ebook img

Antineutrino induced Lambda(1405) production off the proton PDF

0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Antineutrino induced Lambda(1405) production off the proton

Antineutrino induced Λ(1405) production offtheproton Xiu-Lei Ren,1,2,3, E. Oset,2, L. Alvarez-Ruso,4, and M. J. Vicente Vacas2, ∗ † ‡ § 1School of Physics and Nuclear Energy Engineering & International Research Center for Nuclei and Particles in the Cosmos, Beihang University, Beijing 100191, China 2Departamento de F´ısicaTeo´ricaand IFIC,CentroMixto Universidad deValencia-CSIC, Institutos de Investigacio´n de Paterna, Apartado 22085, 46071 Valencia, Spain 3InstitutdePhysiqueNucle´aire, IN2P3-CNRSandUniversite´ Paris-Sud, F-91406OrsayCedex,France 4Institutode F´ısicaCorpuscular (IFIC),Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacio´n de Paterna, Apartado 22085, 46071 Valencia, Spain Wehavestudiedthestrangenesschangingantineutrinoinducedreactionsν¯lp l+φB,withφB = K−p, K¯0n, π0Λ, π0Σ0, ηΛ, ηΣ0, π+Σ−, π−Σ+, K+Ξ− andK0Ξ0, using achiral→unitaryapproach. Theseten 5 coupled channels are allowed to interact strongly, using a kernel derived from the chiral Lagrangians. This 1 interactiongeneratestwoΛ(1405)poles,leadingtoaclearsinglepeakintheπΣinvariantmassdistributions. 0 Atbackwardscatteringanglesinthecenterofmassframe,ν¯ p µ+π0Σ0isdominatedbytheΛ(1405)state 2 µ → ataround1420MeVwhilethelighterstatebecomesrelevantastheangledecreases,leadingtoanasymmetric r lineshape. Inaddition,therearesubstantialdifferencesintheshapeofπΣinvariantmassdistributionsforthe p threechargechannels. Ifobserved,thesedifferenceswouldprovidevaluableinformationonaclaimedisospin A I =1,strangenessS = 1baryonicstatearound1400MeV.Integratedcrosssectionshavebeenobtainedfor theπΣandK¯N channel−s, investigatingtheimpactofunitarizationintheresults. Thenumberofeventswith 5 1 Λ(1405)excitationinν¯µpcollisionsintherecentantineutrinorunattheMINERνAexperimenthasalsobeen obtained.Wefindthatthisreactionchannelisrelevantenoughtobeinvestigatedexperimentallyandtobetaken ] intoaccountinthesimulationmodelsoffutureexperimentswithantineutrinobeams. h p - p e I. INTRODUCTION h [ TheΛ(1405)resonanceisacornerstoneinhadronphysics,challengingthestandardviewofbaryonsmadeofthreequarks. 2 LongagoitwasalreadysuggestedthattheΛ(1405)couldbeakindofmolecularstatearisingfromtheinteractionoftheπΣand v 3 K¯N channels[1,2]. Thisviewhasbeenrecurrent[3],butonlyaftertheadventofunitarychiralperturbationtheory(UChPT) 7 hasittakenamoreassertivetone[4–9]. Inthisframework,akernel(potential)derivedfromthechiralLagrangiansistheinput 0 intotheBethe-Salpeterequationincoupledchannels.Sometimestheinteractionisstrongenoughtogeneratepoles,denominated 4 asdynamicallygeneratedstates,whichcanbeinterpretedashadronicmoleculeswithcomponentsonthedifferentchannels(see 0 Ref.[10]forareview). . 1 It came as a surprise that UChPT predicts two Λ(1405) states [6], studied in detail in Ref. [8]. Two poles appear, one 0 around1420MeV with a width of about40 MeV and anotherone around1385MeV with a larger width of about150MeV. 5 These findingshave been reconfirmedin more recentstudies with potentialsthat include higher orderterms of the chiral La- 1 grangians[11–17]. Fromtheexperimentalperspective,theoldexperiments[18,19]producedπΣinvariantmassdistributions : v whereasingleΛ(1405)peakisseenaround1405MeV.AccordingtoRef.[20],thissinglepeakresultsfromtheoverlapofthe i twopolecontributions.IthasalsobeensuggestedthatreactionsinducedbyK ppairsshowapeakaround1420MeVbecause X − thepoleat1420MeVcouplesmostlytoK¯N,whiletheoneat1385MeVdoesitmorestronglytoπΣ. Thiswouldbethecase r a ofK−p γπΣ[21]andK−p π0π0Σ0. Thelatterone,measuredatCrystalBall[22]andanalyzedinRef.[23],confirmed → → theexistenceofthestateat1420MeV.AnotherreactionthathasproveditsexistenceisK d nπΣ[24],whichwasstudied − → inRef.[25]. TheissuesraisedinRef.[26]wereaddressedindetailinRef.[27]reconfirmingthefindingsofRef.[25]. ItissomewhatsurprisingthatthetwopolesemergeinthetheoryevenwhenonlydataonK pscatteringandK patoms[28], − − whichareabovetheΛ(1405)polemasses,arefitted. Nevertheless,itisclearthatthebestinformationontheΛ(1405)properties should come from processes where the Λ(1405) is produced close to its pole masses. In this sense, the abundant Λ(1405) photoproductiondataobtainedbyCLASwiththeγp K+π+Σ ,K+π0Σ0,K+π Σ+ reactions[29]addmuchinformation − − totheearlierdataofRef.[30],bringingnewlightinto→thesubject.AfittothesedataimposingunitarityintheπΣ,K¯N channels andallowingonlysmallvariationsinthekernelofthechiralLagrangians[31,32]hasreconfirmedtheexistenceofthetwopoles, in agreementwith theUChPT predictions. The widerangeofenergiesinvestigatedandthe simultaneousmeasurementof the threeπΣchargedchannelswerethekeytothesolutionsfoundinRefs.[31,32]and,morerecently,inRef.[33]. E-mail:[email protected] ∗ E-mail:oset@ific.uv.es † E-mail:alvarez@ific.uv.es ‡ E-mail:vicente@ific.uv.es § 2 Studiesofpp pK+Λ(1405)performedatANKEshowagainasuperpositionofthecontributionsfromthetwopoles[34], → andcanbeexplainedwiththetheoreticalframeworkofUChPT[35].Morerecentmeasurements[36,37]showtheΛ(1405)peak atalowerenergythanintheANKEexperiment[34]. SomereasonsforthisbehaviorhavebeensuggestedinRef.[37]. Ifmore dataforthisreactionondifferentconditionsbecameavailable,aglobalanalysisliketheoneofRef.[31,32]forphotoproduction would be advisable. In between, Λ(1405) electroproduction[38] data [ep eK+Λ(1405)] have unexpectedlyrevealed a ′ → two-peakstructure,albeitwithlargeuncertainties. Previousmeasurementswithdifferentreactionshaveonlyobservedasingle peakcomingfromthesuperpositionofthetwopoles,withdifferentshapesdependingontheweightofeitherpole,asdetermined bythedynamicsofeachprocess. Lattice QCD simulations have also broughtnew light into the Λ(1405)properties. Using three-quarkinterpolators, a state associatedwiththeΛ(1405)isproduced[39,40]. ThevanishingstrangequarkcontributiontotheΛ(1405)magneticmoment forlightquarkmassesclosetothephysicaloneshasbeeninterpreted[41,42]asanevidenceofalargeK¯N componentinthe wavefunctionoftheΛ(1405). FurtherworkalongtheselineswasreportedinRef.[43]usingsyntheticlatticeresultsfromK¯N andπΣinterpolators. Theseleadtotherightdescriptionofthemeson-baryonamplitudesinthecontinuumandcontainthetwo polesinthecomplexplane. Untilnow,theweakexcitationofΛ(1405)hasneverbeeninvestigated.Itisremarkablethatwhileitsproductioninstrongand electromagneticprocesseshastoinvolveanextrastrangeparticle(usuallyaK intheinitialstateoraK+inthefinalone),the − directexcitationofΛ(1405)inducedbyantineutrinosν¯p l+Λ(1405)isallowedalthoughCabibbosuppressed. Noticethat l inΛ(1405)photoandelectroproductiontherearelineshap→edistortionsduetofinalstateinteractionsbetweentheK+ andthe Λ(1405)decayproducts,whichareabsentintheweakreaction. Stimulatedbytheprecisionneedsofneutrinooscillationexperiments,thereisa significantongoingeffortaimedata better understandingofneutrinocrosssectionswith nucleonsandnuclei. Thegoalis to developbetterinteractionmodelsto reduce systematicerrorsinthedetectionprocess,constrainirreduciblebackgroundsandachieveabetterneutrinoenergydetermination.1 Intherecentpast,severalexperimentshaveproducedvaluablecrosssectionmeasurements(seeRef.[44]foracomprehensive reviewoftheavailabledata).TheMINERνAexperiment[45,46]atFNAL,fullydedicatedtothestudyofneutrinointeractions withdifferenttargetmaterialshasrecentlycompleteddatatakingandstartedtoproduceinterestingresults[47–50]. Inthefew-GeVenergyregion,whereseveralofthecurrentandfutureexperimentsoperate,quasielasticscatteringandsingle pionproductionhavethelargestcrosssectionsbutstrangeparticleproductionisalsorelevant. Thecharged-current∆S = 1 − quasielastic hyperon(Y = Λ,Σ) productionby antineutrinoshasbeen investigated[51–53] and foundto be a non-negligible sourceofpionsthroughthe Y Nπ decay[51, 54]. Amongthe inelasticprocesses, associated (∆S = 0)productionof K¯ and Σ or Λ baryonsis the dom→inantone but has a high threshold. Below it, single K (∆S = 1) and single K¯ (∆S = 1) − can be producedin chargedcurrentinteractionsinducedby ν and ν¯ respectively. These processeshave beenrecentlystudied usingSU(3)chiralLagrangiansatleadingorder[55,56]. Theweakhadroniccurrentsandthecorrespondingcrosssectionsat thresholdareconstrainedbychiralsymmetrywithcouplingsextractedfrompionandhyperonsemileptonicdecays.Asstressed inRef.[57],whilethederivedK productioncrosssectionisarobustpredictionatthreshold,thesituationcouldbedifferentfor K¯ productionduetothepresenceoftheΛ(1405)resonancejustbelowtheK¯N threshold.Another,sofarunexplored,∆S = 1 reactionthatcanoccurbelowtheassociatedproductionthreshold,ν¯ p l+Σπ,isboundtogetanimportantcontributionfr−om l → Λ(1405)excitation. Here we reportthe firststudy ofthe antineutrinoinducedreactionsν¯p l+φB with φB = K p, K¯0n, π0Λ, π0Σ0, ηΛ, l − ηΣ0, π+Σ , π Σ+, K+Ξ , K0Ξ0 in coupled channels, paying special a→ttention to the role of the Λ(1405). In Sect. II we − − − describethetheoreticalframework.TheresultsarepresentedinSect.IIIfollowedbyourconclusions. II. THEORETICALFRAMEWORK A. EffectiveLagrangians Attreelevel,theprocessν¯p l+φB, withφandB beingthemesonandbaryoninthefinalstate,proceedsasdepictedin l → thediagramsofFig.1. Therearealsobaryon-poleterms(seeFig.1ofRef.[56])whichcontributepredominantlytothep-wave stateoftheφB system. SinceouraimistogeneratetheΛ(1405),whichappearsinφB s-wave,weneglecttheseterms. All mechanisms in Fig. 1 consist of a leptonic and a hadronic currents that interact via the exchange of a W boson. The leptonicpartisprovidedbytheStandardModelLagrangian = g ψ¯ γ (1 γ )ψWµ+ψ¯γ (1 γ )ψ W µ , (1) ν µ 5 l l µ 5 ν † L −2√2h − − i 1Neutrinobeamsarenotmonochromaticsothattheincidentenergyisnotknownforsingleevents. However,oscillationprobabilitiesarefunctionsofthisa prioriunknownquantity. 3 l+ l+ l+ φ φ φ W ν¯ W ν¯ ν¯ − l − l l W − K− φ′′ p (a) B p (b) B p (c) B FIG.1. Feynmandiagramsfortheprocessν¯p l+φB. (a)denotesthekaonpoleterm(KP),(b)representsthecontactterm(CT),and(c) l → standsforthemeson(φ′′)in-flightterm(MF). whereψ ,ψ andW denotetheneutrino,chargedleptonandgaugebosonW fields,respectively;gisthegaugecoupling,related ν l totheFermiconstantbyG =√2g2/(8M2 )=1.16639(1) 10 5GeV 2. F W × − − ThehadroniccurrentisderivedfromchiralLagrangians[58–60]atleadingorder. Asmentionedabove,inthisworkweare onlyconcernedaboutthes-wavecontribution. Inthemesonsector,requiredforCTandMFdiagrams,thelowestorderSU(3) Lagrangianisgivenby F2 F2 (2) = 0 D U(DµU) + 0 χU +Uχ , (2) Lφ 4 h µ †i 4 h † †i where ... standsforthe tracein flavorspace; F isthe pseudoscalarmesondecayconstantin thechirallimit. Thequantity 0 h i χ = 2B , with the quark-massmatrix = diag(m ,m ,m ), representsthe explicitbreakingof chiralsymmetry. The 0 u d s M M functionU =exp(iφ/F )istheSU(3)representationofthemesonfields 0 π0+ 1 η √2π+ √2K+ √3 φ= √2π π0+ 1 η √2K0  , (3) − − √3  √2K− √2K¯0 −√23η  anditscovariantderivativeD U canbewrittenas µ D U =∂ U ir U +iUl , (4) µ µ µ µ − wherel andr correspondtoleft-andright-handedcurrents.Forthechargedcurrentweakinteraction µ µ g r =0, l = (W T +W T ), (5) µ µ √2 µ† + µ − with 0 V V 0 0 0 ud us T = 0 0 0 , T = V 0 0 . (6) + ud −  0 0 0   Vus 0 0      Here, V are the relevant elements of the Cabibbo-Kobayashi-Maskawa matrix. Their magnitudes are V = cosθ = ij ud c | | 0.97425 0.00022and V =sinθ =0.2252 0.0009[61],withθ theCabibboangle. us c c ± | | ± ThelowestorderchiraleffectiveLagrangiandescribingtheinteractionbetweentheoctetofpseudoscalarmesonsandtheoctet ofbaryonscanbewrittenas D F (1) = B¯(iD/ M )B + B¯γµγ u ,B + B¯γµγ [u ,B] , (7) LφB h − B i 2h 5{ µ }i 2h 5 µ i withthebaryonfieldsarrangedinthematrix 1 Σ0+ 1 Λ Σ+ p √2 √6 B = Σ 1 Σ0+ 1 Λ n  ; (8) − −√2 √6  Ξ− Ξ0 −√26Λ  4 M denotesthebaryonoctetmassinthechirallimit;D =0.804andF =0.463aretheaxial-vectorcouplingconstants,which B aredeterminedfromthebaryonsemi-leptonicdecays[62]. Thecovariantderivativeofthebaryonfieldisdefinedas D B =∂ B+[Γ ,B], (9) µ µ µ 1 Γ = u (∂ ir )u+u(∂ il )u , (10) µ † µ µ µ µ † 2 − − (cid:8) (cid:9) andu isgivenby µ u =i u (∂ ir )u u(∂ il )u , (11) µ † µ µ µ µ † − − − (cid:8) (cid:9) whereu=√U. B. ChiralUnitaryTheory Asdiscussedintheintroduction,theΛ(1405)isdynamicallygeneratedbytheinteractionofS = 1s-wavemeson-baryon − pairsincoupledchannels.ThiscanbeachievedbysolvingtheBethe-Salpeterequationwiththeinteractionpotentialprovidedby thechiralLagrangianofEq.(7).InthediagramsofFig.1,theoutgoingmesonandbaryoncaninteractproducingtheresonance. Therefore,onemustconsiderthe diagramsdepictedin Fig.2. The solidsquarein thefiguresrepresentsthedifferentT ij φB amplitudes, where the pair of indices ij = K p, K¯0n, π0Λ, π0Σ0, ηΛ, ηΣ0, π+Σ , π Σ+, K+Ξ , K0Ξ0 denote an→y of − − − − thetenallowedchannels. l+ l+ l+ φ φ φ φ ν¯l W− ν¯l W φ′ ν¯l W− ′ − K− B φ′′ B ′ ′ p (a) B p (b) B p (c) B FIG.2.Iteratedloopdiagramsforν¯ p µ+φB.ThesolidboxesrepresenttheT matrixofthetencoupledchannels. µ → FollowingtheapproachofRef.[5]forthestronginteractionintheS = 1sector, − T =V +VGT =[1 VG] 1V , (12) − − wherethelowest-orderinteractionamplitudeV,extractedfromthelowestorderchiralLagrangian (1),isgivenby LφB 1 V = C (k0+k 0) (13) ij − ij4F2 ′ φ after a nonrelativisticreduction. Here, k0 and k 0 are the energiesof the incomingand outgoingmesonsin the φB center of ′ mass(CM)frame;F hasbeenreplacedbytheaveragevalueofthephysicaldecayconstantsF =1.15f withf = 93MeV 0 φ π π asinRef.[5]. The10 10matrixofcoefficientsC canbefoundinTable1ofRef.[5]. ij × Themeson-baryonloopfunctionG isgivenby ij d4q M 1 1 j G =i , ij Z (2π)4E (q~)k0+p0 q0 E (q~)+iǫq2 m2+iǫ j − − j − i d3q 1 M 1 = j , (14) Z (2π)32ω (q~)E (q~)p0+k0 ω (q~) E (q~)+iǫ j j i j − − wherem ,M arethephysicalmesonandbaryonmassesoftheijstatewhileω =(m2+~q2)1/2,E =(M2+~q2)1/2arethe i j i i j j correspondingenergies. ItisafunctionoftheCMenergyM = p0+k0. InRef.[5],theloopfunctionisregularizedwitha inv cutoffq =630MeV. max 5 C. Crosssection Thereactionunderconsiderationis ν¯(k )+p(p) l+(k )+φ(k )+B(p), (15) l ν¯ l ′ ′ → wherek =(k0,~k )[k =(k0,~k )]isthe4-momentumoftheincomingneutrino[outgoingchargedlepton]whilep=(E ,p~), ν¯ ν¯ ν¯ l l l p p = (E ,~p )andk = (ω ,~k )denotethemomentaoftheinitialproton,finalbaryonandfinalmeson,inthisorder. Itscross ′ B ′ ′ φ ′ sectionisgivenby 2M m d3k m d3k 1 d3p M σ = p ν¯ l l ′ ′ B(2π)4δ4(p+k k k p) t2, (16) λ1/2(s,m2,M2)Z (2π)3 k0 Z (2π)32ω Z (2π)3 E ν¯− l− ′− ′ | | ν¯ p l φ B X whereλ(x,y,z)=x2+y2+z2 2xy 2xz 2yzands=(p+k )2; denotesthesumoverfinalstatepolarizationsand ν¯ − − − averageovertheinitialones. ItisconvenienttoperformtheintegralsoverPp~ and~k intheφB CMframe,takingadvantageof ′ ′ the fact that the amplitudeis projectedontothe s-wave state of the φB pair. The last integrationover~k is carried outin the l global(ν¯p)CMframe.Weobtain σ = 2 mν¯mlMpMB √s−ml dM +1dcosθ~k ~k t2, (17) (2π)3 √s(s M2) Z invZ | l|ν¯p| ′|φB | | − p mφ+MB −1 X whereθistheanglebetween~k and~k intheν¯pCMframe.InEq.(17) l ν¯ λ1/2(s,m2,M2 ) λ1/2(M2 ,m2,M2) ~k = l inv , ~k = inv φ B (18) | l|ν¯lp 2√s | ′|φB 2M inv arethecharged-leptonmomentumintheν¯pCMframeandthemesonmomentumintheφB CMframe,respectively. D. Invariantamplitude Inthe(k k )2 q2 M2 limit,theamplitudecanbecastas l− ν¯ ≡ ≪ W it=2G V LµH , (19) F us µ − wheretheleptoniccurrentis Lµ =v¯(k )γµ(1 γ )v(k ), (20) ν¯ 5 l − whilethehadroniccurrent Hµ =u¯(p′)Γµu(p) (21) isdeterminedbythesumofthefollowingcontributions KP(vector) • 1 q ΓKµP =−2Fφq2−m2Kµ− +iǫTK−p→φB. (22) NotethatinFig.2(a),thesumovertheintermediatestatesφB producestheK p φB t-matrixelementbyvirtueof ′ ′ − → Eq.12. CT(vectorplusaxial) • 1 ΓµCT(V) =−4Fφ Cφ(VB)γµ+φX′B′Cφ(V′B)′γµGφ′B′Tφ′B′→φB, (23)   1 ΓCµT(A) =−4Fφ Cφ(AB)γµγ5+φX′B′Cφ(A′B)′γµγ5Gφ′B′Tφ′B′→φB. (24)   6 ThecoefficientsC(V)andC(A) aretabulatedinTableIandTableII,respectively.Theloopfunctionisgivenby φB φB d4l 1 1 Gφ′B′ =iZ (2π)4l2−m2φ′ +iǫ/p+/q−/l −MB′ +iǫ. (25) MF(axial) • 1 (2k q) (k q) γνγ5 ΓMµF = 4√2Fφ Xφ′′ Cφ′′φCφ′′B (k′′−−q)µ2−′m−2φ′′ν+iǫ +φ′Xφ′′B′Cφ′′φ′Cφ′′B′Gµφ′φ′′B′Tφ′B′→φB, (26)   whereφ denotestheinternalmesoninthetreeleveldiagram(c)ofFig.1. Inmostcases,onlyonetypeofmesoncanbe ′′ exchangedbutithappensthatbothπ0andηareallowedintermediatestates. TheGµ functionisgivenby φ′φ′′B′ d4l 1 1 1 Gµ =i (2l q)µ(l q)ν γ γ5 . (27) φ′φ′′B′ Z (2π)4 − − ν l2−m2φ′ +iǫ(l−q)2−m2φ′′ +iǫ/p−/l +/q−MB′ +iǫ Finally,coefficientsC andC aretabulatedinTableIIIandTableIV,respectively. φ1φ2 φB C(V) p n Λ Σ0 Σ+ φB K− 2 0 0 0 0 K¯0 0 1 0 0 0 π0 0 0 √3 1 0 2 2 η 0 0 3 √3 0 2 2 π− 0 0 0 0 1 TABLEI.CoefficientsC(V)appearingintheCTcontributiontothehadroniccurrent[Eq.(23)]. φB C(A) p n Λ Σ0 Σ+ φB K− 2F 0 0 0 0 − K¯0 0 (D+F) 0 0 0 − π0 0 0 1 (D+3F) 1(D F) 0 −2√3 2 − η 0 0 1(D+3F) √3(D F) 0 −2 2 − π− 0 0 0 0 D F − TABLEII.CoefficientsC(A)appearingintheCTcontributiontothehadroniccurrent[Eq.(24)]. φB Cφ1φ2 K− K¯0 π0 η π− π0 1 0 0 0 0 −√2 η 3 0 0 0 0 −q2 π+ 0 1 0 0 0 − K+ 0 0 1 3 0 √2 q2 K0 0 0 0 0 1 TABLEIII.CoefficientsC appearingintheMFcontributiontothehadroniccurrent[Eq.(26)]. φ1φ2 Thehadroniccurrentpresentedabovedoesnottakeintoaccounttheq2dependenceoftheweakinteractionvertices,whichis poorlyknown.FollowingRef.[56],wehaveparametrizedthisdependencewithaglobaldipoleformfactor q2 −2 F(q2)= 1 (28) (cid:18) − M2(cid:19) F thatmultipliesallthetermsinH . UptoSU(3)breakingeffects,thevalueoftheaxialmassM shouldbesimilartotheone µ F inelectromagneticandaxialnucleonformfactors. Therefore,asinRefs.[55,56]wehaveadoptedM 1GeV,acceptingan F ≃ uncertaintyofaround10%. 7 C p n Λ Σ0 Σ+ φB π0 D+F 0 0 0 0 η - 1 (D 3F) 0 0 0 0 √3 − π+ 0 √2(D+F) 0 0 0 K+ 0 0 1 (D+3F) D F 0 −√3 − K0 0 0 0 0 √2(D F) − TABLEIV.CoefficientsC appearingintheMFcontributiontothehadroniccurrent[Eq.(26)]. φB E. Non-relativisticreductionoftheinvariantamplitude BecauseweonlyfocusonthesmallmomentaoftheφB componentscreatingtheΛ(1405),wecanperformanonrelativistic reduction,whichwasalsousedinthedescriptionoftheφB amplitudeincoupledchannelsofRef.[5]. FortheCTweget 1 −itCT(V) =−4Fφ(2GFVus)L0Cφ(VB)+φX′B′Cφ(V′B)′G′φ′B′Tφ′B′→φB,   1 −itCT(A) =+4Fφ(2GFVus)(L~ ·~σ)Cφ(AB)+φX′B′Cφ(A′B)′G′φ′B′Tφ′B′→φB, (29)   wheretheloopfunction,afterremovingthebaryonnegativeenergypart,becomes G′φ′B′ =Z (2dπ3l)32ωφ1′(~l)EMB′B(~′l)Minv ωφ′(~l)1 EB′(~l)+iǫ. (30) − − Afterthenonrelativisticreduction,theMFcontributionscanbewrittenas 1 L0(2k q)0+L~ ~q −itMF = 4√2Fφ(2GFVus)Xφ′′ Cφ′′φCφ′′B ~σ·~q (k′−q′)−2−m2φ′′ +·iǫ  +φ′Xφ′′B′Cφ′′φ′Cφ′′B′hL~ ·~σG(φ1′)φ′′B′ +(L~ ·~q)(~σ·~q)G(φ2′)φ′′B′i , (31) wheretheloopfunctionsare  G(φ1φ)′B′ =Z (2dπ3l)3ωφ′(~l)ω1φ(~l ~q˜)EMB′B(~′l)~l32 (cid:26)hωφ(~l−~q˜)+ωφ′(~l)i2 − + ωφ(~l ~q˜)+ωφ′(~l) EB′(~l) p˜0 q˜0ωφ′(~l) h − ih − i− o 1 1 ×Minv EB′(~l) ωφ′(~l)+iǫp˜0 EB′(~l) ωφ(~l ~q˜)+iǫ − − − − − 1 1 , (32) ×q˜0+ωφ(~l ~q˜)+ωφ′(~l) iǫωφ′(~l) q˜0+ωφ(~l ~q˜) iǫ − − − − − and G(φ2φ)′B′ =Z (2dπ3l)32ωφ′(~l)ω1φ(~l ~q˜)EMB′B(~′l)(cid:26)hωφ(~l−~q˜)+ωφ′(~l)i2 − + ωφ(~l ~q˜)+ωφ′(~l) EB′(~l) p˜0 q˜0ωφ′(~l) h − ih − i− o 1 1 ×Minv EB′(~l) ωφ′(~l)+iǫp˜0 EB′(~l) ωφ(~l ~q˜)+iǫ − − − − − 1 1 . (33) ×q˜0+ωφ(~l ~q˜)+ωφ′(~l) iǫωφ′(~l) q˜0+ωφ(~l ~q˜) iǫ − − − − − ThequantitieswithtildearedefinedintheφB CMframe. 8 III. RESULTS Throughoutthissection, theresultsarepresentedforthemuonflavorl = µ. TheΛ(1405)canbeobservedintheinvariant massdistributionofπΣpairsthathasitsthresholdbelowthepeakoftheΛ(1405)states. ThecleanestsignalforI =0Λ(1405) production appears in the π0Σ0 channel because I = 1 is not allowed. In Fig. 3, we show dσ/dM for π0Σ0 production inv atthreedifferentlaboratoryenergies,E = 900,1100,and1300MeV. We canclearlysee theresonantshapeoftheΛ(1405) ν¯ at all the energies. Note that, in spite of the two poles, there is a single peak. This is common to all the reactions, with the exceptionofelectroproduction[38],wherethedataarestillrelativelypoor.Onlythedifferentweightofthetwopolesmakesthe peakappearatdifferentenergiesindifferentprocesses. Inthepresentcasethedistributionpeaksaround1420MeVindicating thatthere is moreweightfromthe pole at 1420MeV or, in other words, thatthe Λ(1405)productioninducedby the K p is − dominant. TogainfurtherinsightintotheinterplayofthetwopolesoftheΛ(1405)resonanceinthisreaction,wehavelooked 10 V] ν-µ p → µ+ π0 Σ0 e G 8 2/ Eν-µ = 0.9 GeV m Eν- = 1.1 GeV 41 c 6 Eν-µµ = 1.3 GeV -0 1 [ 4 v n Mi 2 d σ/ d 0 1.3 1.35 1.4 1.45 1.5 M [GeV] inv FIG.3. (coloronline). Differentialcrosssectionforthereactionν¯ p µ+π0Σ0asafunctionoftheinvariantmassM ofthefinalmeson µ inv → baryonsystemforthreedifferentincidentantineutrinoenergies. at the line shapes of the doubledifferentialcross section d2σ/(dM dcosθ) for differentvaluesof the θ angle between the inv initialν¯ andthefinalµ+ intheν¯pCMframe(Fig.4). Whenθ increases,sodoes q2 ,andtheformfactorcausesareduction µ | | inthecrosssection. Tocomparetheshapeswehavenormalizedallcurvestothesameareabymultiplyingthecrosssectionat cosθ =0( 1)by3.4(14).Inthebackwarddirection,thedistributionclearlyresemblesasingleBreit-Wignerwithamassanda − widthremarkablyclosetothevaluesoftheheavierpoleoftheΛ(1405).Itisthispolethatappearsdominantatthiskinematics. Asθdecreases,thepresenceofthelighterstatebecomesmoreevidentwithlargerstrengthaccumulatingbelowthepeak,which isshiftedtowardssmallerinvariantmasses. Thelineshapebecomesasymmetricbutthesecondstatenevershowsupasapeak inthecrosssection. Itis also veryinterestingto considerdσ/dM for the threechargedchannelsπ0Σ0, π+Σ andπ Σ+. Thisis shown in inv − − Fig.5. Thepeakpositionforthedifferentreactionsisslightlyshifted,butthelargestdifferencesarepresentbelowthemaxima. ThisisduetothecontributionofanI =1amplitudewhichaddsconstructivelyordestructivelydependingonthechannel[32]. ItwasalsoshowninRef.[32]thatΛ(1405)photoproductiondatahinttoapossibleI =1statearound1400MeV,whichappears insomeapproaches[6]butisataborderlineinothers[8]. IntheworkofRefs. [63,64], theexistenceofsuchI = 1state is claimed from the study of the K p Λπ π+ reaction. The large differences seen in the cross sections for the three πΣ − − → channelsinthepresentreactionindicatethattheyareindeedrathersensitivetotheI =1amplitudeand,thus,thereisapotential fortheextractionofinformationonthepossibleI =1state. InFig.6, weshownowtheintegratedcrosssectionsforπ0Σ0, π Σ+, andπ+Σ production. Weobserveasteadygrowth − − ofthecrosssectionswiththeantineutrinoenergy. ThesecrosssectionsarelargelydrivenbytheΛ(1405)resonance. Indeed,in Fig.6,bothtreelevelandfullmodelcrosssectionsareshown.Weobservethatthecontributionofthemeson-baryonrescattering hasa drasticeffectinthe results. Thecase ofthe π+Σ channelisthemostspectacularbecausethetreelevelcontributionis − exactlyzero. WehavealsoinvestigatedtheK¯-nucleonproductionreactions. Notethatinthiscasethethresholdenergies,√s = mK− + Mp =1430MeVandmK¯0+Mn =1437MeV,arealreadyabovetheΛ(1405)peak.Thus,wedonotplotdσ/dMinvinthiscase andshowonlytheintegratedcrosssectionasafunctionofenergy. TheseareshowninFig.7forK pandinFig.8forK¯0n. − AscanbeseenintherightpanelsofFigs.7,8,unliketheπΣproductioncase,thecrosssectionisnotincreasedbytheresonance. Onthecontrary,thefastfalldownofdσ/dM closetotheK pthreshold,seeninFig.3forπΣ,reflectsthesimilartrendof inv − 9 7 ] nits 6 ν-µ p -> µ+ Σ0 π0 u rary 5 E−νµ = 1 GeV [arbit 4 ccoossθθ == 10 θ) cosθ = -1 os 3 c d nv2 Mi d ( 1 σ/ 2 d 0 1.3 1.35 1.4 1.45 1.5 1.55 1.6 M [GeV] inv FIG.4.(coloronline).Areanormalizeddoubledifferentialcrosssectionforν¯ p µ+π0Σ0atE =1GeV,asafunctionofM forthree µ → ν¯µ inv differentvaluesoftheangle(θ)betweentheincomingneutrinoandtheoutgoingmuoninthereactionCMframe. 5 GeV] 4 νν--µµ pp →→ µµ++ ππ0- ΣΣ+0 Eν-µ = 1.0 GeV 2/ ν-µ p → µ+ π+ Σ- m c 3 1 4 -0 1 [ 2 v n Mi 1 d σ/ d 0 1.3 1.35 1.4 1.45 1.5 M [GeV] inv FIG.5.(coloronline).Invariantmassdistributionforthethreechargechannels:π0Σ0(solidline),π−Σ+(dashedline)andπ+Σ−(dot-dashed line).TheincidentantineutrinoenergyisE =1GeV. ν¯µ the t matrix which is commonto all the channels. This affects the K¯-nucleonproductioncross sections, most noticeablyfor K¯0n,thechannelwithalargerthreshold.TheseunitarizationeffectswereabsentinthecalculationsreportedinRef.[56]. There areotherdifferencesbetweenthepresentstudyandtheoneofRef.[56]. First,herewehaveusedtheaverageF =1.15f ,for φ π consistencywiththevaluetakeninthestudyofφB scattering[5](seeSec.IIB),insteadofF = f inRef.[56]. Thisleads φ π tolittlesmallercrosssectionwithrespecttothoseofRef.[56]. Furthermore,thep-wavecontributionsconsideredinRef.[56] butnotheremakethecrosssectionsbiggerasonedepartsfromthreshold. Finally,thenonrelativisticapproximationbecomes poorerforthehigherenergyandmomentumtransfersthatcanbeprobedasthereactionenergyincreases. Asanexample,the CTcontributionhereisabout30%lowerthaninRef.[56]atE = 1200MeVandabout40-45%smalleratE = 2000MeV ν¯ ν¯ (aftercorrectingforF ). Forbetterprecision,oneshouldrestricttosmallerantineutrinoenergiesorimplementkinematiccuts φ tokeepq0and ~q smallcomparedtothenucleonmass. | | In the K p channel, the largest contribution arises from the CT mechanism (left panel of Fig. 7), in line with Fig. 3 of − Ref.[56]. IntheK¯0nchannel,instead,theMFcontributionbecomesincreasinglylargerthantheCTaboveE = 1200MeV ν¯ (leftpanelofFig.8),invariancewithFig.5ofRef.[56]. Nevertheless,itshouldbementionedthatourpredictionsforKP,CT andMFtermsconvergetothoseofRef.[56]intheheavy-nucleonlimit. 10 1.2 ν-µ p → µ+ π0 Σ0 1 ν-µ p → µ+ π- Σ+ 2m] 0.8 ν-µ p → µ+ π+ Σ- Full Model c 1 4 0.6 -0 1 σ [ 0.4 0.2 Tree Level 0 0.8 1 1.2 1.4 1.6 1.8 2 Eν- [GeV] µ FIG.6. (coloronline). Crosssectionsasafunctionoftheantineutrinoenergyforthethreeν¯ p µ+πΣreactionchannels. Thethreeupper µ curveshavebeenobtainedwiththefullmodelwhilethetwoloweroneswithtreelevelcontribut→ionsalone. Thelaterisabsentfortheπ+Σ− channel. 1.6 1.6 ν- p → µ+ K- p ν- p → µ+ K- p 1.4 µ 1.4 µ ] 1.2 Full Model ] 1.2 Full Model 2 2 m Contact m Tree Level 1 1 1 c Meson in flight 1 c 4 0.8 Kaon Pole 4 0.8 -0 -0 1 0.6 1 0.6 [ [ σ 0.4 σ 0.4 0.2 0.2 (a) (b) 0 0 0.8 1 1.2 1.4 1.6 1.8 2 0.8 1 1.2 1.4 1.6 1.8 2 Eν- [GeV] Eν- [GeV] µ µ FIG. 7. (color online). Integrated cross section for the ν¯µp µ+K−p reaction as a function of the antineutrino energy. Left panel: → contributionofthedifferenttermstothefullmodelresult.TheKPcontributionisnegligibleandcannotbediscernedintheplot.Rightpanel: comparisonbetweenthefullmodelandtreelevelcalculations. A. Λ(1405)productionatMINERνA OneofthegoalsoftheMINERνAexperimentistostudyweakstrangenessproduction[46]. Itisthereforeimportanttoobtain the numberof eventsin which the Λ(1405)resonance is primarilyproducedduringthe antineutrinorun. Let us consider the processν¯ p µ+πΣ. ThenumberofeventsforagiveninvariantmasoftheπΣpairis µ → dN dσ =N fMN dE φ(E ) πΣ (E ). (34) POT A ν¯ ν¯ ν¯ dM Z dM inv inv The differentialcross section is averagedoverthe antineutrinoflux φ(E ). The flux prediction, in unitsof ν¯/cm2/POT, for ν¯ thelow-energyconfigurationistakenfromTableV ofRef.[50]. Thepresentestimatecorrespondstoanumberofprotonson targetofN =2.01 1020inν¯mode,neglectingthesmallν¯ componentinthebeamofmuonantineutrinos.Althoughthe POT e × MINERνAdetectorismadeofdifferentmaterials,hereweconsideronlythescintillator(CH).Inthiscasetheprotonfraction f =(1+6)/(1+12). OneshouldrecallthatπΣpairscanalsobeproducedonneutronsbut,inthiscase,thepairhasnegative charge, not leading to Λ(1405) excitation. The scintillator mass is M = 0.45M + 0.55M , with M = 2.84 106 and 1 2 1 M = 5.47 106 grams,totakeintoaccountthat45%oftheν¯dataweretakenduringtheconstructiontime,using×areduced 2 × fiducialvolume[50]. Finally,N denotestheAvogadronumber. A

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.