Antineutrino induced Λ(1405) production offtheproton Xiu-Lei Ren,1,2,3, E. Oset,2, L. Alvarez-Ruso,4, and M. J. Vicente Vacas2, ∗ † ‡ § 1School of Physics and Nuclear Energy Engineering & International Research Center for Nuclei and Particles in the Cosmos, Beihang University, Beijing 100191, China 2Departamento de F´ısicaTeo´ricaand IFIC,CentroMixto Universidad deValencia-CSIC, Institutos de Investigacio´n de Paterna, Apartado 22085, 46071 Valencia, Spain 3InstitutdePhysiqueNucle´aire, IN2P3-CNRSandUniversite´ Paris-Sud, F-91406OrsayCedex,France 4Institutode F´ısicaCorpuscular (IFIC),Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacio´n de Paterna, Apartado 22085, 46071 Valencia, Spain Wehavestudiedthestrangenesschangingantineutrinoinducedreactionsν¯lp l+φB,withφB = K−p, K¯0n, π0Λ, π0Σ0, ηΛ, ηΣ0, π+Σ−, π−Σ+, K+Ξ− andK0Ξ0, using achiral→unitaryapproach. Theseten 5 coupled channels are allowed to interact strongly, using a kernel derived from the chiral Lagrangians. This 1 interactiongeneratestwoΛ(1405)poles,leadingtoaclearsinglepeakintheπΣinvariantmassdistributions. 0 Atbackwardscatteringanglesinthecenterofmassframe,ν¯ p µ+π0Σ0isdominatedbytheΛ(1405)state 2 µ → ataround1420MeVwhilethelighterstatebecomesrelevantastheangledecreases,leadingtoanasymmetric r lineshape. Inaddition,therearesubstantialdifferencesintheshapeofπΣinvariantmassdistributionsforthe p threechargechannels. Ifobserved,thesedifferenceswouldprovidevaluableinformationonaclaimedisospin A I =1,strangenessS = 1baryonicstatearound1400MeV.Integratedcrosssectionshavebeenobtainedfor theπΣandK¯N channel−s, investigatingtheimpactofunitarizationintheresults. Thenumberofeventswith 5 1 Λ(1405)excitationinν¯µpcollisionsintherecentantineutrinorunattheMINERνAexperimenthasalsobeen obtained.Wefindthatthisreactionchannelisrelevantenoughtobeinvestigatedexperimentallyandtobetaken ] intoaccountinthesimulationmodelsoffutureexperimentswithantineutrinobeams. h p - p e I. INTRODUCTION h [ TheΛ(1405)resonanceisacornerstoneinhadronphysics,challengingthestandardviewofbaryonsmadeofthreequarks. 2 LongagoitwasalreadysuggestedthattheΛ(1405)couldbeakindofmolecularstatearisingfromtheinteractionoftheπΣand v 3 K¯N channels[1,2]. Thisviewhasbeenrecurrent[3],butonlyaftertheadventofunitarychiralperturbationtheory(UChPT) 7 hasittakenamoreassertivetone[4–9]. Inthisframework,akernel(potential)derivedfromthechiralLagrangiansistheinput 0 intotheBethe-Salpeterequationincoupledchannels.Sometimestheinteractionisstrongenoughtogeneratepoles,denominated 4 asdynamicallygeneratedstates,whichcanbeinterpretedashadronicmoleculeswithcomponentsonthedifferentchannels(see 0 Ref.[10]forareview). . 1 It came as a surprise that UChPT predicts two Λ(1405) states [6], studied in detail in Ref. [8]. Two poles appear, one 0 around1420MeV with a width of about40 MeV and anotherone around1385MeV with a larger width of about150MeV. 5 These findingshave been reconfirmedin more recentstudies with potentialsthat include higher orderterms of the chiral La- 1 grangians[11–17]. Fromtheexperimentalperspective,theoldexperiments[18,19]producedπΣinvariantmassdistributions : v whereasingleΛ(1405)peakisseenaround1405MeV.AccordingtoRef.[20],thissinglepeakresultsfromtheoverlapofthe i twopolecontributions.IthasalsobeensuggestedthatreactionsinducedbyK ppairsshowapeakaround1420MeVbecause X − thepoleat1420MeVcouplesmostlytoK¯N,whiletheoneat1385MeVdoesitmorestronglytoπΣ. Thiswouldbethecase r a ofK−p γπΣ[21]andK−p π0π0Σ0. Thelatterone,measuredatCrystalBall[22]andanalyzedinRef.[23],confirmed → → theexistenceofthestateat1420MeV.AnotherreactionthathasproveditsexistenceisK d nπΣ[24],whichwasstudied − → inRef.[25]. TheissuesraisedinRef.[26]wereaddressedindetailinRef.[27]reconfirmingthefindingsofRef.[25]. ItissomewhatsurprisingthatthetwopolesemergeinthetheoryevenwhenonlydataonK pscatteringandK patoms[28], − − whichareabovetheΛ(1405)polemasses,arefitted. Nevertheless,itisclearthatthebestinformationontheΛ(1405)properties should come from processes where the Λ(1405) is produced close to its pole masses. In this sense, the abundant Λ(1405) photoproductiondataobtainedbyCLASwiththeγp K+π+Σ ,K+π0Σ0,K+π Σ+ reactions[29]addmuchinformation − − totheearlierdataofRef.[30],bringingnewlightinto→thesubject.AfittothesedataimposingunitarityintheπΣ,K¯N channels andallowingonlysmallvariationsinthekernelofthechiralLagrangians[31,32]hasreconfirmedtheexistenceofthetwopoles, in agreementwith theUChPT predictions. The widerangeofenergiesinvestigatedandthe simultaneousmeasurementof the threeπΣchargedchannelswerethekeytothesolutionsfoundinRefs.[31,32]and,morerecently,inRef.[33]. E-mail:[email protected] ∗ E-mail:oset@ific.uv.es † E-mail:alvarez@ific.uv.es ‡ E-mail:vicente@ific.uv.es § 2 Studiesofpp pK+Λ(1405)performedatANKEshowagainasuperpositionofthecontributionsfromthetwopoles[34], → andcanbeexplainedwiththetheoreticalframeworkofUChPT[35].Morerecentmeasurements[36,37]showtheΛ(1405)peak atalowerenergythanintheANKEexperiment[34]. SomereasonsforthisbehaviorhavebeensuggestedinRef.[37]. Ifmore dataforthisreactionondifferentconditionsbecameavailable,aglobalanalysisliketheoneofRef.[31,32]forphotoproduction would be advisable. In between, Λ(1405) electroproduction[38] data [ep eK+Λ(1405)] have unexpectedlyrevealed a ′ → two-peakstructure,albeitwithlargeuncertainties. Previousmeasurementswithdifferentreactionshaveonlyobservedasingle peakcomingfromthesuperpositionofthetwopoles,withdifferentshapesdependingontheweightofeitherpole,asdetermined bythedynamicsofeachprocess. Lattice QCD simulations have also broughtnew light into the Λ(1405)properties. Using three-quarkinterpolators, a state associatedwiththeΛ(1405)isproduced[39,40]. ThevanishingstrangequarkcontributiontotheΛ(1405)magneticmoment forlightquarkmassesclosetothephysicaloneshasbeeninterpreted[41,42]asanevidenceofalargeK¯N componentinthe wavefunctionoftheΛ(1405). FurtherworkalongtheselineswasreportedinRef.[43]usingsyntheticlatticeresultsfromK¯N andπΣinterpolators. Theseleadtotherightdescriptionofthemeson-baryonamplitudesinthecontinuumandcontainthetwo polesinthecomplexplane. Untilnow,theweakexcitationofΛ(1405)hasneverbeeninvestigated.Itisremarkablethatwhileitsproductioninstrongand electromagneticprocesseshastoinvolveanextrastrangeparticle(usuallyaK intheinitialstateoraK+inthefinalone),the − directexcitationofΛ(1405)inducedbyantineutrinosν¯p l+Λ(1405)isallowedalthoughCabibbosuppressed. Noticethat l inΛ(1405)photoandelectroproductiontherearelineshap→edistortionsduetofinalstateinteractionsbetweentheK+ andthe Λ(1405)decayproducts,whichareabsentintheweakreaction. Stimulatedbytheprecisionneedsofneutrinooscillationexperiments,thereisa significantongoingeffortaimedata better understandingofneutrinocrosssectionswith nucleonsandnuclei. Thegoalis to developbetterinteractionmodelsto reduce systematicerrorsinthedetectionprocess,constrainirreduciblebackgroundsandachieveabetterneutrinoenergydetermination.1 Intherecentpast,severalexperimentshaveproducedvaluablecrosssectionmeasurements(seeRef.[44]foracomprehensive reviewoftheavailabledata).TheMINERνAexperiment[45,46]atFNAL,fullydedicatedtothestudyofneutrinointeractions withdifferenttargetmaterialshasrecentlycompleteddatatakingandstartedtoproduceinterestingresults[47–50]. Inthefew-GeVenergyregion,whereseveralofthecurrentandfutureexperimentsoperate,quasielasticscatteringandsingle pionproductionhavethelargestcrosssectionsbutstrangeparticleproductionisalsorelevant. Thecharged-current∆S = 1 − quasielastic hyperon(Y = Λ,Σ) productionby antineutrinoshasbeen investigated[51–53] and foundto be a non-negligible sourceofpionsthroughthe Y Nπ decay[51, 54]. Amongthe inelasticprocesses, associated (∆S = 0)productionof K¯ and Σ or Λ baryonsis the dom→inantone but has a high threshold. Below it, single K (∆S = 1) and single K¯ (∆S = 1) − can be producedin chargedcurrentinteractionsinducedby ν and ν¯ respectively. These processeshave beenrecentlystudied usingSU(3)chiralLagrangiansatleadingorder[55,56]. Theweakhadroniccurrentsandthecorrespondingcrosssectionsat thresholdareconstrainedbychiralsymmetrywithcouplingsextractedfrompionandhyperonsemileptonicdecays.Asstressed inRef.[57],whilethederivedK productioncrosssectionisarobustpredictionatthreshold,thesituationcouldbedifferentfor K¯ productionduetothepresenceoftheΛ(1405)resonancejustbelowtheK¯N threshold.Another,sofarunexplored,∆S = 1 reactionthatcanoccurbelowtheassociatedproductionthreshold,ν¯ p l+Σπ,isboundtogetanimportantcontributionfr−om l → Λ(1405)excitation. Here we reportthe firststudy ofthe antineutrinoinducedreactionsν¯p l+φB with φB = K p, K¯0n, π0Λ, π0Σ0, ηΛ, l − ηΣ0, π+Σ , π Σ+, K+Ξ , K0Ξ0 in coupled channels, paying special a→ttention to the role of the Λ(1405). In Sect. II we − − − describethetheoreticalframework.TheresultsarepresentedinSect.IIIfollowedbyourconclusions. II. THEORETICALFRAMEWORK A. EffectiveLagrangians Attreelevel,theprocessν¯p l+φB, withφandB beingthemesonandbaryoninthefinalstate,proceedsasdepictedin l → thediagramsofFig.1. Therearealsobaryon-poleterms(seeFig.1ofRef.[56])whichcontributepredominantlytothep-wave stateoftheφB system. SinceouraimistogeneratetheΛ(1405),whichappearsinφB s-wave,weneglecttheseterms. All mechanisms in Fig. 1 consist of a leptonic and a hadronic currents that interact via the exchange of a W boson. The leptonicpartisprovidedbytheStandardModelLagrangian = g ψ¯ γ (1 γ )ψWµ+ψ¯γ (1 γ )ψ W µ , (1) ν µ 5 l l µ 5 ν † L −2√2h − − i 1Neutrinobeamsarenotmonochromaticsothattheincidentenergyisnotknownforsingleevents. However,oscillationprobabilitiesarefunctionsofthisa prioriunknownquantity. 3 l+ l+ l+ φ φ φ W ν¯ W ν¯ ν¯ − l − l l W − K− φ′′ p (a) B p (b) B p (c) B FIG.1. Feynmandiagramsfortheprocessν¯p l+φB. (a)denotesthekaonpoleterm(KP),(b)representsthecontactterm(CT),and(c) l → standsforthemeson(φ′′)in-flightterm(MF). whereψ ,ψ andW denotetheneutrino,chargedleptonandgaugebosonW fields,respectively;gisthegaugecoupling,related ν l totheFermiconstantbyG =√2g2/(8M2 )=1.16639(1) 10 5GeV 2. F W × − − ThehadroniccurrentisderivedfromchiralLagrangians[58–60]atleadingorder. Asmentionedabove,inthisworkweare onlyconcernedaboutthes-wavecontribution. Inthemesonsector,requiredforCTandMFdiagrams,thelowestorderSU(3) Lagrangianisgivenby F2 F2 (2) = 0 D U(DµU) + 0 χU +Uχ , (2) Lφ 4 h µ †i 4 h † †i where ... standsforthe tracein flavorspace; F isthe pseudoscalarmesondecayconstantin thechirallimit. Thequantity 0 h i χ = 2B , with the quark-massmatrix = diag(m ,m ,m ), representsthe explicitbreakingof chiralsymmetry. The 0 u d s M M functionU =exp(iφ/F )istheSU(3)representationofthemesonfields 0 π0+ 1 η √2π+ √2K+ √3 φ= √2π π0+ 1 η √2K0 , (3) − − √3 √2K− √2K¯0 −√23η anditscovariantderivativeD U canbewrittenas µ D U =∂ U ir U +iUl , (4) µ µ µ µ − wherel andr correspondtoleft-andright-handedcurrents.Forthechargedcurrentweakinteraction µ µ g r =0, l = (W T +W T ), (5) µ µ √2 µ† + µ − with 0 V V 0 0 0 ud us T = 0 0 0 , T = V 0 0 . (6) + ud − 0 0 0 Vus 0 0 Here, V are the relevant elements of the Cabibbo-Kobayashi-Maskawa matrix. Their magnitudes are V = cosθ = ij ud c | | 0.97425 0.00022and V =sinθ =0.2252 0.0009[61],withθ theCabibboangle. us c c ± | | ± ThelowestorderchiraleffectiveLagrangiandescribingtheinteractionbetweentheoctetofpseudoscalarmesonsandtheoctet ofbaryonscanbewrittenas D F (1) = B¯(iD/ M )B + B¯γµγ u ,B + B¯γµγ [u ,B] , (7) LφB h − B i 2h 5{ µ }i 2h 5 µ i withthebaryonfieldsarrangedinthematrix 1 Σ0+ 1 Λ Σ+ p √2 √6 B = Σ 1 Σ0+ 1 Λ n ; (8) − −√2 √6 Ξ− Ξ0 −√26Λ 4 M denotesthebaryonoctetmassinthechirallimit;D =0.804andF =0.463aretheaxial-vectorcouplingconstants,which B aredeterminedfromthebaryonsemi-leptonicdecays[62]. Thecovariantderivativeofthebaryonfieldisdefinedas D B =∂ B+[Γ ,B], (9) µ µ µ 1 Γ = u (∂ ir )u+u(∂ il )u , (10) µ † µ µ µ µ † 2 − − (cid:8) (cid:9) andu isgivenby µ u =i u (∂ ir )u u(∂ il )u , (11) µ † µ µ µ µ † − − − (cid:8) (cid:9) whereu=√U. B. ChiralUnitaryTheory Asdiscussedintheintroduction,theΛ(1405)isdynamicallygeneratedbytheinteractionofS = 1s-wavemeson-baryon − pairsincoupledchannels.ThiscanbeachievedbysolvingtheBethe-Salpeterequationwiththeinteractionpotentialprovidedby thechiralLagrangianofEq.(7).InthediagramsofFig.1,theoutgoingmesonandbaryoncaninteractproducingtheresonance. Therefore,onemustconsiderthe diagramsdepictedin Fig.2. The solidsquarein thefiguresrepresentsthedifferentT ij φB amplitudes, where the pair of indices ij = K p, K¯0n, π0Λ, π0Σ0, ηΛ, ηΣ0, π+Σ , π Σ+, K+Ξ , K0Ξ0 denote an→y of − − − − thetenallowedchannels. l+ l+ l+ φ φ φ φ ν¯l W− ν¯l W φ′ ν¯l W− ′ − K− B φ′′ B ′ ′ p (a) B p (b) B p (c) B FIG.2.Iteratedloopdiagramsforν¯ p µ+φB.ThesolidboxesrepresenttheT matrixofthetencoupledchannels. µ → FollowingtheapproachofRef.[5]forthestronginteractionintheS = 1sector, − T =V +VGT =[1 VG] 1V , (12) − − wherethelowest-orderinteractionamplitudeV,extractedfromthelowestorderchiralLagrangian (1),isgivenby LφB 1 V = C (k0+k 0) (13) ij − ij4F2 ′ φ after a nonrelativisticreduction. Here, k0 and k 0 are the energiesof the incomingand outgoingmesonsin the φB center of ′ mass(CM)frame;F hasbeenreplacedbytheaveragevalueofthephysicaldecayconstantsF =1.15f withf = 93MeV 0 φ π π asinRef.[5]. The10 10matrixofcoefficientsC canbefoundinTable1ofRef.[5]. ij × Themeson-baryonloopfunctionG isgivenby ij d4q M 1 1 j G =i , ij Z (2π)4E (q~)k0+p0 q0 E (q~)+iǫq2 m2+iǫ j − − j − i d3q 1 M 1 = j , (14) Z (2π)32ω (q~)E (q~)p0+k0 ω (q~) E (q~)+iǫ j j i j − − wherem ,M arethephysicalmesonandbaryonmassesoftheijstatewhileω =(m2+~q2)1/2,E =(M2+~q2)1/2arethe i j i i j j correspondingenergies. ItisafunctionoftheCMenergyM = p0+k0. InRef.[5],theloopfunctionisregularizedwitha inv cutoffq =630MeV. max 5 C. Crosssection Thereactionunderconsiderationis ν¯(k )+p(p) l+(k )+φ(k )+B(p), (15) l ν¯ l ′ ′ → wherek =(k0,~k )[k =(k0,~k )]isthe4-momentumoftheincomingneutrino[outgoingchargedlepton]whilep=(E ,p~), ν¯ ν¯ ν¯ l l l p p = (E ,~p )andk = (ω ,~k )denotethemomentaoftheinitialproton,finalbaryonandfinalmeson,inthisorder. Itscross ′ B ′ ′ φ ′ sectionisgivenby 2M m d3k m d3k 1 d3p M σ = p ν¯ l l ′ ′ B(2π)4δ4(p+k k k p) t2, (16) λ1/2(s,m2,M2)Z (2π)3 k0 Z (2π)32ω Z (2π)3 E ν¯− l− ′− ′ | | ν¯ p l φ B X whereλ(x,y,z)=x2+y2+z2 2xy 2xz 2yzands=(p+k )2; denotesthesumoverfinalstatepolarizationsand ν¯ − − − averageovertheinitialones. ItisconvenienttoperformtheintegralsoverPp~ and~k intheφB CMframe,takingadvantageof ′ ′ the fact that the amplitudeis projectedontothe s-wave state of the φB pair. The last integrationover~k is carried outin the l global(ν¯p)CMframe.Weobtain σ = 2 mν¯mlMpMB √s−ml dM +1dcosθ~k ~k t2, (17) (2π)3 √s(s M2) Z invZ | l|ν¯p| ′|φB | | − p mφ+MB −1 X whereθistheanglebetween~k and~k intheν¯pCMframe.InEq.(17) l ν¯ λ1/2(s,m2,M2 ) λ1/2(M2 ,m2,M2) ~k = l inv , ~k = inv φ B (18) | l|ν¯lp 2√s | ′|φB 2M inv arethecharged-leptonmomentumintheν¯pCMframeandthemesonmomentumintheφB CMframe,respectively. D. Invariantamplitude Inthe(k k )2 q2 M2 limit,theamplitudecanbecastas l− ν¯ ≡ ≪ W it=2G V LµH , (19) F us µ − wheretheleptoniccurrentis Lµ =v¯(k )γµ(1 γ )v(k ), (20) ν¯ 5 l − whilethehadroniccurrent Hµ =u¯(p′)Γµu(p) (21) isdeterminedbythesumofthefollowingcontributions KP(vector) • 1 q ΓKµP =−2Fφq2−m2Kµ− +iǫTK−p→φB. (22) NotethatinFig.2(a),thesumovertheintermediatestatesφB producestheK p φB t-matrixelementbyvirtueof ′ ′ − → Eq.12. CT(vectorplusaxial) • 1 ΓµCT(V) =−4Fφ Cφ(VB)γµ+φX′B′Cφ(V′B)′γµGφ′B′Tφ′B′→φB, (23) 1 ΓCµT(A) =−4Fφ Cφ(AB)γµγ5+φX′B′Cφ(A′B)′γµγ5Gφ′B′Tφ′B′→φB. (24) 6 ThecoefficientsC(V)andC(A) aretabulatedinTableIandTableII,respectively.Theloopfunctionisgivenby φB φB d4l 1 1 Gφ′B′ =iZ (2π)4l2−m2φ′ +iǫ/p+/q−/l −MB′ +iǫ. (25) MF(axial) • 1 (2k q) (k q) γνγ5 ΓMµF = 4√2Fφ Xφ′′ Cφ′′φCφ′′B (k′′−−q)µ2−′m−2φ′′ν+iǫ +φ′Xφ′′B′Cφ′′φ′Cφ′′B′Gµφ′φ′′B′Tφ′B′→φB, (26) whereφ denotestheinternalmesoninthetreeleveldiagram(c)ofFig.1. Inmostcases,onlyonetypeofmesoncanbe ′′ exchangedbutithappensthatbothπ0andηareallowedintermediatestates. TheGµ functionisgivenby φ′φ′′B′ d4l 1 1 1 Gµ =i (2l q)µ(l q)ν γ γ5 . (27) φ′φ′′B′ Z (2π)4 − − ν l2−m2φ′ +iǫ(l−q)2−m2φ′′ +iǫ/p−/l +/q−MB′ +iǫ Finally,coefficientsC andC aretabulatedinTableIIIandTableIV,respectively. φ1φ2 φB C(V) p n Λ Σ0 Σ+ φB K− 2 0 0 0 0 K¯0 0 1 0 0 0 π0 0 0 √3 1 0 2 2 η 0 0 3 √3 0 2 2 π− 0 0 0 0 1 TABLEI.CoefficientsC(V)appearingintheCTcontributiontothehadroniccurrent[Eq.(23)]. φB C(A) p n Λ Σ0 Σ+ φB K− 2F 0 0 0 0 − K¯0 0 (D+F) 0 0 0 − π0 0 0 1 (D+3F) 1(D F) 0 −2√3 2 − η 0 0 1(D+3F) √3(D F) 0 −2 2 − π− 0 0 0 0 D F − TABLEII.CoefficientsC(A)appearingintheCTcontributiontothehadroniccurrent[Eq.(24)]. φB Cφ1φ2 K− K¯0 π0 η π− π0 1 0 0 0 0 −√2 η 3 0 0 0 0 −q2 π+ 0 1 0 0 0 − K+ 0 0 1 3 0 √2 q2 K0 0 0 0 0 1 TABLEIII.CoefficientsC appearingintheMFcontributiontothehadroniccurrent[Eq.(26)]. φ1φ2 Thehadroniccurrentpresentedabovedoesnottakeintoaccounttheq2dependenceoftheweakinteractionvertices,whichis poorlyknown.FollowingRef.[56],wehaveparametrizedthisdependencewithaglobaldipoleformfactor q2 −2 F(q2)= 1 (28) (cid:18) − M2(cid:19) F thatmultipliesallthetermsinH . UptoSU(3)breakingeffects,thevalueoftheaxialmassM shouldbesimilartotheone µ F inelectromagneticandaxialnucleonformfactors. Therefore,asinRefs.[55,56]wehaveadoptedM 1GeV,acceptingan F ≃ uncertaintyofaround10%. 7 C p n Λ Σ0 Σ+ φB π0 D+F 0 0 0 0 η - 1 (D 3F) 0 0 0 0 √3 − π+ 0 √2(D+F) 0 0 0 K+ 0 0 1 (D+3F) D F 0 −√3 − K0 0 0 0 0 √2(D F) − TABLEIV.CoefficientsC appearingintheMFcontributiontothehadroniccurrent[Eq.(26)]. φB E. Non-relativisticreductionoftheinvariantamplitude BecauseweonlyfocusonthesmallmomentaoftheφB componentscreatingtheΛ(1405),wecanperformanonrelativistic reduction,whichwasalsousedinthedescriptionoftheφB amplitudeincoupledchannelsofRef.[5]. FortheCTweget 1 −itCT(V) =−4Fφ(2GFVus)L0Cφ(VB)+φX′B′Cφ(V′B)′G′φ′B′Tφ′B′→φB, 1 −itCT(A) =+4Fφ(2GFVus)(L~ ·~σ)Cφ(AB)+φX′B′Cφ(A′B)′G′φ′B′Tφ′B′→φB, (29) wheretheloopfunction,afterremovingthebaryonnegativeenergypart,becomes G′φ′B′ =Z (2dπ3l)32ωφ1′(~l)EMB′B(~′l)Minv ωφ′(~l)1 EB′(~l)+iǫ. (30) − − Afterthenonrelativisticreduction,theMFcontributionscanbewrittenas 1 L0(2k q)0+L~ ~q −itMF = 4√2Fφ(2GFVus)Xφ′′ Cφ′′φCφ′′B ~σ·~q (k′−q′)−2−m2φ′′ +·iǫ +φ′Xφ′′B′Cφ′′φ′Cφ′′B′hL~ ·~σG(φ1′)φ′′B′ +(L~ ·~q)(~σ·~q)G(φ2′)φ′′B′i , (31) wheretheloopfunctionsare G(φ1φ)′B′ =Z (2dπ3l)3ωφ′(~l)ω1φ(~l ~q˜)EMB′B(~′l)~l32 (cid:26)hωφ(~l−~q˜)+ωφ′(~l)i2 − + ωφ(~l ~q˜)+ωφ′(~l) EB′(~l) p˜0 q˜0ωφ′(~l) h − ih − i− o 1 1 ×Minv EB′(~l) ωφ′(~l)+iǫp˜0 EB′(~l) ωφ(~l ~q˜)+iǫ − − − − − 1 1 , (32) ×q˜0+ωφ(~l ~q˜)+ωφ′(~l) iǫωφ′(~l) q˜0+ωφ(~l ~q˜) iǫ − − − − − and G(φ2φ)′B′ =Z (2dπ3l)32ωφ′(~l)ω1φ(~l ~q˜)EMB′B(~′l)(cid:26)hωφ(~l−~q˜)+ωφ′(~l)i2 − + ωφ(~l ~q˜)+ωφ′(~l) EB′(~l) p˜0 q˜0ωφ′(~l) h − ih − i− o 1 1 ×Minv EB′(~l) ωφ′(~l)+iǫp˜0 EB′(~l) ωφ(~l ~q˜)+iǫ − − − − − 1 1 . (33) ×q˜0+ωφ(~l ~q˜)+ωφ′(~l) iǫωφ′(~l) q˜0+ωφ(~l ~q˜) iǫ − − − − − ThequantitieswithtildearedefinedintheφB CMframe. 8 III. RESULTS Throughoutthissection, theresultsarepresentedforthemuonflavorl = µ. TheΛ(1405)canbeobservedintheinvariant massdistributionofπΣpairsthathasitsthresholdbelowthepeakoftheΛ(1405)states. ThecleanestsignalforI =0Λ(1405) production appears in the π0Σ0 channel because I = 1 is not allowed. In Fig. 3, we show dσ/dM for π0Σ0 production inv atthreedifferentlaboratoryenergies,E = 900,1100,and1300MeV. We canclearlysee theresonantshapeoftheΛ(1405) ν¯ at all the energies. Note that, in spite of the two poles, there is a single peak. This is common to all the reactions, with the exceptionofelectroproduction[38],wherethedataarestillrelativelypoor.Onlythedifferentweightofthetwopolesmakesthe peakappearatdifferentenergiesindifferentprocesses. Inthepresentcasethedistributionpeaksaround1420MeVindicating thatthere is moreweightfromthe pole at 1420MeV or, in other words, thatthe Λ(1405)productioninducedby the K p is − dominant. TogainfurtherinsightintotheinterplayofthetwopolesoftheΛ(1405)resonanceinthisreaction,wehavelooked 10 V] ν-µ p → µ+ π0 Σ0 e G 8 2/ Eν-µ = 0.9 GeV m Eν- = 1.1 GeV 41 c 6 Eν-µµ = 1.3 GeV -0 1 [ 4 v n Mi 2 d σ/ d 0 1.3 1.35 1.4 1.45 1.5 M [GeV] inv FIG.3. (coloronline). Differentialcrosssectionforthereactionν¯ p µ+π0Σ0asafunctionoftheinvariantmassM ofthefinalmeson µ inv → baryonsystemforthreedifferentincidentantineutrinoenergies. at the line shapes of the doubledifferentialcross section d2σ/(dM dcosθ) for differentvaluesof the θ angle between the inv initialν¯ andthefinalµ+ intheν¯pCMframe(Fig.4). Whenθ increases,sodoes q2 ,andtheformfactorcausesareduction µ | | inthecrosssection. Tocomparetheshapeswehavenormalizedallcurvestothesameareabymultiplyingthecrosssectionat cosθ =0( 1)by3.4(14).Inthebackwarddirection,thedistributionclearlyresemblesasingleBreit-Wignerwithamassanda − widthremarkablyclosetothevaluesoftheheavierpoleoftheΛ(1405).Itisthispolethatappearsdominantatthiskinematics. Asθdecreases,thepresenceofthelighterstatebecomesmoreevidentwithlargerstrengthaccumulatingbelowthepeak,which isshiftedtowardssmallerinvariantmasses. Thelineshapebecomesasymmetricbutthesecondstatenevershowsupasapeak inthecrosssection. Itis also veryinterestingto considerdσ/dM for the threechargedchannelsπ0Σ0, π+Σ andπ Σ+. Thisis shown in inv − − Fig.5. Thepeakpositionforthedifferentreactionsisslightlyshifted,butthelargestdifferencesarepresentbelowthemaxima. ThisisduetothecontributionofanI =1amplitudewhichaddsconstructivelyordestructivelydependingonthechannel[32]. ItwasalsoshowninRef.[32]thatΛ(1405)photoproductiondatahinttoapossibleI =1statearound1400MeV,whichappears insomeapproaches[6]butisataborderlineinothers[8]. IntheworkofRefs. [63,64], theexistenceofsuchI = 1state is claimed from the study of the K p Λπ π+ reaction. The large differences seen in the cross sections for the three πΣ − − → channelsinthepresentreactionindicatethattheyareindeedrathersensitivetotheI =1amplitudeand,thus,thereisapotential fortheextractionofinformationonthepossibleI =1state. InFig.6, weshownowtheintegratedcrosssectionsforπ0Σ0, π Σ+, andπ+Σ production. Weobserveasteadygrowth − − ofthecrosssectionswiththeantineutrinoenergy. ThesecrosssectionsarelargelydrivenbytheΛ(1405)resonance. Indeed,in Fig.6,bothtreelevelandfullmodelcrosssectionsareshown.Weobservethatthecontributionofthemeson-baryonrescattering hasa drasticeffectinthe results. Thecase ofthe π+Σ channelisthemostspectacularbecausethetreelevelcontributionis − exactlyzero. WehavealsoinvestigatedtheK¯-nucleonproductionreactions. Notethatinthiscasethethresholdenergies,√s = mK− + Mp =1430MeVandmK¯0+Mn =1437MeV,arealreadyabovetheΛ(1405)peak.Thus,wedonotplotdσ/dMinvinthiscase andshowonlytheintegratedcrosssectionasafunctionofenergy. TheseareshowninFig.7forK pandinFig.8forK¯0n. − AscanbeseenintherightpanelsofFigs.7,8,unliketheπΣproductioncase,thecrosssectionisnotincreasedbytheresonance. Onthecontrary,thefastfalldownofdσ/dM closetotheK pthreshold,seeninFig.3forπΣ,reflectsthesimilartrendof inv − 9 7 ] nits 6 ν-µ p -> µ+ Σ0 π0 u rary 5 E−νµ = 1 GeV [arbit 4 ccoossθθ == 10 θ) cosθ = -1 os 3 c d nv2 Mi d ( 1 σ/ 2 d 0 1.3 1.35 1.4 1.45 1.5 1.55 1.6 M [GeV] inv FIG.4.(coloronline).Areanormalizeddoubledifferentialcrosssectionforν¯ p µ+π0Σ0atE =1GeV,asafunctionofM forthree µ → ν¯µ inv differentvaluesoftheangle(θ)betweentheincomingneutrinoandtheoutgoingmuoninthereactionCMframe. 5 GeV] 4 νν--µµ pp →→ µµ++ ππ0- ΣΣ+0 Eν-µ = 1.0 GeV 2/ ν-µ p → µ+ π+ Σ- m c 3 1 4 -0 1 [ 2 v n Mi 1 d σ/ d 0 1.3 1.35 1.4 1.45 1.5 M [GeV] inv FIG.5.(coloronline).Invariantmassdistributionforthethreechargechannels:π0Σ0(solidline),π−Σ+(dashedline)andπ+Σ−(dot-dashed line).TheincidentantineutrinoenergyisE =1GeV. ν¯µ the t matrix which is commonto all the channels. This affects the K¯-nucleonproductioncross sections, most noticeablyfor K¯0n,thechannelwithalargerthreshold.TheseunitarizationeffectswereabsentinthecalculationsreportedinRef.[56]. There areotherdifferencesbetweenthepresentstudyandtheoneofRef.[56]. First,herewehaveusedtheaverageF =1.15f ,for φ π consistencywiththevaluetakeninthestudyofφB scattering[5](seeSec.IIB),insteadofF = f inRef.[56]. Thisleads φ π tolittlesmallercrosssectionwithrespecttothoseofRef.[56]. Furthermore,thep-wavecontributionsconsideredinRef.[56] butnotheremakethecrosssectionsbiggerasonedepartsfromthreshold. Finally,thenonrelativisticapproximationbecomes poorerforthehigherenergyandmomentumtransfersthatcanbeprobedasthereactionenergyincreases. Asanexample,the CTcontributionhereisabout30%lowerthaninRef.[56]atE = 1200MeVandabout40-45%smalleratE = 2000MeV ν¯ ν¯ (aftercorrectingforF ). Forbetterprecision,oneshouldrestricttosmallerantineutrinoenergiesorimplementkinematiccuts φ tokeepq0and ~q smallcomparedtothenucleonmass. | | In the K p channel, the largest contribution arises from the CT mechanism (left panel of Fig. 7), in line with Fig. 3 of − Ref.[56]. IntheK¯0nchannel,instead,theMFcontributionbecomesincreasinglylargerthantheCTaboveE = 1200MeV ν¯ (leftpanelofFig.8),invariancewithFig.5ofRef.[56]. Nevertheless,itshouldbementionedthatourpredictionsforKP,CT andMFtermsconvergetothoseofRef.[56]intheheavy-nucleonlimit. 10 1.2 ν-µ p → µ+ π0 Σ0 1 ν-µ p → µ+ π- Σ+ 2m] 0.8 ν-µ p → µ+ π+ Σ- Full Model c 1 4 0.6 -0 1 σ [ 0.4 0.2 Tree Level 0 0.8 1 1.2 1.4 1.6 1.8 2 Eν- [GeV] µ FIG.6. (coloronline). Crosssectionsasafunctionoftheantineutrinoenergyforthethreeν¯ p µ+πΣreactionchannels. Thethreeupper µ curveshavebeenobtainedwiththefullmodelwhilethetwoloweroneswithtreelevelcontribut→ionsalone. Thelaterisabsentfortheπ+Σ− channel. 1.6 1.6 ν- p → µ+ K- p ν- p → µ+ K- p 1.4 µ 1.4 µ ] 1.2 Full Model ] 1.2 Full Model 2 2 m Contact m Tree Level 1 1 1 c Meson in flight 1 c 4 0.8 Kaon Pole 4 0.8 -0 -0 1 0.6 1 0.6 [ [ σ 0.4 σ 0.4 0.2 0.2 (a) (b) 0 0 0.8 1 1.2 1.4 1.6 1.8 2 0.8 1 1.2 1.4 1.6 1.8 2 Eν- [GeV] Eν- [GeV] µ µ FIG. 7. (color online). Integrated cross section for the ν¯µp µ+K−p reaction as a function of the antineutrino energy. Left panel: → contributionofthedifferenttermstothefullmodelresult.TheKPcontributionisnegligibleandcannotbediscernedintheplot.Rightpanel: comparisonbetweenthefullmodelandtreelevelcalculations. A. Λ(1405)productionatMINERνA OneofthegoalsoftheMINERνAexperimentistostudyweakstrangenessproduction[46]. Itisthereforeimportanttoobtain the numberof eventsin which the Λ(1405)resonance is primarilyproducedduringthe antineutrinorun. Let us consider the processν¯ p µ+πΣ. ThenumberofeventsforagiveninvariantmasoftheπΣpairis µ → dN dσ =N fMN dE φ(E ) πΣ (E ). (34) POT A ν¯ ν¯ ν¯ dM Z dM inv inv The differentialcross section is averagedoverthe antineutrinoflux φ(E ). The flux prediction, in unitsof ν¯/cm2/POT, for ν¯ thelow-energyconfigurationistakenfromTableV ofRef.[50]. Thepresentestimatecorrespondstoanumberofprotonson targetofN =2.01 1020inν¯mode,neglectingthesmallν¯ componentinthebeamofmuonantineutrinos.Althoughthe POT e × MINERνAdetectorismadeofdifferentmaterials,hereweconsideronlythescintillator(CH).Inthiscasetheprotonfraction f =(1+6)/(1+12). OneshouldrecallthatπΣpairscanalsobeproducedonneutronsbut,inthiscase,thepairhasnegative charge, not leading to Λ(1405) excitation. The scintillator mass is M = 0.45M + 0.55M , with M = 2.84 106 and 1 2 1 M = 5.47 106 grams,totakeintoaccountthat45%oftheν¯dataweretakenduringtheconstructiontime,using×areduced 2 × fiducialvolume[50]. Finally,N denotestheAvogadronumber. A