensivetropicalurbanizationand thecolonizationofthisexpandinghabitatbythehighlyanthropophilic(attractedtohumans)mosquito, Aedesaegypti.ThesefactorsledtotheemergenceofpermanentendemiccyclesofurbanDENVandCHIKV, aswellasseasonalinterhumantransmissionofyellowfevervirus.TherecentinvasionintotheAmericas, EuropeandAfricabyAedesalbopictus,animportantCHIKVandsecondaryDENVvector,couldenhance urbantransmissionofthesevirusesintropicalaswellastemperateregions.Theminimalrequirements forsustainedendemicarbovirustransmission,adequatehumanviremiaandvectorcompetenceofAe. aegyptiand/orAe.albopictus,maybemetbytwootherviruseswiththepotentialtobecomemajorhuman pathogens:Venezuelanequineencephalitisvirus,alreadyanimportantcauseofneurologicaldiseasein humansandequidsthroughouttheAmericas,andMayarovirus,acloserelativeofCHIKVthatproduces acomparablydebilitatingarthralgicdiseaseinSouthAmerica.Furtherresearchisneededtounderstand thepotentialoftheseandotherarbovirusestoemergeinthefuture,invadenewgeographicareas,and becomeimportantpublicandveterinaryhealthproblems. © 2009 Elsevier B.V. All rights reserved. Contents 1. Introductiontothearboviruses...................................................................................................................... 329 2. Factorsassociatedwitharbovirusemergenceorinvasion.......................................................................................... 329 3. Examplesofarboviruseswithahistoryofinvasionandemergence................................................................................ 330 ∗ Correspondingauthor.Tel.:+14097470758;fax:+14097472429. E-mailaddress:[email protected](S.C.Weaver). 0166-3542/$–seefrontmatter© 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.antiviral.2009.10.008 S.C.Weaver,W.K.Reisen/AntiviralResearch85 (2010) 328–345 329 3.1. WestNilevirus(WNV).......................................................................................................... 330 3.1.1. Distributionandhealthsignificance............................................................................................... 330 3.1.2. FactorsassociatedwithWNVemergence.......................................................................................... 331 3.1.3. Futuretrends.................................................................................................................. 331 3.2. Japaneseencephalitisvirus..................................................................................................... 331 3.2.1. Distributionandsignificance....................................................................................................... 331 3.2.2. Factorsassociatedwithemergence................................................................................................ 332 3.2.3. Futuretrends.................................................................................................................. 332 3.3. RiftValleyfevervirus........................................................................................................... 333 3.3.1. Distributionandsignificance....................................................................................................... 333 3.3.2. Factorsassociatedwithemergence................................................................................................ 333 3.3.3. Futuretrends.................................................................................................................. 334 3.4. Bluetonguevirus(BTV)......................................................................................................... 334 3.4.1. Distributionandsignificance....................................................................................................... 334 3.4.2. Factorsassociatedwithemergence................................................................................................ 334 3.4.3. Futuretrends.................................................................................................................. 335 3.5. Venezuelanequineencephalitisvirus(VEEV).................................................................................. 335 3.5.1. Distributionandsignificance....................................................................................................... 335 3.5.2. Factorsassociatedwithemergence................................................................................................ 335 3.5.3. Futuretrends.................................................................................................................. 336 4. Examplesofarboviralemergenceassociatedwithurbanization................................................................................... 336 4.1. Dengueviruses(DENV)......................................................................................................... 336 4.1.1. Distributionandhealthsignificance............................................................................................... 336 4.1.2. Factorsassociatedwithemergence................................................................................................ 336 4.1.3. Futuretrends.................................................................................................................. 338 4.2. Chikungunyavirus.............................................................................................................. 338 4.2.1. Distributionandhealthsignificance............................................................................................... 338 4.2.2. Factorsassociatedwithemergence................................................................................................ 339 4.2.3. Futuretrends.................................................................................................................. 339 5. Examplesofotherarboviruseswiththepotentialforurbanemergence........................................................................... 340 5.1. Yellowfevervirus(YFV)...................................................................................................................... 340 5.2. Zikavirus(ZIKAV)............................................................................................................................ 340 5.3. Mayarovirus(MAYV)........................................................................................................................ 340 6. Conclusions.......................................................................................................................................... 341 Acknowledgments................................................................................................................................... 341 References........................................................................................................................................... 341 1. Introductiontothearboviruses strategies,suggestingthatthearthropod-bornetransmissionstrat- egyhasarisenmanytimesduringtheevolutionofRNAviruses.The Arthropod-borneviruses(arboviruses)aretransmittedbiolog- only known DNA arbovirus is African swine fever virus (Asfarviri- icallyamongvertebratehostsbyhematophagous(bloodfeeding) dae:Asfarvirus)(CalisherandKarabatsos,1988;Karabatsos,1985; arthropodvectorssuchasmosquitoesandotherbitingflies,and vanRegenmorteletal.,2000),andthepaucityofDNAarboviruses ticks. Being, by definition, biologically transmitted, arboviruses suggests that the greater genetic plasticity and higher mutation must replicate in the arthropod vector prior to transmission, as ratesexhibitedbyRNAviruses(HollandandDomingo,1998)allow opposedtobeingmechanicallytransmitted,withoutreplicationin themtoaccommodateacycleofalternatingreplicationindisparate thevector,throughcontaminatedmouthparts(Weaver,1997).Bio- vertebrateandinvertebratehosts. logicaltransmissioncanbevertical,involvingthepassageofthe Arboviruses circulate among wild animals, and cause disease virusfromaninfectedfemalevectortobothmaleandfemaleoff- after spillover transmission to humans and/or domestic animals spring.Horizontaltransmissioncanbevenereal,fromavertically that are incidental or dead-end hosts. Viruses such as dengue infected male directly to a female vector, as well as oral from a (DENV)andchikungunya(CHIKV)thathavelosttherequirement femalevectortoavertebratehostviathesalivaduringbloodfeed- forenzooticamplificationnowproduceextensiveepidemics.Many ing.Thelatterhorizontalmodeoftransmissionismostcommon arbovirusesthathaveevolvedanddiversifiedinthetropicshave forthemajorityofarbovirusesandinvolvesinfectionofthevector producedvirulentandinvasivestrainsthathavecausedmajorout- alimentarytractfollowingaviremicbloodmeal,disseminationof breaksattemperatelatitudes.Theabilityofthesevirusestocause thevirusinthevector,andeventualvirusreplicationinthesalivary humandiseasedependsonfactorsrangingfromepidemiologyto glands,followedbytheinjectionofinfectioussalivaduringblood viralgenetics.Herein,wereviewhowsomeofthesefactorshaveled feeding. toarboviralemergencesandresultedinhumandisease,byusing ThearbovirusesincludeawidevarietyofRNAvirustaxainclud- severalexamplesofviruseswithaknownepidemichistoryaswell ing the alphaviruses (genus Alphavirus, one of two genera in assomethathaveapoorlyrecognizedepidemicpotential. the family Togaviridae); the flaviviruses (genus Flavivirus, one of three genera in the family Flaviviridae); the bunyaviruses (Bun- 2. Factorsassociatedwitharbovirusemergenceorinvasion yaviridae:Bunyavirus),nairoviruses(Bunyaviridae:Nairovirus)and phleboviruses(Bunyaviridae:Phlebovirus);theorbiviruses(oneof For arboviral amplification to progress rapidly to epidemic ninegenerainthefamilyReoviridae);thevesiculoviruses(oneofsix levels, competent vector and vertebrate host populations must generainthefamilyRhabdoviridae)andthethogotoviruses(oneof intersectrepeatedlywithinapermissiveenvironment.Thisfocus fourgenerainthefamilyOrthomyxoviridae).ThesegroupsofRNA ornidusoftransmissionmaybetemporallyand/orspatiallycon- viruses have a variety of types of RNA genomes and replication strained by host or virus ecology, and may vary in complexity 330 S.C.Weaver,W.K.Reisen/AntiviralResearch85 (2010) 328–345 depending upon virus epidemiology. Zoonoses exploiting com- conducive to vector population expansion and transmission, but plexruralorsuburbanecosystemsmayhavemultiplevectorsand alsointhecreationofurbanheatislandsthatfacilitatetransmis- infectavarietyofvertebratehostspecies,whereasanthroponoses sion. (diseases transmitted from humans to other animals) exploiting Emergenceofanarbovirusmayrequirechangeinoneorsev- urbanenvironmentsmayrequireonlyasingleanthropophilicvec- eraloftheabove-mentionedfactors.Inthisreview,weanalyzethe tor and human hosts for amplification. Humans are exposed to cascade of factors that have facilitated the recent local and cir- arboviruseswhentheyinvaderuralenvironmentsorwhenbridge cumglobal emergence of selected arboviruses. These arboviruses vectorsbringvirusesintoperidomesticenvironments.Incontrast, were chosen because of their public or veterinary health signifi- for many anthroponoses, human habitations form the nidus of cance,thecombinationsoffactorsleadingtotheiremergence,and transmission. Frequently arboviruses persist at low or even ten- asexamplestohelpunderstandthecriticalfeaturesofemerging uousmaintenancelevelsuntilsomechangeinsingleormultiple arboviralrisksandhowtheymaybemitigated.Finally,weconclude factorsfacilitatesrapidandwidespreadamplification.Althoughin- withafewexamplesofarbovirusesthathavebeenlargelyignored, depthreviewsofthesefactorshavebeenpublished(Committeeof butpossessthepotentialtoemerge.Throughoutthisreview,our EmergingMicrobialThreatstoHealth,2001;DavisandLederberg, understanding of the temporal and spatial patterns of invasion 2001; Fauci, 2005; Gubler, 1998; Mackenzie et al., 2001), recent andemergencehasbeencomplicatedbydiagnosis,retentionand circumglobalchangesinclimateandotheranthropogenic(derived sequencingofavailablearchivalstrains,andmethodsofcharacter- from human activities) factors, epidemiology, and viral genetics ization. havestimulatedtheneedtoupdateandextendinformationonthe roleofthesechangesintheemergenceofarboviruses. 3. Examplesofarboviruseswithahistoryofinvasionand Emergingorinvadingarbovirusesmayamplifytoepidemiclev- emergence els because natural systems have been perturbed by changes in viralgenetics,hostorvectorpopulationcompositionordynamics, 3.1. WestNilevirus(WNV) and/or environmental structures that frequently are of anthro- pogenic origin. Often, outbreaks of emerging arboviruses can be 3.1.1. Distributionandhealthsignificance relatedtorelativelysmallchangesinviralgeneticsortotheintro- WestNilevirus(WNV)ispositionedtaxonomicallywithinthe ductionofnewstrainsthathaveincreasedvirulenceandviremia Japanese encephalitis virus (JEV) serocomplex in the genus Fla- levels in vertebrates, thereby expanding host range and increas- vivirus.Itismaintainedandamplifiedinnaturewithinanenzootic ing amplification potential. Alternatively, viral genetic changes transmissioncycleamongpasseriformbirdsandCulexmosquitoes, mayenhancevectorcompetenceandthereforetransmissionrates. withoutbreakscausedbytangentialorspillovertransmissionto Changesinvertebrateorvectorhostspeciescompositionmaybe equidsandhumans,‘dead-end’hoststhatproduceviremiasinad- related to environmental change expanding old or creating new equateformosquitoinfection.WNVisdistributedcircumglobally, niches,ortoinvasionsrelatedtotravelorcommerce.Vectorrange with two main genetic lineages: Lineage 1 is widely distributed extensionsintopermissiveenvironmentsfrequentlyarefollowed andhighlyinvasive,whereasLineage2appearstohaveremained byinvasionsofthearbovirusestheytransmit.Theseinvasionstyp- enzooticinAfrica(Fig.1).Lineages3and4havebeendescribed icallyhavebeenfacilitatedbytravelandcommerce,especiallyover fromsingleisolatesfromCentralEurope,buttheirtaxonomicsta- repeatedlytraveledroutes.Receptivityofanareatoviralinvasion tusandmedicalimportanceareunclear,whereasLineage5appears mayberelatedstronglytoenvironmentalconditionsconduciveto tobeconfinedtoIndia(Krameretal.,2008).Recognizedsubclades viralreplication.Recently,seasonaldurationsandgeographiclimits ofLineage1include1athatiswidespreadthroughoutAfricaand havebeenexpandingastheearthwarms.Expandingurbanization theMediterranean,Lineage1b(akaKunjinvirus)thatisrestricted hasresultednotonlyintheextremeconcentrationsofsuscepti- toAustralia,andLineage1cthatisfoundinCentralAsiathrough blehumanhosts,frequentlylivingundersocioeconomicconditions thecentralhighlandsofIndia(Lanciottietal.,2002).Historically, Fig.1. ProbabletemporalsequenceanddispersalroutesofWNVfromitsproposedcenteroforigininsub-SaharanAfrica(Lanciottietal.,2002). S.C.Weaver,W.K.Reisen/AntiviralResearch85 (2010) 328–345 331 the northern distribution of Lineage 1a in Europe and Asia and a very closely related New World genotype that is transmitted the southern distribution of 1a and 2 in Africa were thought to moreefficientlybyCulexmosquitoes(Moudyetal.,2007),espe- be constrained by minimum temperature requirements for effi- ciallyathightemperatures(Kilpatricketal.,2008).NorthAmerican cientreplicationinthemosquitovector,whereaselsewhereWNV Culexaremoderatelycompetentlaboratoryvectors(Goddardetal., isreplacedbyothermembersoftheJEVserocomplexfromcen- 2002;Turelletal.,2000,2001)andthereforerequireelevatedavian tralthrougheasternAsiatotheTorresStraight;KunjinandMurray viremiasforeffectiveinfection(Reisenetal.,2005).In2003,the ValleyencephalitisvirusesreplaceJEVsouthoftheTorresStraight WNVepicentermovedwestintotheprairiebiomesandthewest (Hall et al., 2002). Previously, the wide distribution of St. Louis Coast,whereCulextarsalisemergedasasignificantvector(Reisen encephalitisvirus(SLEV)intheNewWorldmayhavedeterredthe etal.,2004).Amplificationandthehighincidenceofhumaninfec- introduction of WNV, although there has been no evidence pre- tionintheCanadianandU.S.prairiebiomeswereassociatedwith sentedthatWNVwasintroducedotherthanoncein1999. Cx.tarsalis,aswellaswithabove-averagesummertemperatures thatexceededprevious30yearaverages(Reisenetal.,2006). 3.1.2. FactorsassociatedwithWNVemergence Like SLEV and eastern (EEEV) and western (WEEV) equine Commerceandtheinternationaldispersalofmosquitoesinthe encephalitisviruses,WNVseemsto“disappear”intotheNeotropics Culexpipienscomplex(Fonsecaetal.,2004;Vinagradova,2000),the withlittleevidenceofhumandisease.Extensivesearchesamong intentionaland/orunintentionalintroductionofthehousesparrow resident and migratory birds have discovered antibody-positive [Passerdomesticus(Zimmerman,2002)],climatewarming,andper- individualsatalowrate(Boschetal.,2007;Deardorffetal.,2006; hapsthedeclineofSLEVmayhavesetthestagefortheemergence Dupuisetal.,2003,2005;Farfan-Aleetal.,2004,2006;Lorono-Pino of WNV in Europe and the New World. Although a wide variety et al., 2003) and blood supply examinations have indicated lim- of mosquitoes in the genus Culex have become involved region- itedhumaninfections(Sanchez-Guerreroetal.,2006).Outbreaks allyinWNVtransmissionwithinNorthAmericaandmaybehighly in humans or equids were not recorded until studies were done competent vectors, members of the commensal Cx. pipiens com- in the southern temperate latitudes of Argentina (Morales et al., plex appear to be associated most closely with urban/suburban 2006). outbreaksandhumaninfection(Komar,2003).Similarly,theubiq- Insummary,thelarge-scaleepidemicofWNVinNorthAmerica uitous and aggressively invasive house sparrow is multibrooded wasenabledbythehighamplificationphenotype(associatedwith andahighlycompetenthostformostWNVstrains(Krameretal., high avian virulence) of the invading virus, the naïvete of North 2008; Langevin et al., 2005; Nemeth et al., 2009), providing the American birds, the competence of North American Cx. pipiens availability of an almost circumglobal maintenance and amplifi- forverticalandhorizontaltransmission,successfuloverwintering cation host. Replication of WNV in the poikilothermic mosquito within the mosquito host (Anderson et al., 2006, 2008), and the hostistemperature-limitedandprogressesmosteffectivelyunder slight,butsignificant,evolutionarychangesthatfacilitatedrapid warmmidsummerconditions(Kilpatricketal.,2008;Reisenetal., transmissionduringsummertemperatures(Kilpatricketal.,2008) 2006).Climatechangeatnortherntemperatelatitudesrecentlyhas thatmayhaveenablednorthernexpansionintoCanada. made these areas more conducive to WNV invasion. In the New World through the mid-1970s, large and fairly widespread SLEV 3.1.3. Futuretrends epidemics(Monath,1980)mayhaveelevatedavianherdimmu- WNV is now one of the most broadly distributed arboviruses nitysufficienttoprecludetheintroductionandestablishmentof in the world, being found on all continents except Antarctica historicLineage1aWNVstrains. (Kramer et al., 2008). Invasion typically has been followed by Recent outbreaks of WNV were recorded throughout the rapidsubsidenceofdisease(Hayesetal.,2005),butthenperiodic Mediterranean and then Romania, Central Europe and Russia, resurgenceswheneveradequatevectorandsusceptibleavianpop- where Cx. pipiens appeared to be the primary vector (Fyodorova ulationsintersectunderpermissiveclimaticconditions.Equidsare etal.,2006;Savageetal.,1999).Evenduringyearswhenhuman nowprotectedbywidespreadintentionalandnaturalvaccination; outbreaks were not recorded there, epiornitics followed the however,themotivationforhumanvaccinedevelopmentmaybe introduction of WNV into Israel by southbound migrating birds limitedbythelowattackrateinhumansthathasbeendocumented (Malkinsonetal.,2002).Someoftheseviralstrainshaveappeared followingepidemics(PrinceandHogrefe,2003).Inthenearterm, tobecomeprogressivelymorevirulentforbirds(Malkinsonetal., protectionofthepublichealthwillcontinuetorelyonmosquito 2002)andhumans. control,publiceducation,and,hopefully,newtherapeutics. WNVwasintroducedintoNewYorkduringthesummerof1999, and the nucleotide sequence of the invading strain was related 3.2. Japaneseencephalitisvirus closelytoa1998isolatefromIsraelthatcausedwidespreadillness in geese (Lanciotti et al., 1999) and contained a mutation in the 3.2.1. Distributionandsignificance helicasegenethatcausedhighviremiaandmortalityinAmerican JEVisthemostfrequentcauseofmosquito-borneencephalitis crows(Braultetal.,2007).Interestingly,theresultingNYoutbreak globallyandtheonlyencephalitisvirusagainstwhichlargepor- thatseemedtobeamplifiedamonghousesparrows(Komar,2000; tionsofhumanpopulationsinmultiplecountriesarevaccinated. Komaretal.,2001)wasassociatedwithwidespreaddeathinAmer- Thepublichealthsignificanceandpossiblytheglobaldistribution icancrows(Hochachkaetal.,2004),andwastransmittedprimarily ofJEVhavebeenprogressivelyexpanding.Sinceitwasfirstdocu- byCx.pipiensmosquitoes(Nascietal.,2001b).WNVoverwintered mentedasanimportantcauseofencephalitisinJapaninthelate successfullyindiapausingCx.pipiens(Nascietal.,2001a)andper- 1800s,significantincursionshaveoccurredintoCentralAsia(Burke haps by bird-to-bird transmission at communal American crow andLeake,1988)(Fig.2).Currently,morethan3billionpeoplein roosts (Dawson et al., 2007). By 2002, WNV had spread to the AsiaresideinareasatriskofJE,withanestimated30,000–50,000 MidwestandwasassociatedwithlargeoutbreaksinIllinois,trans- casesoccurringannually(Erlangeretal.,2009). mittedbyCx.pipiens,andinLouisiana,transmittedbyitssouthern Taxonomically,Japaneseencephalitisvirusisplacedwithinthe form,Cx.quinquefasciatus.AsWNVexploitednewgeographicareas, genusFlavivirusandisthetypevirusfortheJEVserocomplexthat different,buthighlycompetent,avianhostssuchasbluejaysand alsocontainsWNV,MurrayValleyencephalitisvirusandSLEV.JEV American robins became recognized as important amplification is maintained within an ardeid bird – Culex mosquito transmis- hosts(Hameretal.,2009;Kilpatricketal.,2006).Concurrently,the sioncycleandisamplifiedwithinadomesticswine–Culexcycle. foundingNY99strainwasreplacedbyWN02(Davisetal.,2003), CulexmosquitoestangentiallytransmitJEVtoequidsandhumans, 332 S.C.Weaver,W.K.Reisen/AntiviralResearch85 (2010) 328–345 Fig.2. ProbablesequenceanddispersalroutesofJEVfromitsputativecenteroforiginintheMalayArchipelago(BurkeandLeake,1988;Solomonetal.,2003).Patternof lineagedispersalwasdifficulttotrace. whicharedead-endhostsforthevirus(BurkeandLeake,1988). recognized in Japan starting in the late 1800s (Burke and Leake, TheknowndistributionofJEVrangesfromKoreasouthtoAustralia 1988; Erlanger et al., 2009; van den Hurk et al., 2009). Tracing andthennorthwestintoPakistan(Fig.2).Thedistributionofthe JEV (mostly Lineage I) as an emerging health problem from the primarymosquitovector,Culextritaeniorhynchus,overlapsmostof first epidemics in Japan, sequential outbreaks were documented thisgeographicalarea,whereitisveryabundantinassociationwith innortheast(Korea,ChinaandTaiwan),southeastAsia(Vietnam, riceandotherirrigatedcrops.Ahighlycompetentlaboratoryvec- Thailand) and most recently central (Nepal, India, Pakistan) and tor(Hammonetal.,1949;Okunoetal.,1975),Cx.tritaeniorhynchus southcentralAsia(SriLanka)(BurkeandLeake,1988;Erlangeret bloodfeedspredominantlyonlargemammals(Mitchelletal.,1973; al.,2009).ThisrapidandwidespreadexpansionofJEVwasasso- ReisenandBoreham,1979),includingswine,andhasbeenimpli- ciated closely with increases in human populations, in acreage catedinamplificationandtangentialtransmission(KonoandKim, of irrigated rice, and in pig farming (Erlanger et al., 2009; van 1969).OtherCulexinthevishnui,bitaeniorhynchusandpipienscom- denHurketal.,2009).InendemicareasofJapan,theavian-Culex plexesalsohavealsobeenincriminatedasvectors,buthavemore maintenancecyclemaybebypassedwhenverticallyinfectedCx. limitedgeographicdistributions.Expandingirrigatedricecultiva- tritaeniorhynchus (Rosen et al., 1989) directly initiate the ampli- tionhasenabledincreasesinmosquitovectorpopulationsaswell fication cycle in pigs after terminating diapause (Hayashi et al., asthedistributionandabundanceoftheardeidmaintenancehosts, 1973). The invasion of India, Pakistan (Igarashi et al., 1994) and including the black-crowned night heron (Nycticorax nycticorax) Nepal(Hendersonetal.,1983),whereswinefarmingislimited,may andtheAsiancattleegret(Bubulcusibiscoromandus)(Buescherand indicateanexpandingroleforbirdsinJEVamplification(Boyleet Scherer,1959;Buescheretal.,1959;Solomonetal.,2003). al.,1983;Jamgaonkaretal.,2003;Rodriguesetal.,1981;Soman andMourya,1985;Somanetal.,1986,1977).Althoughtypically 3.2.2. Factorsassociatedwithemergence associatedwithlowlandricefarmingintheouterTeraiofNepal, ThereisadiscrepancybetweentheproposedJEVevolutionary JEVoutbreaksrecentlyhaveoccurredathighelevationsinKath- centeroforigin(Solomonetal.,2003)anditspatternsofexpand- mandu Valley, where the virus now is endemic (Partridge et al., ingdistributionasapublichealthproblemastracedbyoutbreaks 2007; Zimmerman et al., 1997). JEV Lineages I and II also have (BurkeandLeake,1988).Ofthefivemajorgeneticlineages,only movedprogressivelyeastintoNewGuinea,withrecentincursions Lineages I–III have been found in subtropical or temperate lati- across the Torres Straight into northern Australia (Hanna et al., tudesandareassociatedwithoutbreaksofneuroinvasivedisease; 1999;Mackenzieetal.,2002). ancestral Lineages IV and V appear restricted to the Indonesian archipelago,wherewithLineagesI–III,theycauselimitedandspo- 3.2.3. Futuretrends radichumancases(Fig.2).Because‘virginsoil’outbreakstypically AirtransportofmosquitoeswastheprobablecauseofJEVout- havebeenaccompaniedbyextensiveneuroinvasivediseaseinall breaks on isolated Pacific Islands such as Guam (Hammon et al., humanagegroupsaswellasinpigs,itisunlikelythatJEVwasa 1958)andSaipan(Mitchelletal.,1993),demonstratingthepoten- majorpublichealthprobleminnorthernAsiauntilepidemicswere tialofthisvirustoinvadenewareassuchasthewestcoastofthe S.C.Weaver,W.K.Reisen/AntiviralResearch85 (2010) 328–345 333 USA.Here,susceptiblemosquitoesandavianhostscouldconceiv- ritania(Fayeetal.,2007;Nabethetal.,2001).RVFVisolatesfrom ablyallowestablishmentbeforecurrentsurveillanceandcontrol bothoutbreaksweredistinctandmonophyletic,perhapsindicating programswoulddetectandeliminatethisvirus(Nettetal.,2009; dispersalandamplificationbyasinglestrain(Birdetal.,2008). vandenHurketal.,2009).WiththespreadofJEVintomuchofthe Indiansubcontinent,otherdestinationsservedbyfrequentroutes 3.3.2. Factorsassociatedwithemergence of commerce or passenger air travel, such as Africa and Europe, RVFVismaintainedinanenzooticcycleamongwildlife,such also could be at risk. Tracing the recent, rapid dispersal path of asAfricanbuffaloes,andawidevarietyofmosquitospecies(>30 chikungunyavirusservestodemonstratetheimportanceofroutes species,sixgenera).Transmissionisenzooticduringmostyears,but offrequenttravelforvectorandarbovirusinvasions(Powersand epizooticduringwetyears,especiallyfollowingdroughts.Appar- Logue,2007;Simonetal.,2008). ently,virusismaintainedbetweenrainyseasonsandbetweenhigh rainfallyearsbyverticaltransmissiontodesiccationresistanteggs 3.3. RiftValleyfevervirus of several floodwater Aedes species, especially Aedes macintoshi (Linthicumetal.,1985a).Highwateryearsinundateseveralprevi- 3.3.1. Distributionandsignificance ousseasonsofeggs,givingrisetolargenumbersofmosquitoesand Rift Valley fever virus (RVFV) is classified within the genus perhapsmultiplevirallineages(Birdetal.,2008).Infectionrates Phlebovirus in the family Bunyaviridae and causes intermittent amongAedesadultsrearedfromfield-collectedlarvaetypicallyare epizootics and sporadic epidemics, primarily in east Africa (Bird low (Linthicum et al., 1985a), therefore requiring extensive hor- et al., 2009; Daubney et al., 1931). Infection causes severe and izontal amplification for RVFV maintenance. The large variety of often fatal illness in sheep and cattle, with occasional spill over wildlifenaturallyinfectedwithRVFVwouldseemtosupportthis toincludeotherdomesticanimalsandhumans.Camelsalsofre- notion. quentlybecomeinfected,butseemtosufferlessillnessandlower WarmingintheIndianOceanislinkedcloselytotheElNin˜o- abortion rates than other livestock. In 1–2% of affected humans, SouthernOscillation(ENSO)inthePacificandisfollowedbyhigh RVFprogressestoseveredisease,includinghepatitis,encephalitis, rainfalleventsintheRiftValleythatarepredictiveofRVFVout- retinitis, blindness, and/or a hemorrhagic fever; the case fatality breaks (Linthicum et al., 1999). Widespread flooding, apparent rateisapproximately10–20%(Madanietal.,2003). from satellite imagery by examining the normalized difference Historically,RVFVwasrestrictedtosub-SaharaneasternAfrica, vegetationindexdata,triggersthesimultaneoushatchingoflarge especially Rift Valley of the Kenya and Tanzania (Meegan et al., numbersofAedeseggs,rapidlyproducingacohortofbloodfeed- 1989),whereoutbreaksarecausedbymultiplelineagesofthevirus ing adults, some of which are infectious with RVFV and able to (Birdetal.,2008).Subsequentoutbreakswithhumaninvolvement transmitthisinfectiontoruminants.Bothwildanddomesticrumi- havebeendocumentedinSouthAfrica,theNileValleyfromSudan nantsaredrawnordrivenbyherdsmentothesenewsourcesof to the Egyptian delta, and the Saudi Arabian peninsula (Fig. 3). water and grass, bringing susceptible hosts into close proximity The1977–1979outbreakinEgyptwasespeciallydevastating,with withinfectiousmammal-feedingAedesmosquitoes(Linthicumet morethan200,000humaninfectionsand600deathsandlossesin al.,1985b).Thesenewmosquitohabitatsalsoarecolonizedbyother livestock>$100Matthattime(Meeganetal.,1978).Tenyearslater effectivemosquitovectorsthattakelongertomatureandthere- anotherlargeoutbreakoccurredinWestAfricacenteredinMau- foreemergewhenthefirstgroupsofinfectedruminantsbecome Fig.3. TemporalpatternsofdispersalbyRVFVinAfrica(Birdetal.,2009).Datesindicatetheearliestdetectionandpossibleestablishmentofvirusineacharea. 334 S.C.Weaver,W.K.Reisen/AntiviralResearch85 (2010) 328–345 viremic,furtherspreadingthevirustonewhosts.Theconcordance forresistancetodiseaseinAfricanwildlife.ThedistributionofBTV between the rainy season and the calving of wild and domestic hasbeendividedintothreeepidemiologicalzones,basedonthe ruminants assures that highly susceptible host populations are occurrenceofclinicaldisease:(1)anenzooticzoneinthetropics available to be fed upon by infectious mosquito vectors during whereinfectioniscommonbutclinicaldiseaseisrare,(2)anepi- warmhumidweatherconditionsconducivefortransmission. zooticzoneattemperatelatitudeswherediseaseoutbreaksoccur frequently,and(3)anincursivezonewhereinfectionisinfrequent 3.3.3. Futuretrends becauseclimateand/orvectorspeciestypicallyarenotsuitablefor Large‘virginsoil’outbreaksinMauritania,EgyptandSaudiAra- transmission(GibbsandGreiner,1988). bia have demonstrated the ability of RVFV to escape traditional enzootic areas and invade naïve populations. Routes of disper- 3.4.2. Factorsassociatedwithemergence salhavenotbeenfullyestablished,butthemovementofviremic The veterinary epidemiology of BTVs in North America and camels along trade routes has been suspected (Hoogstraal et al., Europeiscomplexandrelatedstronglytovirusandvectorgenetics 1979) as well as vectors carried on storm fronts (Sellers et al., and distributions, overwintering mechanisms, and perhaps cli- 1982).Beforetheonsetofseriousclinicaldisease,humansdevelop mate change. Based on a survey of cattle at slaughter, at least 5 viremiassuitabletoinfectsusceptiblemosquitoes.Uncontrolledair viruses(BTV-2,-10,-11,-13,-17)werefoundintheU.S.(Metcalf travelthereforecouldintroduceRVFVintoothercontinentssuch etal.,1981),withprevalencegreatestinthesouthwestandleast asNorthAmericaorEuropewheresusceptiblewildanddomestic prevalenceinthenortheast,wheretheprimaryvector,Culicoides hostsandsuitablevectormosquitoesreside(Garganetal.,1988; sonorensis,isreplacedbythelesscompetentvector,Culicoidesvari- Turelletal.,2008). ipennis (Jones and Foster, 1978; Tabachnick et al., 1996). Other ExtensivestudiesbytheUSDAandNASAhaveshownthattrack- species such as Culicoides insignis are suspected as vectors at ingENSOinthePacificOceanprovidesanearlywarningofwarming southern latitudes. Differences in vector competence within the intheIndianOcean,heavyrainfallintheRiftValleyandoutbreaks variipennis species complex have been related to a midgut bar- ofRVFV(Anyambaetal.,2009).SeveralvaccinesforRVFVhavebeen riertoinfection(Tabachnicketal.,1996).DistributionofBTVsin developedandappeareffective(Birdetal.,2009),however,local thenorthernprairiestatesandCanadaseemslimitedbythetem- agencieshavebeenreticenttopre-emptivelyprecludeoutbreaks peraturerequirementsforvirusreplicationinthevector(Mullens byvaccinationcampaigns.Failuretocontaintheseoutbreakspro- et al., 1995), with transmission limited to summer periods with videsasourceofvirustoseedoutbreaksintootherareasofAfrica temperatures>15◦C.RecentwarmingtrendsinCanadahavefacil- andtheMiddleEastaswellastherestoftheworld.Futurecon- itated the population dynamics of C. sonorensis (Lysyk, 2007; tainmentofRVFVwillrequirepre-emptivevaccinationoflivestock Lysyk and Danyk, 2007) and may allow more frequent incur- in Africa and carefully regulated travel restrictions on livestock, sions and perhaps the eventual establishment of BTV. Little is wild animals and perhaps humans from affected areas. With a knownaboutvariationinthetemperaturerequirementsofdiffer- high potential impact on wildlife, domestic animal and human entBTVs. health,failuretocontainRVFVcouldseriouslyimpactveterinary Until1996,EuropewasconsideredBTV-freeandinternational andhumanhealthinAsia,EuropeandtheNewWorldandhave trade restrictions by the European Union created huge annual economicconsequencesfarexceedingthoseofthewaningWNV financiallossestoenzooticpartsofNorthAmericafromtheloss outbreak. oftradeofanimalsandanimalproducts.Occasionalincursionsof BTVsintoSpain,PortugalandTurkeyhavebeenrelatedtoprevail- 3.4. Bluetonguevirus(BTV) ingwindsoriginatinginNorthAfricaortheMiddleEast(Sellers, 1980; Sellers et al., 1979, 1978). BTV apparently became estab- 3.4.1. Distributionandsignificance lishedinEuropeafterclimatewarmingenabledthemajorvector, BTVsareclassifiedwithinthegenusOrbivirus(familyReoviri- Culicoidesimicola,toexpandisdistributionnorthwardtoinclude dae)andcurrentlyconsistofatleast24virusesclusteredwithin partsofsouthernEuropeeastintoTurkey(Purseetal.,2005).Coin- 10distinctlineages(Schwartz-Corniletal.,2008).BTVscauseeco- cidentally, five strains became established in the Mediterranean nomically significant disease in ruminants and, because of this during1998–2005.Thesestrainsseemtohaveinvadedfollowing veterinary economic impact were placed on list-A by the Office routesfromTunisiaandNorthAfrica(BTV-2,-4)andfromTurkey InternationaldesEpizooties(OIE),limitingtradeofanimalprod- from the Middle East (BTV-1, -4, -9, -16) (Purse et al., 2005). In uctsfromaffectedareas.BTVsaremaintainedwithinanenzootic August 2006, BTV-8 invaded central and northern Europe, areas cycleamongbitingmidgesinthegenusCulicoides(familyCerato- north of the known distribution of C. imicola (Saegerman et al., pogonidae)andvariousruminantspecies,almostallofwhichare 2008).Thison-goingoutbreakapparentlyinvolvestransmissionby susceptibletoinfection.Historically,itwasthoughtthattheBTVs otherCulicoidesspecies,includingCulicoidesdewulfiandmembers evolvedandwerecontainedwithinAfricauntilthe1940s,whenthe oftheCulicoidesobsoletusandCulicoidespulicariscomplexes.How- firstMediterraneanoutbreakoccurredinCyprus.However,subse- ever,incriminatingfieldinfectionandvectorcompetencedatahave quent studies have found BTVs widely distributed in the tropics beenscarce(Carpenteretal.,2008,2009).Climateinthisareaof but not frequently associated with illness and therefore mostly Europehasexperiencedastrongwarmingtrend(Purseetal.,2005) undetected.Clinicaldiseaseismostprevalentindomesticsheep, andundoubtedlythischangehasshortenedtheextrinsicincuba- especiallythoseofEuropeanancestry(Purseetal.,2008).Typically, tion period of the virus within the Culicoides vector (Mullens et cattle rarely show clinical illness and are considered a reservoir al.,1995),andthegonotrophic(bloodfeedingandreproductive) host, whereas goats usually do not develop overt disease (Gibbs cycleofthevector,therebyincreasingthefrequencyofvector–host andGreiner,1988);however,duringtherecentincursionofBTV- contactandextendingthedurationofthetransmissionseason. 8intowesternEurope,clinicalillnessincattlewascommonand ForBTVtobecomeestablishedattemperatelatitudes,itmust associatedwithalowcasefatalityrate(http://www.oie.int). be able to overwinter locally. Studies on Culicoides indicate that WildruminantsinNorthAmerica,includingdeer,pronghorns adultsarenotactiveduringwinter(Takkenetal.,2008)andverti- anddesertbighornsheep,developseveredisease,whereasAfrican caltransmissionofBTVremainsundocumented(Whiteetal.,2005). wildlifeseemsmostlyunaffected.Thisdisparityindiseasesuscep- Incontrast,ruminantsdeveloplonglastingchronicinfections,but tibility supports the notion that Africa is the center of origin for recrudescence mechanisms are poorly understood. Possibly, the BTVandthatitsenzooticcirculationthereseeminglyhasselected cellularimmuneresponseofthehosttoCulicoidesbloodfeeding S.C.Weaver,W.K.Reisen/AntiviralResearch85 (2010) 328–345 335 couldtriggerthereleaseofBTVatthebiteareaandtherebyallow co-orlaterfeedingfliestoingestthevirusandrenewtransmission inthespring(Purseetal.,2008).Althoughnotasyetsupportedby fieldevidence,thismechanismisintriguingbecauseitsynchronizes fly blood feeding activity and viral recrudescence. Alternatively, virus may overwinter in transplacentally infected calf and lamb fetuses that are viremic at birth (Backx et al., 2009; Gibbs et al., 1979;Worwaetal.,2009). 3.4.3. Futuretrends Introductions and subsequent dispersal of BTVs most likely will continue due to intercontinental animal and animal prod- uct commerce as well as from windborne flies (Hendrickx et al., 2008; Sellers, 1980). Climate warming most likely will expand theepizooticzoneintonortherntemperateregionsandmovethe zoneofincursionfurthernorthward.Theexpandingdistributionof variousBTVsmayeventuallyresultintheremovaloftradeembar- goes,becausemostareasoftheearthwillsupportsomelevelof enzooticity.ThreeoptionsremainformitigatingtheBTVproblem: molecularengineering/selectivebreedingoflivestocktoincrease resistance to disease, vector control and vaccination. Molecular biologymayholdtheanswerifcurrentsusceptiblebreedsofcattle andsheepcanbegeneticallymodifiedtoimpartresistance.Treating wastewaterpondsorotherknownlarvalhabitatsofspeciessuchas C.sonorensisinthearidsouthwesternUSAhaspromise;however, controlofotherCulicoidesthatdevelopinlessobvioushabitatssuch asmoistpastureswillbeamuchgreaterchallenge,especiallyin Europe.Chemicaldipshavebeenusedtocontroltickinfestations and perhaps a similar approach with other compounds could be usedtoreduceoreliminateadultfliesorpreventbiting.Complex immuneinteractionsagainstasmanyas24virusesmakesvaccine developmentchallenging,butperhapsvaccinescanbedeveloped againstspecificstrainsofBTVwithaparticularlyhighpotentialfor invasion. Fig.4. Geographicdistributionofepidemic/epizooticVEEVstrainsresponsiblefor majoroutbreaks,andenzooticVEEcomplexstrainsisolatedprincipallyinswamp orforesthabitats. 3.5. Venezuelanequineencephalitisvirus(VEEV) 3.5.1. Distributionandsignificance highlyincapacitatingDEN-likefebrileillnessthatoccasionallyleads VEEVisanalphavirus(Togaviridae:Alphavirus)foundonlyinthe tofatalencephalitis,mainlyinchildren. NewWorld(Fig.4).ItisthetypespecieswithintheVEEcomplex ofalphavirusesthatincludes7differentspeciesandmultiplesub- 3.5.2. Factorsassociatedwithemergence typesandvarieties(Weaveretal.,2004).EnzooticsubtypesIDand TheemergenceofepidemicVEEreliesonacombinationofeco- IEoccurfromBoliviatoMexico,andthecloselyrelatedEverglades logicandviralgeneticfactorsthatmustintersectintimeandspace. virus(VEEcomplexsubtypeII)occursonlyinFlorida(Fig.4).Perma- Generally,theenzooticVEEVstrainsthatcirculatecontinuouslyare nentorsemi-permanentzoonoticcyclesgenerallyincluderodents notcapableofequineamplificationbecausetheydonotproduce as reservoir hosts and mosquito vectors in the subgenus Culex sufficient viremia. However, certain amino acid replacements in (Melanoconion).Theseenzooticcyclesoccurinhumidtropicalfor- theE2envelopeglycoproteinthatformsthetipsofspikesonthe estorswamphabitatsandtypicallygoundetected.Directspillover VEEVsurfacemediateenhancedequineamplification(Braultetal., tohumanshasbeendocumentedinseverallocationswhereactive 2002a).Becausethesereplacementscanresultfromasinglemuta- casesurveillancecombinedwithlaboratorydiagnosticshasuncov- tionintheviralgenome(Anishchenkoetal.,2006),andbecause eredextensivehumandisease,includingfatalcases(Aguilaretal., alphaviruses, like other RNA viruses, replicate with low genetic 2004;Johnsonetal.,1968;Quirozetal.,2009;Wattsetal.,1998, fidelity(Weaveretal.,1993),amplification-competentmutations 1997).TypicallyVEEcasesoverlapconsiderablyinsignsandsymp- probably occur regularly within sylvatic cycles where enzootic toms with many acute, tropical febrile infectious diseases such strainsarefound.Selectionofthesemutationsundoubtedlytakes as dengue fever (DEN), so cases undoubtedly are grossly under- place within equids, though it is also possible that some sort of reported in locations where clinician awareness and laboratory intermediate host is also involved in the selection of epidemic diagnosticsarelacking. strains. Majorepidemicsoccurperiodicallyandsomewhatsporadically Geneticstudieshaveshownthatmostbutnotalloftheepidemic whenVEEVstrainsemergewiththepotentialforamplificationin VEEV strains in subtypes IAB and IC also are more infectious for equids.ThesestrainswithinsubtypesIABandICutilizemosquito theepidemicmosquitovector,Aedes(Ochlerotatus)taeniorhynchus, vectorssuchasAedesandPsorophoraspp.,whichareabundantin thattypicallytransmitsamongequidsandhumansincoastalareas agriculturalsettingsandcompetenttotransmitVEEVamongsus- (Braultetal.,2002b).TheexceptionisaICgenotypethatfailedto ceptible horses, donkeys and mules. Because these amplification spreadintocoastalareasofVenezuelain1993,andthusproduced hostsgeneratehightiteredviremias,extensiveVEEVcirculationin only a minor epidemic (Rico-Hesse et al., 1995). Strains isolated agriculturalsettingsfrequentlyresultsinspillovertransmissionto fromthisoutbreakinefficientlyinfectedAe.taeniorhynchus,indicat- humans.AswiththeenzooticVEEVstrains,epidemicstrainscausea ingthattheinabilityofthisgenotypetoadapttothiscriticalvector 336 S.C.Weaver,W.K.Reisen/AntiviralResearch85 (2010) 328–345 limiteditsspread(OrtizandWeaver,2004).Evenstrongerevidence Inadditiontotheriskoffutureequine-mediatedVEEepidemics, oftheimportanceofVEEVadaptationtoepidemicvectorscomes thepossibilityofhuman-amplifiedtransmissionmustbeconsid- from studies of recent Mexican epizootics. Unlike their closely ered (Table). Infected people develop high titered viremia after relatedenzooticrelatives,whichpresumablyrepresenttheirances- infection with both enzootic (Aguilar et al., 2004; Quiroz et al., tors,VEEVstrainsfromtherecentoutbreaksefficientlyinfectAe. 2009) and epidemic (Bowen and Calisher, 1976; Weaver et al., taeniorhynchus.TherelativelyrecentadaptationoftheseMexican 1996) VEEV strains. Furthermore, urban, peridomestic mosquito strainstothisimportantvector,coincidentwiththefirstepizootic vectorssuchasAedesaegypti(Ortizetal.,2008;SuarezandBergold, emergenceintheregion,hasbeenlinkedtoasingleaminoacidsub- 1968)andAedesalbopictus(BeamanandTurell,1991;Fernandezet stitutionintheE2proteinthatincreasesinfectionofthemosquito al., 2003; Turell and Beaman, 1992) are capable of transmission midgut,againunderscoringthedramaticeffectsofsmallgenetic afteroraldosescomparabletohumanviremiatiters.Therefore,the changesonarbovirusphenotypes(Braultetal.,2004). keyprerequisitesforurban,human-amplifiedVEEVtransmission Phylogeneticstudiesindicatethatonlyoneofsixdifferentsub- wouldappeartobemet,because:(1)humanviremiaissufficientto typeIDVEEVlineages,andnoneoftheIElineages,haveproduced infectperidomesticvectors;and(2)theseperidomesticmosquitoes theepidemicsubtypeIABandICstrains(Powersetal.,1997).This havetheabilitytotransmitVEEV.ThepastepidemicVEEVtrans- epidemic-progenitorlineageoccursinwesternVenezuela,Colom- missionnearmajorcitiessuchasMaracaibo,Venezuela(Weaveret bia, and the Amazon areas of Ecuador and Peru. The failure of al.,1996),whereAe.aegyptireadilysupportsDENVtransmission, the remaining ID lineages to generate epidemic strains, despite raisethequestionofwhytheseoutbreakshavenotsparkedurban theiroccurrenceinlocationswheremajorepidemicshavespread, transmission.Furthermore,enzooticVEEVregularlyinfectspeople suggeststhatgeneticconstraintsoftheenzooticstrainslimitthe inneotropicalcitieslikeIquitos,Peru,thatareincloseproximity generationofequine-amplification-competentmutants. to forest habitats and that support epidemic DENV transmission In addition to critical mutations, epidemic VEEV emergence (Rochaetal.,2009).ItmayjustbeamatteroftimebeforeanAe. also depends on the transport of nascent equine-amplification- aegypti-borne epidemic VEEV cycle emerges, which would have competent mutants to locations with susceptible equids and devastatingpublichealthconsequences. mosquito vectors. Many equids that are pastured near forests where enzootic VEEV circulates become infected and survive 4. Examplesofarboviralemergenceassociatedwith with generally benign subtype ID and IE infections, generating urbanization a “halo” of immunity around enzootic foci. In addition, several CulexmosquitoesinthesubgenusMelanoconionareenzooticvec- 4.1. Dengueviruses(DENV) torsandgenerallynotcapableofepidemictransmissionbecause they do not disperse far from their forest habitats (Mendez et 4.1.1. Distributionandhealthsignificance al., 2001). Therefore, nascent epidemic strains probably must be Denguevirusescomprisefourrelatedserotypesthatsharecom- transported to locations distant from enzootic transmission foci montransmissioncycles(Fig.5).Theyareflaviviruses(Flaviviridae: where susceptible equids occur along with epidemic vectors in Flavivirus)closelyrelatedtoJEVandWNVdescribedabove;how- large numbers. The latter are generally floodwater or saltmarsh ever,unlikeallotherflaviviruses,DENVsthatcausemosthuman Aedes or Psorophora species that undergo population explosions diseasearenotzoonoses,butexclusivelyutilizehumansasreser- during unusually rainy seasons (Weaver et al., 2004). Another voirandamplificationhosts.Alsounlikemostarboviruses,theyrely enigmaconcerningVEEVemergenceiswhytheequine-virulentIAB ontransmissionbymosquitovectorsthatliveincloseassociation andICstrainsarenotmaintainedfollowingoutbreaks,i.e.emer- withpeople;Ae.(Stegomyia)aegyptiistheprincipalvectorinmost gence appears to be unidirectional. The most likely explanation locations, with Ae. (Stegomyia) albopictus serving as a secondary is that the mutations that adapt enzootic strains reduce the fit- vectorinsomelocations(Table1). nessofepidemicstrainsforenzootichostsorvectors.Experimental DENVarethemostimportanthumanarboviralpathogens,with infectionsofrodentreservoirhostssupportthishypothesis(SCW, an estimated 50–100 million annual cases of DEN and tens-of- unpublished). thousandsofcasesofthemoresevereandsometimesfataldengue hemorrhagic fever/shock syndrome (DHF/DSS syndromes) (Endy 3.5.3. Futuretrends etal.,2010).Thelatterdiseasemanifestationswerefirstdescribed ThelastmajorVEEepidemic,whichinvolvedca.100,000per- afterWorldWarIIcoincidentwithincreasedurbanization,partic- sons with an estimated 300 deaths, occurred in Venezuela and ularlyinAsia.Today,DENishyperendemicinmanyAsiantropical Colombia in 1995 (Rivas et al., 1997; Weaver et al., 1996). This regions,where2ormoreserotypescirculateendemicallyandepi- outbreakmayhavebeeninitiatedbytheaccidentalreleasefrom demically. Although DENV was probably introduced periodically alaboratoryofanisolatefromthe1962to1966epidemic(Brault intotheAmericasbysailingshipssincethe17thcentury,theemer- etal.,2001).Currentunderstandingofthemechanismsofepidemic gence of hyperendemic DEN in the Western Hemisphere began VEEVemergenceindicatethatnaturalemergencewilloccurperi- later,duetoapartiallysuccessfulcampaigntoeradicateAe.aegypti odically, so long as equine herd immunity is not maintained at to control yellow fever. This campaign succeeded in most of the adequatelevelsinVenezuelaandColombiabyvaccinationornat- Americasfromthe1950stothe1970s,butwasthendiscontinued. ural acquisition of immunity from enzootic exposure. Epidemics Ae.aegyptiquicklyrecolonizednearlyalloftheNeotropicsandsub- probablyhavenotarisenintheAmazonBasinofPeruandEcuador, tropics,andtheinvasionofDENVfollowedsoonthereafter.In1985, wheretheprogenitorlineageofsubtypeIDoccurs,becauseequid Ae.albopictuswasintroducedintotheU.S.(Hawleyetal.,1987)and populationstendtobelowintheseregions.Theriskofepidemic BrazilfromAsia,providingasecondaryvectorforDENVtransmis- emergencemaybeincreasingduetotheconversionoflargeareas sionintheAmericas.ThisspecieswastheprimaryvectorofDENV of tropical forest to ranching and other forms of agriculture in duringarecentoutbreakinHawaii(Effleretal.,2005). ColombiaandVenezuela.Thisdeforestationincreasestheecotonal boundaries around enzootic habitats and may thereby enhance opportunitiesforinfectionofbridgevectorsorhighlymobilehosts 4.1.2. Factorsassociatedwithemergence such as birds or bats capable of transporting nascent epidemic AlthoughmostDENVstrainshavenovertebratehostsotherthan strainstolocationsconducivetothegenerationofanequineampli- humans,ancestralDENVarerepresentedbyprimitivenonhuman fiedcycle. primate-bornestrainsthatcontinuetocirculateintheforestsof S.C.Weaver,W.K.Reisen/AntiviralResearch85 (2010) 328–345 337 Fig.5. PhylogenetictreeofDENVstrainsderivedfromcompleteopenreadingframesavailableintheGenBanklibrary.ThephylogenywasinferredusingBayesiananalysis (onemillionreiterations)andallhorizontalbranchesarescaledaccordingtothenumberofsubstitutionspersite.Bayesianprobabilityvaluesareshownforkeynodes.Virus strainsandbranchesarecoloredgreenforsylvatic(nonhumanprimateandarborealmosquitoisolates)andredforendemic(humanandperidomesticAedesisolates)and strainscodedbyabbreviatedcountryofcollection/strainname/yearofcollection.DashedgreenlineindicateshypotheticalsylvaticDENV-3lineagesuggestedbynonhuman primateseroconversionsinMalaysia(Rudnick,1978). Table1 Characteristicsofarboviruseswiththeriskofurbanization. Virus Historyoftemporary Historyofpermanent Humanviremiasuitable Experimental Mutationsassociated References urbanizationa urbanizationa forvectortransmissionb competenceofurban withurbanemergence vectorsb DENV Yes Yes Yes Yes No(exceptAsianstrains VasilakisandWeaver ofDENV-2;seeFig.5) (2008) CHIKV Yes Yes Yes Yes E1envelopeglycoprotein Schuffeneckeretal. mutationenhancesAe. (2006),Tsetsarkinetal. albopictusinfection (2007),Vazeilleetal. (2007) YFV Yes No Yes Yes No Monath(2001) ZIKV Yes No Yes(presumedbasedon No(butisolationfromAe. No Duffyetal.(2009), Yapoutbreak) aegypti) Marchetteetal.(1969) VEEV No No Yes Yes No(althoughE2 Anishchenkoetal. envelopeglycoprotein (2006),Braultetal. mutationsenhance (2002a,2004),Weaveret infectionofepidemic al.(2004) vectorsandequine amplificationhosts) MAYV No No Unknown Yes No Teshetal.(1999),Aguilar andWeaver (unpublished) a Urbantransmissionexceeding5yearsisconsideredpermanent. b Aedesaegyptiand/orAe.albopictus.

Description:
Scott C. Weavera,*, William K. Reisenb a Department of urban transmission of these viruses in tropical as well as temperate regions. The minimal breaks on isolated Pacific Islands such as Guam (Hammon et al.,. 1958) and
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.