ebook img

Antivenom Production against Bothrops jararaca and Bothrops erythromelas Snake Venoms Using ... PDF

15 Pages·2017·15.17 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Antivenom Production against Bothrops jararaca and Bothrops erythromelas Snake Venoms Using ...

toxins Article Antivenom Production against Bothrops jararaca and Bothrops erythromelas Snake Venoms Using Cross-Linked Chitosan Nanoparticles as an Immunoadjuvant KarlaSamaraRochaSoares1,FiammaGláucia-Silva1,AlessandraDaniele-Silva1, ManoelaTorres-Rêgo1 ID,NatháliaKellydeAraújo1,YamaraArrudaSilvadeMenezes1 ID, IgorZumbaDamasceno2,DeniseVilarinhoTambourgi3 ID,ArnóbioAntôniodaSilva-Júnior1,* andMatheusdeFreitasFernandes-Pedrosa1,* ID 1 DepartmentofPharmaceuticalSciences,FacultyofPharmacy,FederalUniversityofRioGrandedoNorte, Natal59012-570,Brazil;[email protected](K.S.R.S.);fi[email protected](F.G.-S.); [email protected](A.D.-S.);[email protected](M.T.-R.); [email protected](N.K.d.A.);[email protected](Y.A.S.d.M.) 2 DepartmentofMaterialsEngineering,TechnologyCenter,UniversityCampus,FederalUniversityofRio GrandedoNorte,Natal59078-970,Brazil;[email protected] 3 LaboratoryofImmunochemistry,InstitutoButantan,SãoPaulo05503-900,Brazil; [email protected] * Correspondence:[email protected](A.A.d.S.-J.);[email protected](M.d.F.F.-P.); Tel.:+55-84-3342-9824(A.A.d.S.-J.);+55-84-3342-9820(M.d.F.F.-P.) (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:12March2018;Accepted:5April2018;Published:16April2018 Abstract:InBrazil,envenomationbysnakesofthegenusBothropsisclinicallyrelevant,particularlyfor thespeciesBothropsjararacaandB.erythromelas. Themosteffectivetreatmentforenvenomationby snakesistheadministrationofantivenomsassociatedwithadjuvants. Noveladjuvantsarerequired toreducesideeffectsandmaximizetheefficiencyofconventionalserumandvaccineformulations. Thepolymerchitosanhasbeenshowntohaveimmunoadjuvantproperties,andithasbeenused as a platform for delivery systems. In this context, we evaluated the potential immunoadjuvant propertiesofchitosannanoparticles(CNPs)loadedwithB.jararacaandB.erythromelasvenomsinthe productionofseraagainstthesevenoms. StableCNPswereobtainedbyionicgelation,andmicewere immunizedsubcutaneouslyfor6weekswith100µLofeachsnakevenomatconcentrationsof5.0or 10.0%(w/w),encapsulatedinCNPsorassociatedwithaluminiumhydroxide(AH).Theevaluationof proteininteractionswiththeCNPsrevealedtheirabilitytoinduceantibodylevelsequivalenttothose ofAH,evenwithsmallerdosesofantigen. Inaddition,theCNPswerelessinflammatoryduetotheir modifiedreleaseofproteins. CNPsprovideapromisingapproachforpeptide/proteindeliveryfrom snakevenomandwillbeusefulfornewvaccines. Keywords: Bothropsvenoms;antivenom;adjuvants;nanoparticles;chitosan;nanovaccines KeyContribution:WepresentabiotechnologicalapproachtoproduceantivenomagainstBothropsjararaca and Bothrops erythromelas snake venoms. The potential immunoadjuvant properties of chitosan nanoparticlesloadedwiththesevenomswereevaluated;theresultsshowthatthisapproachcanbe appliedtoobtainpolyclonalserum. Toxins2018,10,158;doi:10.3390/toxins10040158 www.mdpi.com/journal/toxins Toxins2018,10,158 2of15 1. Introduction Snakebiteenvenomingisahighlyrelevantglobalpublichealthissuethatisconsideredamajor occupationalhealthproblemandhasbeenaperennialcauseofdeathorchronicdisabilityformany active young people [1,2]. The global incidence of snakebites is approximately 5,400,000 per year, andapproximately125,000ofthesecasesarefatal[1,3]. Snakebiteenvenomingisestimatedtooccur mostlyinAsia,Africa,andLatinAmerica,wherebetween20,000and94,000fatalitiesarereported eachyear[2–4]. Generally,snakebitesaremostcommonintropicalandsubtropicalareas,buttheyalso occurinregionswithtemperateclimes[3]. InBrazil,accidentalsnakebiteenvenomingrepresentsan importantpublichealthhazard. Ninetypercentoftheyearlyestimated20–30,000snakebiteaccidents arecausedbyspeciesoftheBothropsgenus. B.jararaca(SouthandSoutheast),B.moojeni(Centre-West), B.atrox(North),andB.erythromelas(Northeast)areresponsibleformostoftheseaccidents[5–10]. Systemic signs of envenomation are observed in patients bitten by Bothrops snakes, such as haemostatic disturbances, signs at the site of bite, haemorrhage, myonecrosis, dermonecrosis, andinflammatoryreactions(oedema,leukocyteinfiltration,andpain)[9,11–13]. Thepathogenesisof Bothropsenvenomationiscomplex,butlocalmanifestationshavebeendirectlyassociatedwiththe activityofmetalloproteases,phospholipaseA ,orserineproteasespresentinthevenom[11,12,14–16]. 2 Parenteral administration of animal-derived antivenoms is the mainstay treatment for snakebite envenoming[17–20]. InBrazil,thetreatmentforenvenomationbybothropicspeciesinvolvestheuse ofanequinepolyspecificantibothropic(orantibothropic-lachetic)F(ab’)2antivenom, preparedby conventionalimmunizationschedulesusingapoolthatincludesthevenomsoffiveBothropsspecies: B.jararaca,B.jararacussu,B.moojeni,B.alternatus,andB.neuwiedi[10,17]. Theserumsroutinelyproducedaresafeandeffectivefortreatment. However,someproblems havearisenrelatedtotheapplicationofimmunoadjuvantsforvaccinesandsera,suchasthetoxic potentialandcollateraleffectsoftheseformulations[21–23]. Aluminium-containingadjuvantsare approvedbytheUnitedStatesFoodandDrugAdministrationforhumanuseandarewidelyappliedin immunobiologicalproduction[23]. Therearetwomainaluminiumcontainingadjuvants: aluminium hydroxide(AH)andaluminiumphosphate[23]. Unfortunately,someevidenceaboutthetoxicityofaluminiumsaltshasbeenreported[24–27]. The effectsofthesesaltsincludelatehypersensitivity[28,29],severegranulomatousinflammation[22,27,30]and pruriticsubcutaneousnodules[28].Othersideeffectsofaluminiumincludeincreasedimmunoglobulin Etitres,allergenicity,andpotentialneurotoxicity[22,30,31]. Normally,aluminiumisexcretedbythe kidneys;however,undercertainconditions,suchasreducedrenalfunction,aluminiumaccumulates inthebodyandcanbecometoxic[30]. Consequently,severalstudieshavefocusedonthedevelopmentofnewadjuvantsforhuman vaccines to generate stronger vaccines capable of inducing protective and long-lasting immunity in humans with reduced side effects and toxicity compared with conventional formulations [30]. Forexample, onestudyevaluatedthedevelopmentofanewcarrierforvaccinedeliverythatwas aimedattreatingscorpionenvenoming[32]. Sustaineddrugreleasethroughnanocarriershasalready beenintroducedinpreviousstudies[33]. Hydrophilicnanoparticleshavereceivedmuchattention regardingtheirabilitytodelivertherapeuticpeptides,proteins,antigens,oligonucleotides,andgenes byintravenous,oral,andmucosaladministrationroutes[34,35]. Forproteinincorporation,theideal diameterofananoparticleshouldbebetween100and200nm[21,36,37]. Nanoparticlescanpotentially circulateforalongtimeinthebody,releasingtheirloadsovermultiplehoursordays,dependingon theirproperties[33,38,39]. Hence,proteindeliverythroughnanoparticlesisaneffectivewaytocontrol drug release as well as to design an efficient protein delivery system [33]. In this context, several polymersthathaveshowninterestingproperties,suchaschitosan,havebeeninvestigatedasboth deliverysystemsandadjuvantsforvaccinepreparations[34,40–42]. Chitosan(CN)isanaturallyoccurringpolysaccharideobtainedbypartialN-deacetylationof chitin.Itisusedasananocarrierbecauseofitsuniquebiodegradability,biocompatibility,hydrophilicity, non-toxic,andimmunomodulatorypropertiesaswellasitslowcost[34,35,41,43–45]. CNhasbeen Toxins2018,10,158 3of15 extensivelyinvestigatedforcarrieranddeliverysystemformulationsfortherapeuticmacrosolutes. Particularly,geneandproteinmoleculeformulationshavebeenexploredduetothepositivecharge ofchitosan,whichcanbeeasilycomplexedwithnegativelychargedDNAsandproteins[21,46,47]. ChitosancaneffectivelybindDNAandproteins,protectingthesemoleculesfromnucleaseandprotease degradation,respectively[47]. Effectiveimmuneresponseshavebeenobservedwhenchitosanwasusedasanimmunoadjuvant invaccinesforimmunizationagainstHelicobacterpylori[48],diphtheria[49],hepatitisB[50],T.serrulatus venom[21],andNajanajaoxianasnakevenom[36];moreover,CNhasrecentlybeenappliedingene therapystrategiesforthecontrolofAedesaegyptimosquitoproliferation[43]. Amoredetailedapproachtotheuseofthisnon-toxicandnon-inflammatoryimmunoadjuvant asadeliverysystemwouldprovideapowerfulpublichealthtoolaswellasaninnovativeapproach for the development of a new serum against toxins from the B. jararaca and B. erythromelas snake venoms. This system could generate an effective immune response with low loads of antigens, thusminimizingtheadverseeffectscausedbytraditionalimmunoadjuvants. Thisstudyevaluated thepotentialimmunoadjuvanteffectsofchitosannanoparticles(CNPs)loadedwithB.jararacaand B.erythromelasvenomsintheproductionofserumagainstthesevenoms,andcomparativelyassessed theinflammatoryprocessgeneratedbyCNPsversusaconventionaladjuvant. 2. Results 2.1. PreparationofChitosanNanoparticles Titrations of a tripolyphosphate (TPP) solution into a chitosan solution formed cross-linked chitosannanoparticlesspontaneouslythroughintra-andintermolecularbondsbetweenthephosphate groupsofthepolyanionTPPandtheaminegroupsofchitosan[35,51,52]. Thechitosannanoparticles weregeneratedviaanionicgelationtechniqueandhadanaveragesizeof167.5nm,azetapotential (ZP)of+24.5mV,andapolydispersityindex(PdI)of≤0.3(Table1). TheZPandPdIvaluesofdifferent sampleswerenotsignificantlydifferent. Table1.Physicochemicalpropertiesofdifferentcross-linkednanoparticlescontainingB.jararaca(BJ) andB.erythromelas(BE)venomsatconcentrationsof5,10,and15%. Sample Size(nm) ZetaPotential(mV) PdI EncapsulationEfficiency(%) CNPs 159.6±2.2 24.50±3.64 0.272±0.01 - CNPs/BJ5 179.3±9.4** 23.03±3.09 0.188±0.08 76.7 CNPs/BJ10 174.7±5.0** 24.91±2.91 0.203±0.07 67.7 CNPs/BJ15 187.3±7.5*** 31.40±3.86 0.185±0.07 74.0 CNPs/BE5 189.4±1.0*** 20.71±2.93 0.305±0.05 97.2 CNPs/BE10 160.0±2.3 19.00±2.76 0.302±0.01 87.6 CNPs/BE15 200.3±5.6*** 27.21±1.50 0.328±0.05 88.1 Valuesarethemean±standarddeviation(S.D.),n=3;***p<0.001and**p<0.01forthevenom-groupcompared totheCNPgroup. 2.2. ProteinLoadingEfficiencyoftheBothropsjararacaandBothropserythromelasVenoms Thesnakevenomproteinswereloadedintothenanoparticlesusinganincorporationmethodin whichtheproteinsweredissolvedintheTPPsolution. Theproteinsdidnotimpairtheformationof thechitosannanoparticles,whichoccurredspontaneouslyduringthedropwiseadditionofTPPinto thechitosansolution. Thesuccessfulproductionofcross-linkednanoparticleswasconfirmedbytheiraverageparticle size. Aslightincreaseinparticlesizeoccurredwiththeadditionofvenomsintothesystem,butasmall sizeof200nmwasmaintained. TheCNPsloadedwithbothB.jararacaandB.erythromelasvenom exhibitedsimilarbehaviour. Allformulationshadapolydispersityindexof≤0.3(withnosignificant Toxins2018,10,158 4of15 differencesamongthesamples),andtheproteinloadingdidnotchangetheircationiccharacteristics (Table1). The nanoparticles demonstrated a great protein loading capacity with the ability to maintain a particle size of approximately 200 nm for all of the different venom and chitosan ratios used. Thedatashowedanencapsulationefficiencygreaterthan87%foralltestedformulationscontaining B.erythromelasvenom. ForB.jararaca,theproteinencapsulationefficiencyreachedlevelsgreaterthan 67%(Table1). Electrophoresisassaysofprotein-freenanoparticlesandprotein-loadednanoparticles wereusedtovisualizetheseproteinloadingevents. The protein profiles of the B. jararaca and B. erythromelas venoms as well as the distinct protein-loadedcross-linkedchitosannanoparticleswereanalysedbySDS-PAGEandareshownin Figure1. TheB.jararaca(BJ)andB.erythromelas(BE)venomproteinfractionsweredistributedwithin amolecularmassrangeofapproximately14to66.4kDa. Apoolofproteinswascharacterizedfor mediumtolowmolecularweightproteins. Highlightingthebandsbetween55.5and42.7kDa,aswell asthoseat14.3and6.5kDa,waspossibleinbothvenomsanalysed. Comparingtheelectrophoretic profilesoftheprotein-freenanoparticles,thefreevenomproteins(BJandBE),andtheprotein-loaded nanoparticles with the B. jararaca protein-loaded nanoparticles (CNPs/BJ 5 and CNPs/BJ 10) and the B. erythromelas protein-loaded nanoparticles (CNPs/BE 5 and CNPs/BE 10) demonstrated the abilityoftheCNPstobeananocarrierfortheexaminednegativelychargedproteins. Thebandsof venomproteinswerenotdetectedinthenanoparticlesamples,thusconfirmingformationofvenom protein–nanoparticlecomplexes(Figure1,lanesCNPs/BJ5,CNPs/BJ10,CNPs/BE5,CNPs/BE10 andCNPs). Theseresultsreinforcethehighprotein–nanoparticleloadingcapacityoftheCNPs. Figure1. ElectrophoreticprofileofBothropsjararacavenomat10%(BJ),chitosannanoparticleswith Bothropsjararacaat5%(CNPs/BJ5)and10%(CNPs/BJ10),Bothropserythromelasvenomat10%(BE), chitosannanoparticleswithBothropserythromelasvenomat5%(CNPs/BE5)and10%(CNPs/BE10), andCNPs. Toxins2018,10,158 5of15 The morphology of the nanoparticles and protein-loaded nanoparticles was examined using atomicforcemicroscopy(AFM)andscanningelectronmicroscopy(SEM).Theirsurfacesandaspectsare showninFigure2;theypresentedasizeofapproximately200nmwithasphericalshape,homogeneous aspect,roughsurface,andgreatencapsulationefficiency. Figure2. 2Dand3DatomicforcemicroscopyandscanningelectronmicroscopyimagesofBothrops protein-loadedchitosannanoparticleformulations.(A)Protein-freechitosannanoparticles,(B)Bothrops jararacaprotein-loadedchitosannanoparticlesataconcentrationof10%and(C)Bothropserythromelas protein-loadedchitosannanoparticlesataconcentrationof10%. Fouriertransforminfrared(FT-IR)spectroscopyanalyseswereusedtoevaluatetheinteractions betweenchitosanandthevenomproteins. Thisevaluationwasbasedonthefactthatthisinteraction leadstofrequencyshiftsorabsorptionbandsplitting[21]. Figure3showsthespectrarecordedfor theCNPsandprotein–proteinnanoparticlescontainingdistinctsnakevenomsloadedata10%w/w concentration. IntheanalysisoftheCNPs,N-HbendingandC=Ostretchingofamidegroupswere observedat1561and1649cm−1, respectively, indicatingpurechitosan[53]. Moreover, thehigher intensityofthesebandsintheCNPs/BJandCNPs/BEisduetotheformationofnewamideinteractions byionicgelation. ThisfactisfurthersupportedbytheremarkableP=Obandstretchingat1214cm−1 and the P-O-P stretching at 892 cm−1, which is characteristic of TPP [53,54]. These characteristic intermolecularinteractionshavebeenestablishedinpreviousstudiesofionicgelationandaredue tochitosanchaincross-linking[55,56]. Theprotein-loadednanoparticlesamplehadC=Obandsof increasedintensityforthecarbonylgroupsofthesecondaryamides(1651cm−1)andprimaryamides (1540cm−1)ofproteins. Toxins2018,10,158 6of15 Figure3.InfraredspectroscopyofCNPs,chitosannanoparticlesloadedwithBothropsjararacavenom protein (CNPs/BJ) and chitosan nanoparticles loaded with Bothrops erythromelas venom protein (CNPs/BE). 2.3. StabilityAssay The physical stability of the protein-loaded nanoparticles and protein-free nanoparticles was assessed using samples stored at 4 ± 2 ◦C for 40 days (Figure 4). Particle size measurements, which were taken every 5 days, revealed the incredible performance of the protein-loaded CNPs. VenomloadingimprovedthestabilityoftheCNPs, asnanoparticleswithoutaddedvenombegan to increase in size after the fifth day (*** p < 0.001). No differences were observed among the protein-loadednanoparticleformulations. Figure 4. Evaluation of the stability of cross-linked chitosan nanoparticle samples loaded with BothropsjararacaorBothropserythromelasvenom(5%and10%w/w).***p<0.001comparedtothesize oftheCNPsonday1.CNPs:protein-freechitosannanoparticles;CNPs/BE5:chitosannanoparticles loadedwithB.erythromelasproteinataconcentrationof5%; CNPs/BE10: chitosannanoparticles loadedwithB.erythromelasproteinataconcentrationof10%;CNPs/BJ5:chitosannanoparticlesloaded withB.jararacaproteinataconcentrationof5%; CNPs/BJ10: chitosannanoparticlesloadedwith B.jararacaproteinataconcentrationof10%. Toxins2018,10,158 7of15 2.4. AntibodyTitres Mice were immunized subcutaneously for 6 weeks with 100 µL of each snake venom at concentrationsof5.0or10.0%(w/w),encapsulatedinCNPsorassociatedwithAH[21]. Oneweek afterboostervaccination,serumwasobtainedviaocularplexusbloodcollection. Theserumsamples weresubjectedtoserialdilutionswithastandarddiluent(PBS/0.1%w/wBSA),startingatadilution of 1:6400 and continuing to 1:204,800, and the antibody titres were evaluated by enzyme-linked immunosorbentassay. Theantibodytitresweredetectedintheserumofmiceimmunizedwithvenomfrombothsnakes, B.jararaca(Figure5A)andB.erythromelas(Figure5B),uptothe1:102,400dilution. Theseresultswere statisticallyequaltothoseoftheAHimmunizedgroupsanddemonstratedthatthenanoparticles canstimulaterefinedandhightitresofproductionevenatlowconcentrations. Similarresultswere foundinexperimentsperformedwithcross-linkedchitosannanoparticlesloadedwithproteinfrom thescorpionTityusserrulatus[21]. Figure 5. Evaluation of antibody titres from mice immunized subcutaneously for 6 weeks with Bothropsjararaca(A)orBothropserythromelas(B)venomatconcentrationsof5.0or10.0%encapsulated inCNPsorassociatedwithAH,asdeterminedbyenzyme-linkedimmunosorbentassays. 3. Discussion Inthepresentstudy,cross-linkedchitosannanoparticlesweresuccessfullyproducedusingthe establishedparametersoftheionicgelationtechnique. ChitosannanoparticlescontainingB.jararaca orB.erythromelasvenomformedspontaneouslywhenasolutionofproteinandTPPwasaddedto achitosansolution. Intheincorporationprocess,theproteinsareentrappedandembeddedintothe chitosan–proteinmatrix,withsomeproteinmoleculesalsoadsorbingtotheparticlesurface[51,57]. Thisphenomenonexplainsthehighencapsulationefficiencyofnanoparticlesof<200nm,evenafter theadditionofsnakevenom. Thisfactisfurthersupportedbytheintermolecularinteractionsofthe carboxylgroupsfromproteinswiththefreeaminegroupsofchitosanobservedintheFT-IRspectra. Thesespecificinteractionscanbemonitoredbytheenhancementoftheintensitiesofthesebandsin thespectraofprotein-loadednanoparticles. Theionicgelationtechniquehasbeensuccessfullyapplied toobtainedchitosannanoparticlesformedicalproposes,suchasanti-staphylococciagents[58]and letrozoledelivery(anticancerdrug)[59]. Loadingproteinintonanoparticlespreservestheirphysicalstabilitybykeepingtheiraverage diameter in the nanometre range and their particle size distribution uniform for parenteral administration [60]. Their characteristics, including an average size of 167.5 nm, a zeta potential of+24.5mV,andapolydispersityindexof≤0.3,areinaccordancewithotherchitosannanoparticles obtained in other studies. Costa et al. (2017) reported an average size of 244 (±11.64) nm with a polydispersity index of 0.358 and a zeta potential of +17.3 9 (±1.41) mV [58]. The FT-IR spectra recordedforthechitosannanoparticlesareconsistentwithpreviouslypublisheddatabyourgroup[54]. Theseresultsconfirmthepresenceofpurechitosanaswellasnewamideinteractionsfromtheionic gelation process. Costa et al. (2017) related that chitosan–TPP crosslinking is realized through Toxins2018,10,158 8of15 interactionsbetweenTPPandtheaminogroupspresentinchitosan,whichcanbeconfirmedbythe peakat1586cm−1[58]. AlterationsintheNH bendingvibrationbandofchitosanwerealsodescribed 2 byGomathiandcolleagues[59]. Inaddition,theexperimentaldatademonstratedthattheelectrostatic interactionsofthevenomproteinswithchitosanalsoinducecrosslinking,whichisabarrierforrapid proteinreleaseinthemedium. The high encapsulation efficiency (greater than 87% for all tested B. erythromelas protein concentrations) observed for the cross-linked chitosan nanoparticles can be attributed to venom dissolution in the TTP solution. Thus, these venom proteins are fully trapped inside the polymer nanomatrix at the instant of nanoparticle cross-linking. Furthermore, that Bothrops venom has negatively charged peptides [9,61] can also explain the high loading efficiency. These results demonstrate the substantial ability of the optimized nanoparticle formulation to carry negatively charged proteins, maintaining colloidal stability, which is not common for particle-encapsulated proteins. The 3D conformational structure of nanoparticles is complex and dependent on environmental conditions, such as pH, ionic strength, electrostatic interactions and composition. Thegreatabilityofthispolymericnanocarriertointeractwithnegativelychargedbiomoleculesisdue tothecationiccharacterofchitosan[54,60,62]. AneffectivepolymericnanocarriershouldbeabletocondenseDNAorproteintoprotectagainst denaturation [63]. This ability of cross-linked chitosan nanoparticles was confirmed for distinct proteinsviathegelretardationassay. Thedatarevealedthatwhennanoparticle–proteincomplexes formed,theproteinbandswerenolongervisible,indicatingentrapmentofthevenomproteininthe polymericmatrix. The increased physical stability of the CNPs induced by protein loading suggests a possible perturbationoftheelectrostaticinteractionsamongthepositivelychargedgroupsofchitosanduring theformationofnanoparticlesthatresultedinfurtherstericstabilization[47,51]. Asuitableantigen-presentingsystemisrequiredforvaccinesuccessandisdirectlyrelatedto the adjuvant or vehicle used [48]. The treatment for envenomation by bothropic species includes antiophidic serum administration. Although this approach has been efficient, studies must be performedtoidentifyalesstoxicadjuvantthatisabletoinduceantibodytitresgreaterthanthose producedbythealreadyestablishedapproach. MicewereimmunizedwiththechitosannanoparticleorAHadjuvantaloneorinconjunction withB.jararacaorB.erythromelasvenom. Intermsofimmuneprotection,thedatarevealedthatanimals immunizedwithCNPscross-linkedwithB.erythromelasvenomatconcentrationsof5.0or10.0%were statisticallyequalwhencomparedwiththeantibodytitresofgroupsvaccinatedwiththeadjuvant AH and the venom at the same concentrations. For animals immunized with CNPs loaded with B.erythromelasvenom,theantibodytitreswerenotsignificantlydifferentwhencomparedwiththose oftheAHgroupsimmunizedwiththesamevenom. TheapplicationofCNPsasanimmunoadjuvant invaccinescansupportanefficientimmuneresponseandmayleadtoantibodyproductionsimilarto thatinducedbyaluminiumhydroxide. However,thispolymerdisplaystheadvantageofbeingless inflammatoryornon-inflammatoryandprovidesmodifiedantigenrelease,whichpromotesgreater antibodytitresinserumwiththeadministrationofasmalleramountofantigen. Theexperimentaldatademonstratedthatchitosannanoparticlescaninduceantibodyproduction equivalent to that of AH, reinforcing data previously published by our group [21]. Other studies haveshownefficientimmunizationusingCNPs; forexample,thestrongadjuvanteffectofγ-PGA and chitosan nanoparticles for toxin B from Clostridium difficile was reported [64]. Thus, chitosan nanoparticlesprovideanefficientandsecureapproachforthedeliveryofpeptides/proteinsfrom snakevenom. Toxins2018,10,158 9of15 4. MaterialsandMethods 4.1. Materials Chitosan(85%deacetylated;molecularweight,90–190kDa),AH,andTTPwerepurchasedfrom Sigma-Aldrich® (Saint Louis, MO, USA). The B. jararaca and B. erythromelas venoms were kindly suppliedbytheButantanInstituteinSãoPaulo. Thebicinchoninicacid(BCA)ProteinAssaykitswere purchasedfromPierce(Woburn,MA,USA),andtheMouseIgGtotalELISAkitswerepurchasedfrom eBioscience(SanDiego,CA,USA).Allotherreagentsandsolventsusedwereofanalyticalgrade. 4.2. Cross-LinkedChitosanNanoparticles The cross-linked chitosan nanoparticles used for the incorporation of the B. jararaca and B. erythromelas venoms were acquired using the ionic gelation technique. A solution of 0.1% w/v TPPinwaterobtainedbyreverseosmosis(<1.3µScm−1)wasaddeddropwisetochitosan(0.1%w/v in0.175%w/vaceticacid)undermagneticstirring. Afteranopalescentsuspensionspontaneously formed,themixwasmaintainedunderagitationatroomtemperaturefor30min. 4.3. LoadingoftheB.jararacaandB.erythromelasVenomsintoCross-LinkedChitosanNanoparticles To load protein into the chitosan nanoparticles, different amounts of proteins (B. jararaca or B. erythromelas venoms) in different proportions (5, 10 and 15% w/w) were solubilized in the TPP solution in a pre-mixing procedure under magnetic stirring (700 rpm) in a thermostatized bath at 20±2◦C[51]. ThesesolutionscontainingTPPandeachspecificproteinsampleweretitratedinto thecopolymersolutionusingthesameoptimizedproceduredescribedabovetoobtaincross-linked chitosannanoparticles. Protein-freenanoparticleswerealsoproducedtoevaluatetheeffectofprotein loadingonthephysio-chemicalpropertiesoftheparticles. Allexperimentalprocedureswerecarried outintriplicate,andthedataisexpressedasthemean±standarddeviation(SD). 4.4. Protein-LoadingEfficiencyAssay Distinctsamplesofprotein-loaded(withtheB.jararacaandB.erythromelasvenoms)cross-linked chitosan nanoparticles were carefully transferred to 1.5-mL centrifuge tubes and then centrifuged at20,000×gfor30minat4◦C.Theproteinconcentrationofeachsupernatantwasanalysedusing aBCAProteinAssayKitaccordingtothemanufacturer’sinstructions. Theencapsulationefficiency (EE)wascalculatedusingEquation(1)[47,60]. Allanalyseswerecarriedoutintriplicate,andthedata isexpressedasthemean±standarddeviation(SD). (Total protein−supernatantprotein) EE%= ×100 (1) Total protein 4.5. Electrophoresis Sodiumdodecylsulfate-polyacrylamidegelelectrophoresis(SDS-PAGE)wasusedtodetermine theproteinprofilesoftheB.jararacaandB.erythromelasvenomsandtheirresultantprotein-loaded cross-linked chitosan nanoparticles. For this, a mini-gel electrophoresis system (Mini-Protean® II, BIO-RAD,Hercules,CA,USA)wasused[65]. Themigrationofastandardproteinmixture(Gibco-BRL LifeTechnologies,Gaithersburg,MD,USA)wasusedtodeterminetherelativemolecularmassesof thetestproteins. TheobtainedgelswerestainedwithasolutionofCoomassieBrilliantBlueR-250[66]. 4.6. PhysicochemicalPropertiesoftheNanoparticles Scanning electronic microscopy images (SSX550, Shimadzu, Tokyo, Japan) and atomic force microscopy(AFM,SPM-9700,Shimadzu,Tokyo,Japan)wereusedtoassesstheshapeandsurface aspectsofthenanoparticles. FortheAFManalysis, onedropofeachnanoparticledispersionwas Toxins2018,10,158 10of15 placed on a washed microscope slide and dried under a desiccator for 24 h prior to observation. Themeasurementswereperformedatroomtemperatureincantilevernon-contactmode. ThephysicochemicalpropertiesoftheCNPssuchastheirzetapotential(ZP)andpolydispersity index(PdI)weredetermined. Thepotentialoftheslipping/shearplaneofacolloidparticlemoving underanelectricfieldcorrespondstotheZP.Theelectricdoublelayer(EDL)ofelectrophoretically mobileparticlesandthelayerofdispersantaroundthemshowdifferentpotential,whichistheZP[67]. ThePdIprovidesinformationaboutthehomogeneityoftheparticlesizedistributioninasample[68]. Particlesizemeasurementsofdistinctnanoparticleswereassessedat25◦Cusingacumulative method of analysis in which the intensity of the light scattered (DLS) was measured in a particle sizeanalyser(ZetaPlus-BrookhavenInstruments,NewYork,NY,USA)atawavelengthof659nm witha90◦ detectionangle. Thecorrelationwasruninparallelmode,anddatawasanalysedusing ZetaPlus®ParticleSizingversion3.95software. Zetapotential(ZP)measurementswereperformed usingthesameequipmentbyapplyingafieldstrengthapproximately5.9Vcm−1. Fiverunswere performedforeachsampletodeterminetheZPvaluewithPALSZetaPotentialAnalysersoftware usingelectrophoreticmobilityaccordingtotheHelmholtz-Smoluchowskiequation. Thesampleswere diluted1:100(v/v)withpurifiedwater. Allmeasurementswerecarriedoutintriplicate,andthedata isexpressedasthemean±standarddeviation(SD)[21,54]. Fourier transformed infrared absorption spectra (FT-IR) were recorded using a Prestige 21 FT-IRspectrophotometer(Shimadzu,Tokyo,Japan). Spectraofcross-linkedchitosannanoparticles were compared with protein-loaded cross-linked chitosan nanoparticles containing the B. jararaca and B. erythromelas venoms. The samples were dried using a Centrivap Labconco speed vacuum concentrator(KansasCity,MO,USA),mixedwithpotassiumbromide(KBr)inameltingpotandthen compressedinhydraulicpress. TheweightratiobetweenthepowderandKBrwasapproximately 1:200w/w[21,54]. 4.7. StabilityAssay Samplesofprotein-loadednanoparticlescontainingtheB.jararacaandB.erythromelasvenoms (5 and 10% w/w) were stored at 20 ± 2 ◦C for 40 days; every 5 days, the particle diameters were assessedat25◦Cusingacumulativemethodofanalysisinwhichtheintensityofthelightscattered (DLS)wasmeasuredinaparticlesizeanalyser(ZetaPlus-BrookhavenInstruments,NewYork,NY, USA)atawavelengthof659nmwitha90◦ detectionangle. Thecorrelationwasruninparallelmode, andthedatawasanalysedusingZetaPlus®ParticleSizingversion3.95software. 4.8. Animals Male and female BALB/c mice (25–35 g, 6–8 weeks of age) were received from the “Animal FacilityattheCenterforHealthSciences”attheFederalUniversityofRioGrandedoNorte(UFRN). The animals were kept under controlled temperature (22 ± 2 ◦C) conditions with free access to commercial feed and water ad libitum, and they spent at least one week in the experimental room prior to the adaptation test. The animal care and experimental assays were performed in accordancewiththeguidelinesestablishedforthecareoflaboratoryanimals(CommitteeforEthicsin AnimalExperimentationattheFederalUniversityofRioGrandedoNorte,ProtocolNo: 003/2012; 18April2012). 4.9. Immunization OnehundredmicrolitersoftheB.jararacaandB.erythromelasvenomsatdifferentconcentrations (5or10%w/w)cross-linkedwiththeCNPsorcombinedwithAHwereusedtoimmunizetheanimals. Immunizationwasperformedsixtimes,onceperweek,viathesubcutaneousadministrationofthetest compoundsinthelumbarregion(bilaterally)[21]. Asacontrol,animalswereimmunizedwiththe adjuvantsintheabsenceofeithervenom.

Description:
Dharmadasa, R.M.; Akalanka, G.C.; Muthukumarana, P.R.M.; Wijesekara, R.G.S. Ethnopharmacological survey on medicinal plants used in bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest. J. Proteom. 2016
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.