ebook img

Antifungal Activity of Eugenol Derivatives against Botrytis Cinerea PDF

14 Pages·2017·3.73 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Antifungal Activity of Eugenol Derivatives against Botrytis Cinerea

molecules Article Antifungal Activity of Eugenol Derivatives against Botrytis Cinerea AndrésF.Olea1 ,AngelicaBravo2,RolandoMartínez2 ,MarioThomas2,ClaudiaSedan2, LuisEspinoza3 ,ElisabethZambrano4,DenisseCarvajal4,EvelynSilva-Moreno4,* andHéctorCarrasco1,* 1 InstitutodeCienciasQuímicasAplicadas,FacultaddeIngeniería,UniversidadAutónomadeChile, SanMiguel,Santiago8900000,Chile;[email protected] 2 DepartamentodeCienciasQuímicas,UniversidadAndrésBello,ViñadelMar2520000,Chile; [email protected](A.B.);[email protected](R.M.);[email protected](M.T.); [email protected](C.S.) 3 DepartamentodeQuímica,UniversidadTécnicaFedericoSantaMaría,Valparaíso2340000,Chile; [email protected] 4 InstitutodeCienciasBiomédicas,FacultaddeCienciasdelaSalud,UniversidadAutónomadeChile, SanMiguel,Santiago8900000,Chile;[email protected](E.Z.);[email protected](D.C.) * Correspondence:[email protected](H.C.);[email protected](E.S.-M.); Tel.:+56-223-036-665(H.C.) (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) AcademicEditor:AntonioEvidente (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:4March2019;Accepted:26March2019;Published:29March2019 Abstract: Botrytiscinereaisaworldwidespreadfungusthatcausesthegreymolddisease,whichis considered the most important factor in postharvest losses in fresh fruit crops. Consequently, the control of gray mold is a matter of current and relevant interest for agricultural industries. Inthiswork,aseriesofphenylpropanoidsderivedfromeugenolweresynthesizedandcharacterized. Their effects on the mycelial growth of a virulent and multi-resistant isolate of B. cinerea (PN2) have been evaluated and IC values for the most active compounds range between 31–95 ppm. 50 Theantifungalactivityexhibitedbythesecompoundsisstronglyrelatedtotheirchemicalstructure, i.e.,increasingactivityhasbeenobtainedbyisomerizationofthedoublebondorintroductionof anitrogrouponthearomaticring. Basedontherelationshipbetweenthefungicideactivitiesand chemicalstructure,amechanismofactionisproposed. Finally,theactivityofthesecompoundsis higherthanthatreportedforthecommercialfungicideBC-1000thatiscurrentlyemployedtocombat thisdisease. Thus,ourresultssuggestthatthesecompoundsarepotentialcandidatestobeusedin thedesignofnewandeffectivecontrolwithinspirednaturalcompoundsofthispathogen. Keywords: Botrytis cinerea; eugenol; mycelial growth; resistant isolate; reactive oxygen species; chemicalfungicides 1. Introduction B.cinereaisaseriousworldwideproblembecauseitcauseshighlossesinpre-andpostharvest freshfruitcrops. ThehigheconomiclossesassociatedwithBotrytisinfectionrepresentsagrowing burdenfortheagriculturalindustry[1]. Toreducethiseffect,aseriesofcontrolmechanismshave been developed, the application of chemical fungicides being the most spread and more used [2]. Currently,thefungicidesavailabletocontrolB.cinereaongrapevinesarehydroxianilides(fenhexamid), anilinopyrimidines(cyprodinilandpyrimethanil),dicarboximide(iprodione),carboxamides(boscalid), strobilurin, phenylpirroles (fludioxonil) and some inhibitors of ergosterol synthesis [3]. However, despitethevarietyofactionmechanismsofthesechemicalfungicidestheirindiscriminateusehasled Molecules2019,24,1239;doi:10.3390/molecules24071239 www.mdpi.com/journal/molecules Molecules2019,24,1239 2of14 totMheoleacuplpese 2a01r9a,n 2c4,e xo FfOrRe PsEisEtRa nREtVisIEoWla tes. Thisundesirableoutcomehaspromptedthesearchofn2 eowf 14a nd effectivefungicideagents,mainlyfromnaturalresources[4–7]. appearance of resistant isolates. This undesirable outcome has prompted the search of new and effective Eugenol (4-allyl-2-methoxyphenol) (1) is a major component of essential oil isolated from fungicide agents, mainly from natural resources [4–7]. the Eugenia caryoplyllata. Much attention has been dedicated to this molecule because it exhibits Eugenol (4-allyl-2-methoxyphenol) (1) is a major component of essential oil isolated from the manydifferentbiologicalactivities,suchasanalgesic[8,9],antimicrobial[10,11],antifungal[12,13], Eugenia caryoplyllata. Much attention has been dedicated to this molecule because it exhibits many antioxidant[14], anti-inflammatory[15], anti-carcinogenic[16], anti-mutagenicandevenrepellent different biological activities, such as analgesic [8,9], antimicrobial [10,11], antifungal [12,13], antioxidant pro[p1e4]r,t aiensti[-1in7f,l1a8m].matory [15], anti-carcinogenic [16], anti-mutagenic and even repellent properties [17,18]. VarVioaruiosusst usdtuidesieso fotf htehea natniftiufunnggaall aaccttiivviittyy ooff eeuuggeennool laanndd ssoomme eaannalaolgougeuse s(F(igFuigreu r1e) 1a)gaaignasitn st phypthoyptaotphaothgoegneinciac nadndh huummaann ffuunnggii,, hhaavvee bbeeenen rerpeoproterdte [d19[–1295–]2. 5]. Figure1.Chemicalstructureofeugenol(1),isoeugenol(2)andsafrole(3). Figure 1. Chemical structure of eugenol (1), isoeugenol (2) and safrole (3). Zemeketal.[19]reportedthat1isalmostinactiveagainstSaccharomycescerevisiae,Candidaalbicans Zemek et al. [19] reported that 1 is almost inactive against Saccharomyces cerevisiae, Candida albicans andAspergillusniger(MICsaround3000ppm),while2exhibitsamoderateinhibitoryeffectonthe and Aspergillus niger (MICs around 3000 ppm), while 2 exhibits a moderate inhibitory effect on the same samfuenfgui nwgiithw MitIhCsM raICngsinragn bgeitnwgeebne 1tw00e aennd1 20500 apnpdm 2in5 0boptph mdiliuntiobno tmhedthiloudtsi.o Onnm theeth oothdesr. hOanndt, hKeuoboth er hanedt ,aKl. u[2b0o] eretpaolr.t[e2d0 ]threatp o1 rpteodssethssa tm1opdoersastees sacmtivoidtye raagtaeinasctt iSv. icteyreavgisaiaine, sCtaSn.dciedrae vsuisbitailei,s,C Paintydriodsaposruubmti lis, Pityorvoaslep, oarnudm Poevnaicleil,luamn dchPryensoigceilnluumm, cwhirtyhs oMgIeCnsu mbe,twwietehn M10I0C tsob 8e0t0w pepemn 1i0n0 btooth8 0d0iluptpiomn imnebthoothdsd wiliuthti on mesthhaokdinsgw, Pit. hovsahlea bkeiinngg ,thPe. omvoaslet sbeenisnitgivteh feunmguoss;t 1s aennds i3t ievxehifbuitn mguosd;er1ataen adcti3vietxy haigbaiitnmst oCd. aelbraictaensa, ci.tei.v, ity agaminesatsuCr.eadl bMicIaCnss ,wi.eer.e, m80e0a asnudr e2d00M pIpCms, wreesrpeec8t0iv0ealyn [d212]0; 03 pisp amcti,vree sapgaeicntsivt eSl. yce[r2ev1i]s;ia3e iast a2c0t0i vpepamg a[2in2]s. tS. cereEvuisgieaneoalt h2a0s0 alpsop msho[2w2n] .aEctuivgietyn aoglahinasst aAlsltoersnharoiaw snp. aacntdiv Pit. ycharygsaoignesntuAm,l tbeurnt aisr iianascpt.ivaen adgPai.ncsht rAy.s ongigeenr,u m, butBiostriynoascpthiaveeriaa grhaoidnisnta Aor. nRihgizero,ctBonotiar ysops. pinh aaegraiar drhifofduisnioano arsRsahyizs o[c2t3o]n. i asp. inagardiffusionassays[23]. Recently, it has been found that 1 exhibits effective antifungal activity against Aspergillus, Recently, it has been found that 1 exhibits effective antifungal activity against Aspergillus, Penicillium, Emericella and Fusarium spp., at concentrations between 100 to 150 ppm. This activity has Penicillium,EmericellaandFusariumspp.,atconcentrationsbetween100to150ppm. Thisactivityhas been attributed mainly to the phenolic group [24]. beenattributedmainlytothephenolicgroup[24]. In previous work, we have assessed the antifungal properties of a series of phenylpropanoids Inpreviouswork,wehaveassessedtheantifungalpropertiesofaseriesofphenylpropanoids including eugenol, safrole and some synthetic derivatives against a panel of opportunistic pathogenic includingeugenol,safroleandsomesyntheticderivativesagainstapanelofopportunisticpathogenic fungi humans. One of these derivatives, 4-allyl-2-methoxy-5-nitrophenol, possesses a high activity on C. fungihumans. Oneofthesederivatives,4-allyl-2-methoxy-5-nitrophenol,possessesahighactivity albicans and non-albicans Candida spp., Cryptococcus neoformans and dermatophytes. Additionally, it was onC.albicansandnon-albicansCandidaspp.,Cryptococcusneoformansanddermatophytes. Additionally, shown that this molecule did not bind to the main sterol of the fungal membrane up to 250 ppm [25]. it was shown that this molecule did not bind to the main sterol of the fungal membrane up to However, the antifungal activity of eugenol against B. cinerea has been barely studied. The effect of 250epugpemno[l2 a5n].d its essential oils against four apple pathogens, including B. cinerea, have been evaluated in vitHroo awnedv ienr ,vtivhoe [a2n6t].i fTuhneg MalICac vtiavluitey doefteerumgiennedo lfoarg eauingsetnBol., cininceorrepaohraatsedb eine nmbaaltr eexlytrascttu adgiaerd m. Tedhieuemff, ect ofewuagse 2n0o0l0a pnpdmit, swehsesreenatsi ainl othiles saagtuarinatsetdf oautmroasppphleerpe aotfh vooglaetnilse, einugcleundoiln ag coBm.cpinleetree ian,hhiabviteiobne oefn meyvcaelluiaalt ed invgirtorowtahn odf ifnouvri pvaoth[2o6g]e.nTs hweasM oIbCtaivnaeldu aet d15e0te µrLm oinf vedolaftoilre eeuuggeennooll ,pienr clioterrp oofr aaitre vdoilnummea. Nltoe xeftfreacct toang ar medthieu gme,rmwiansa2ti0o0n0 opf palml t,ewstehde rpeaatshoingetnhse asta rtouormat etedmaptmeroatsuprhe ewreaso ffovuonlda tfioler eeuuggeennool l[2a6c].o mpleteinhibition ofmyceRlieaclegnrtolyw, tthheo ifnf voiutrrop aactthivoigtye nofs ewuagsenoobl toanin Be.d cianter1e5a0 hµasL boefenv osltautdilieede.u Tgheen IoCl5p0 veralluitee mroefasauirrevdo olunm e. Nomefyfceecltiaol nratdhiealg gerromwitnha otifo Bn. ocifnaerlleat ewstaesd 3p8.a6t hppomge; nasnadt nroo obmioatcetmivpitye raagtuairnestw caosnifdoiuan gderfmorineautigoenn wola[s2 6]. obRseercveendt.l yE,uthgeeninol viintrdoucaecst ivthitey goefneeuragteionno loofn HB2.Oc2i naenreda hinacsrebaeseens sat ufrdeiee dC.aT2+h ecoInCcenvtraaltuioenm ine atshuer ed 50 cytoplasm. These results strongly support the idea that the antifungal activity of eugenol is due to onmycelialradialgrowthofB.cinereawas38.6ppm;andnobioactivityagainstconidiagermination membrane binding and permeability alteration, leading to destabilization and disruption of the plasma wasobserved. EugenolinducesthegenerationofH O andincreasesafreeCa2+ concentrationin 2 2 membrane [27]. thecytoplasm. Theseresultsstronglysupporttheideathattheantifungalactivityofeugenolisdue Herein, we report the synthesis of a series of eugenol derivatives (Figure 2), six of them new tomembranebindingandpermeabilityalteration,leadingtodestabilizationanddisruptionofthe compounds (8-13), and their evaluation as inhibitors of mycelial growth of a virulent and plasmamembrane[27]. Molecules2019,24,1239 3of14 Herein, we report the synthesis of a series of eugenol derivatives (Figure 2), six of them Molecules 2019, 24, x FOR PEER REVIEW 3 of 14 new compounds (8–13), and their evaluation as inhibitors of mycelial growth of a virulent and mumltiudltriudgru-rge-rseissitsatnanttn nataitvivee isisoolalattee ((PPNN22)).. AA rreellaattiioonnsshhipip bbeetwtweeene nthteh echcehmemicaicl asltrsutrcutucrteus reosf othfetshee se comcopmouponudnsdasn adndth tehierira acctitviviittiieess iiss ddiissccuusssesedd. . FiguFrigeu2r.e C2.h Cehmemicaiclasl tsrturucctuturreess ooff ssyynntthheessizizeedd eueguegneonl odledrievraitvivaetsiv. es. 2. Results 2. Results A series of eugenol derivatives have been synthesized and their antifungal properties have A series of eugenol derivatives have been synthesized and their antifungal properties have been beenevaluated(seeFigure2). Thesynthesisandspectroscopiccharacterizationofcompounds4–7, evaluated (see Figure 2). The synthesis and spectroscopic characterization of compounds 4–7, and 14–17 andha1v4e– b1e7ehn apvreevbioeuesnlyp dreesvciroibuesdl y[2d5,e2s6c].r Iinb ethdis[ 2w5o,2rk6,] .neIwn cthomispwouonrkd,s n8–e1w3 hcaovme pbeoeunn sdysnt8h–e1si3zehda avnedb ae en synftuhlle ssipzeecdtraonscdopaicfu cllhaspraecctetrroizsactoiopni cisc hgairvaecnt.e rEiuzagteinoonl idsegriivvaetniv.eEsu 8g, en10o ladnedr i1v1a twiveerse 8o,b1t0aiannedd 1fr1owme re obt4a-ianlelydl-f2r-ommet4h-oaxlyly-6l--2n-imtroepthhoenxoyl- 6(7-n) iwtriothp hheignho lre(7ac)twioint hyiheilgdhs (r5e5a–c8t0io%n).y Tiehled sre(d5u5c–t8io0n% o).f Tarhoemraetdicu cntiitoron of arogmroautipc ninit r7o agnrdo u11p giniv7esa anndili1n1esg i8v easnda n1i2li nweisth8 7a0n adn1d2 4w5 i%th o7f0 reaancdtio4n5 %yieoldf,r ereascptieocntivyeileyl.d F,irneaslplye, ctthive ely. Finaaclelyty,ltahtieona coeft y8l aatniodn 1o2f l8eaadnsd to1 29 leanadd s1t3o w9iathn d701%3 wanidth 5730%% reaancdtio5n3 %yierleda, crteisopnecytiievledly,. rAeslpl ethcetisvee ly. Allstyhnetsheesseysn wtheeres ecsarwrieedre ocuatr froilelodwoiuntg fsotallnodwarindg prsotacnedduarreds. procedures. TheThaen atniftuifnugngaall aaccttiivviittyy oof feueugegneonl oalndan idts ditesridvaetriivveas twivaess swtuadsieds tuusdiniegd PNus2i,n ag rePsNist2a,nta Broetrsyistitsa nt cinerea native isolate. This isolate was obtained from cherry fruit and presents resistance to fenhexamid, Botrytis cinerea native isolate. This isolate was obtained from cherry fruit and presents resistance iprodione, pyrimethanil and boscalid. The virulence of this isolate was assessed using a tomato and the tofenhexamid,iprodione,pyrimethanilandboscalid. Thevirulenceofthisisolatewasassessedusing results are shown in Figure 3. atomatoandtheresultsareshowninFigure3. Molecules2019,24,1239 4of14 Molecules 2019, 24, x FOR PEER REVIEW 4 of 14 Molecules 2019, 24, x FOR PEER REVIEW 4 of 14 Figure3.VirulenceassayofdamageproducedbyBotrytisontomatoafterinoculatingfruitwith10µL Figure 3. Virulence assay of damage produced by Botrytis on tomato after inoculating fruit with 10 µL of ofconidiasuspension(2.5×106conidia/mL)andincubatedat22◦C.Gamborgmediumwasused conidia suspension (2.5 × 106 conidia/mL) and incubated at 22 °C. Gamborg medium was used as negative asnegativecontrol,whereas7ACwasusedaspositivecontrol.Acronyms:B05.10,correspondstoa control, whereas 7AC was used as positive control. Acronyms: B05.10, corresponds to a model isolate; Figure 3. Virulence assay of damage produced by Botrytis on tomato after inoculating fruit with 10 µL of moPdNel2i,s coolarrtees;pPoNnd2,s ctoor rae smpuolntid-rsestiostaanmt unlattii-vree siissotalantet;n 7aAtiCve, cisoorrlaestep;o7nAdsC t,oc oar rneastpivoen dissoltaotea rneasitsivtaenits tool ate conidia suspension (2.5 × 106 conidia/mL) and incubated at 22 °C. Gamborg medium was used as negative resfisetnahnetxatomfide n(ghieftx gaemntildy p(groifvtidgeedn tblyy Dpiraogvniodfreuditb Sy.AD. Siaagntniaogforu, CithSil.eA);. dSpain mtieaagnos ,dCayhsi lpeo);std ipnoicmuleaatinosn.d ays control, whereas 7AC was used as positive control. Acronyms: B05.10, corresponds to a model isolate; postinoculation. PN2, corresponds to a multi-resistant native isolate; 7AC, corresponds to a native isolate resistant to Results shown in Figure 3 indicate that an important injury is produced on tomato fruits after four fenhexamid (gift gently provided by Diagnofruit S.A. Santiago, Chile); dpi means days post inoculation. daRyes suofl tsinsohcouwlantioinn Fwigituhr ea3ll intedstiecdat eistohlaatteas noifm Bp.o rctiannerteain. juThrye isdapmroadgeu ciesd pornoptoormtioantoalf rtuoi tsthaef ter fouprodsta-iynsocouflaitnioonc utilmatei oanndw thiethrefaolrle tweset emdayis coolnactleusdoe fthBa.t PciNne2r iesa a. vTirhuelendta amnda greesiisstapnrto npaotirvteio isnoalaltteo. the Results shown in Figure 3 indicate that an important injury is produced on tomato fruits after four post-inoculationtimeandthereforewemayconcludethatPN2isavirulentandresistantnativeisolate. days of inoculation with all tested isolates of B. cinerea. The damage is proportional to the Evaluation of Antifungal Activity of Eugenol and Eugenol Derivatives on Botrytis cinerea post-inoculation time and therefore we may conclude that PN2 is a virulent and resistant native isolate. EvaluationofAntifungalActivityofEugenolandEugenolDerivativesonBotrytiscinerea The antifungal activity of eugenol and its derivatives was evaluated in radial growth measurements Einv Tamlhuaealtt-ioyanen aotsif ftA umnnetgidfauiulnmgaa.lc TAtihvcetii tvryeitsyuo olfft sE esuhugogewneonnl oainnl dF aEignuudgreen i4otls iDndderiecivraiatvteia vttheisav ote ntsh Beow etruaygstiesn ecovinl aedlreueraai vteadtiveins afrfaecdti malycgerloiawl th megarsouwrethm oefn Bts. cininemreaa litn- yae acsotncmenetdraiutiomn.-deTpheendreenstu mltsansnheorw. Tnhein peFricgeunrtaeg4e oinf dgircoawtetht hinahtibtihtieone uwgaesn ol The antifungal activity of eugenol and its derivatives was evaluated in radial growth measurements derdivetaetrimveinseadf fbeyc tmmeayscuerliinagl gthroe wmtyhceolfiaBl .gcroinwerthea inin thaec aobnscenencet raantdio pnr-edseepnceen odfe dnitffmeraenntn ceorn.cTehnetrpateiorcnesn otfa ge in malt-yeast medium. The results shown in Figure 4 indicate that the eugenol derivatives affect mycelial ofggterrsootwwedtt hhc ooinmf hBpi.bo ucitinniodernse aw( sieanes adE cexotpenercrmeimnitnernaettdiaolb nsy-edcmetpieoeanns)d.u eRrnient sgmulttahsn enoembrt.ay iTcneheledi a plfoegrrrc oethnwetat hgmeio nostft hgaecrotaiwvbest hec noincmehpiaboniutdinodnps r weasareesn ce shown in Figure 5. ofddieftfeerrmenintecdo bnyc emnetraasutiroinngs tohfet mesytecedlicaol gmropwouthn idns th(see aebEsexnpcee rainmde pnrteaslesneccet ioof nd)i.ffRereesnut lctosnocbetnatirnateidonfso orft he motsetstaecdt ivcoemcopmoupnodus n(dsesea Erexpsheroimwennitnal Fsiegcutiroen5).. Results obtained for the most active compounds are shown in Figure 5. Figure 4. Effect of eugenol derivatives on hyphae growth of Botrytis cinerea in solid media. Photographs of hyphal growth of B. cinerea in the absence and presence of different concentrations of 11, 14 and 15 a fter 48 h of incubation. FigFuirgeur4e. 4E.f Efeffcetcot foef ueuggeennoolld deerriivvaattiivveess oonn hhyypphhaae egrgorwowtht hofo BfoBtroyttriys tciisnecrineae rinea sionlidso mlidedmiae. Pdhiao.toPghroatpohgsr oafp hs ofhhyypphhaall ggrroowwthth ofo Bf.B c.inceirneear iena tihne tahbeseanbcsee anncde parnedsepncree soefn dcieffeorfendti fcfoenrceennttcraotniocnesn otrf a1t1i,o 1n4s aonfd1 115, a1f4tear n4d8 15 aftehr o4f8 inhcuobfaitniocnu.b ation. MoleMcuolelesc2u0le1s9 2,02149,, 12243, 9x FOR PEER REVIEW 5 of5 1o4f 14 Figure5.EffectofeugenolderivativesonmycelialgrowthofBotrytiscinereainsolidmedia.Percentage ofinFhigibuirteio 5n. Eofffemcty ocfe eliuaglegnroolw dethrivdaettiverems oinn emdyacfetleiarl 4g8rohwotfh ionfc Buobtarytitoisn cianterdeaif fine rseonlitdc monecdeian.t rPaetricoennsta:g(Ae o)f1 4, (B)1in5h,i(bCit)io1n1 ,o(fD m)yBcCel-ia1l0 g0r0ocwotmh mdeeterrcmiailnceodm apfteoru 4n8d hu osfe dincausbcaotinotnr oalt. dEiaffcehrebnat rcorenpcernetsreantitosntsh: e(Aa)v 1e4r,a (gBe) of atle1a5s, t(Cth) r1e1e, (iDnd) BeCpe-1n0d00e ncotmexmpeerrciimal ecnomtsp±ousntdan udseadrd asd ceovnitartoilo. nEa.c(ha –bfa)r irnedpriceasetnests stihgen aivfiecraangte dofi fafte rleeansct es betwthereene ienadcehpceondmepnot uexnpderciomnecnetns t±r asttaionnd,aredv adleuvaiatetidonb. y(aT–uf)k ienyd’iscatteesst ;sipgn<if0ic.0a5n.t differences between each compound concentration, evaluated by Tukey’s test; p ˂ 0.05. 3. Discussion 3. Discussion The antifungal activity was evaluated by the measurement growth inhibition. The fitting of percentaTgheeo fanintihfuibnigtaiol nacttoivaitdy owsea-sr eesvpaolunasteedcu brvye tahlel omwesatshuereombetennt tgioronwotfhI Cinhivbiatlioune.s .TThhe efcitatilncgu laotfe d 50 valupeesrcoefnItCage foof rinahllibaistsioany etdo cao dmopseo-ruenspdosnasree cguirvveen ailnloTwasb tlhee1 oabntdenrtaionng eoff rIoCm50 v3a1lutoes4. 4T0hpe pcmalc.ulated 50 values of IC50 for all assayed compounds are given in Table 1 and range from 31 to 440 ppm. Table1.IC valuesofeugenolanditssyntheticderivativesoninvitromycelialgrowthofB.cinerea. 50 ThesTeabvlael u1.e IsCw50 evraelueesst iomf eautegdenboyl amnde aitssu sryinntghetthice dceorliovnatyivdesia omn einte vritarfot emry4c8elhiaol gfrionwcuthb aotfi Bo.n c.inerea. These values were estimated by measuring the colony diameter after 48 h of incubation. EugenolDerivatives(fromFigure2) IC (ppm) Eugenol Derivatives (from Figure 2) IC50 (pp5m0) 1 1 149 149 4 4 109 109 5 5 95 95 6 6 80 80 7 62 7 62 8 I* 8 I* 9 440 9 440 10 221 10 221 11 45 11 45 12 D* 12 13 103 D* 13 14 31 103 14 15 39 31 15 16 108 39 16 17 311 108 BC-10001 (7positive control) 140 311 BC-1000(*pI:o isniaticvtievec;o *nDt:r doel)compose. 140 *I:inactive;*D:decompose. Molecules2019,24,1239 6of14 MoTlehcuelesr e20s1u9l, t2s4, ixn FdOiRc aPtEeERth RaEtVtIEhWe chemical modification of eugenol induces important cha6n ogf e1s4 on theantifungalactivityofthiscompound. Theantifungalactivityofeugenolhasbeenattributedto The results indicate that the chemical modification of eugenol induces important changes on the disruptionofthefungalmembranestructure,mainlybyaccumulationofeugenolinthephospholipid antifungal activity of this compound. The antifungal activity of eugenol has been attributed to disruption bilayer due to its lipophilic character. This interaction alters fluidity and permeability of fungal of the fungal membrane structure, mainly by accumulation of eugenol in the phospholipid bilayer due to membranesandaffectsthefunctionofimportantmembrane-boundenzymeorprotein[27]. its lipophilic character. This interaction alters fluidity and permeability of fungal membranes and affects Inthiswork,thechemicalmodificationofeugenolincludeschangesintheexistingfunctional the function of important membrane-bound enzyme or protein [27]. groups(Figure2,compounds4–6)andtheadditionofnitrogen-containinggrouponthearomaticring In this work, the chemical modification of eugenol includes changes in the existing functional (Figguroruep2s, (cFoimgupreo u2,n cdosm7p–o1u7n).dIsn 4t–h6e) afinrdst tghero audpd,itiisoonm oef rnizitarotigoenn-ocofnthtaeindinogu bglreoubpo nodn (tchoe marpoamreatcich reimngi cal stru(Fcitguureres o2,f ccoommppoouunnddss 71–a1n7)d. I4n, Fthigeu friers2t )ghroasupb,e eisnomcaerrriizeadtioonu to,fa nthdet hdeoruebilse ablomnods t(cnoomepffaercet cohnemeuicgaeln ol lipostprhuciltiucriteys. oHf coowmepvoeur,ntdhsi 1s asmnda 4ll, sFtirguucrteu 2r)a hlams obedeinfi ccaartiroiend roeudtu, acneds tthheerIeC is5 0alvmaoluste nforo emffe1ct4 o9nt oeu1g0e9npolp m. Inolitphoeprhwiliocirtdys. ,Haonwienvcerre, atsheiso sfmgarlol wstrtuhctiunrhailb mitoiodnifiicsaitniodnu rceedduciens ethueg eICn5o0 lvdaleurei vfraotmiv e1s49b yto c1o0n9j uppgmat.i oInn of theostihdeer wchoaridns,d aonu ibnlcerebaosne dofw girtohwtthhe inahroibmitiaotnic iss yinstdeumce.dA isn leipuogepnhoill idcietryiviastiqvuesit ebys icmoniljaurg,atthioeno obfs tehrev ed incsriedaes echoanint hdoeuabnltei fbuonngda wlaitcht itvhiet yarmomuastticb seyesxtepmla. iAnse dlipionptheirlmicistyo ifs aqnuiated sdimitiiolanra, lthme eocbhsearnviesdm inbcyrewashe ich moolenc tuhlee san4t–if6uancgtasl oanctifvuintyg musu.sAt bpe oesxspilbalieneedx pinla tneramtios nofi sant haeddenitihoannacl emdeMchiacnhiasmel -btyyp wehriecahc mtioonlectuhlaets c4o–uld 6 acts on fungus. A possible explanation is the enhanced Michael-type reaction that could occur between occurbetweenthesidepropenylchainandbiologicalnucleophiles. Thereactionmechanismwouldbe the side propenyl chain and biological nucleophiles. The reaction mechanism would be like that likethatproposedformenadione,alipid-solublemoleculethatcauseschangesinplasmamembrane proposed for menadione, a lipid-soluble molecule that causes changes in plasma membrane permeability. Briefly,menadioneandcompounds4–6mightreactwithnucleophilicmoleculesthrough permeability. Briefly, menadione and compounds 4–6 might react with nucleophilic molecules through a aMichael-typereactiongeneratinganintermediatereactivespeciesthatlaterisstabilizedbyreaction Michael-type reaction generating an intermediate reactive species that later is stabilized by reaction with withanacid. Acomparisonofthismechanism,formenadioneandisoeugenol,isdepictedinScheme1. an acid. A comparison of this mechanism, for menadione and isoeugenol, is depicted in Scheme 1. Scheme1.Reactionmechanismofmenadioneandisoeugenolwithbiologicalnucleophiles. Scheme 1. Reaction mechanism of menadione and isoeugenol with biological nucleophiles. Further reductions are reached by changing the hydroxyl group to acetyl (5) or methoxy (6) Further reductions are reached by changing the hydroxyl group to acetyl (5) or methoxy (6) groups, groups,i.e.,bydecreasingthepolarityofisoeugenol. i.e., by decreasing the polarity of isoeugenol. On the other hand, the addition of nitrogen-containing group on the aromatic ring (Figure 2, On the other hand, the addition of nitrogen-containing group on the aromatic ring (Figure 2, compounds 7–17) produces different effects on the antifungal activity. Results shown in Table 1 compounds 7–17) produces different effects on the antifungal activity. Results shown in Table 1 indicate indicatethatintroductionofnitrogroupdecreasestheIC valueinafactorof2.5–4.5(compounds7, 50 that introduction of nitro group decreases the IC50 value in a factor of 2.5–4.5 (compounds 7, 14 and 15 in 14and15inTable1). However,thiseffectdisappearswhenthenitrogroupisreplacedbyamineor Table 1). However, this effect disappears when the nitro group is replaced by amine or acetamide groups acetamidegroups(compareIC valuesof7and8,and11and12,respectively). Consideringthatthe (compare IC50 values of 7 and5 08, and 11 and 12, respectively). Considering that the polarity of nitro polarityofnitrocompoundsishigherthanthatofrelatedeugenolderivatives,theantifungalactivity compounds is higher than that of related eugenol derivatives, the antifungal activity of these ofthesecompounds,associatedtolipophilicconcentrationinthemembrane,shouldbelowerthan compounds, associated to lipophilic concentration in the membrane, should be lower than that shown by thaetusgheonwoln. Tbhyeereufgoreen, oald.dTihtieorneaflo mree,cahdadniistimosn amlumset cbhea ncoisnmsidsemreuds ttob eexcpolnaisni dtehree dlowtoeestx pvalaluinest hoef lIoCw50 est valoubetsaionfedIC f5o0r othbetasein ceodmfpoorutnhdess. eTchoem npitroou gnrdosu.pT ihs evneriytr ostrgornogu peleicstrvoenr ywsitthrodnragweilnegc tarnodn mwiigthhtd rreaawcti ng anddimrecigtlhy twrietha cdtoduibrleec btloyndws istuhbdstoituubtelde wboitnh dosthseur besletcittruotne dwiwthidthrawotihnegr geroleucptsr.o Inn wadidthitdiorna,w it ihnags bgereonu ps. Inasdhodwitino tnh,aitt ahroamsbaetiecn nisthroo wconmtphoautnadrso pmroadtiuccnei rteroacctiovme opxoyugnedn ssppercoidesu (cReOrSe)a icnt iavne eonxzyygmeantiscp-meceideisat(eRdO S) in apnroceenszs y[m28]a.t Bico-tmh epdroiacteesdsesp craonc elesasd[ 2to8 ]a. cBheomthicaplr doicsersuspetsiocna onf tlheae dmteomabrcahnee mpailciasalddei. sTruhep tdiioffneroenftt he meamctbivraitniees pshaloiwsand be.y Tthhee ndiitfrfoe reeungtenaoctl idveitriievsatsihvoesw mnibghytt bhee antittrribouetuedg eton othled leorciavtaiotinv eosf tmheigseh ctobmepaotturnibdust ed totihne tlhoec amtioemnborfatnhee soer ceolmecptroounnicd sefifnectth aeffmecetmingb rathnee eofrfieclieenctcryo noifc beofftehc traeaffceticotninsg. Fthigeuerfefi c6i ednecpyicotsf bao th reasccthioenmsa.tFici greuprrees6endteaptiiocnt sofa dsicffheermenat tloiccarteiponres soefn btiaotaicotniveo fcodmifpfeoruenndtsl oinctaot itohen sfuonfgbuiso caecllt iwvealcl.o mpounds The compound-position and orientation in the membrane is determined by the chemical structure intothefunguscellwall. of the adsorbed molecule. Eugenol and derivatives must orientate themselves with the side alkyl chain Thecompound-positionandorientationinthemembraneisdeterminedbythechemicalstructure parallel to the membrane chains, and the hydroxyl group anchored to the polar surface. Consequently, oftheadsorbedmolecule. Eugenolandderivativesmustorientatethemselveswiththesidealkylchain the nitro group in compound 7 is located near the surface, whereas in compound 14 the nitro group is paralleltothemembranechains,andthehydroxylgroupanchoredtothepolarsurface. Consequently, buried into the palisade. In the latter, the spatial arrangement could enhance the nucleophilic attack of thenitrogroupincompound7islocatednearthesurface,whereasincompound14thenitrogroupis double bonds on the electrophilic nitro groups, affecting the membrane permeability and probably the buriedintothepalisade. Inthelatter,thespatialarrangementcouldenhancethenucleophilicattackof transport of electrons. A similar configuration should be adopted by 15. This mechanism of action Molecules2019,24,1239 7of14 doublebondsontheelectrophilicnitrogroups,affectingthemembranepermeabilityandprobablythe traMnsolpecourlets o20f19e,l 2e4c, txr oFOnRs .PEAERs iRmEVilIaEWrc onfigurationshouldbeadoptedby15. Thismechanism7o fofa c14t ion reducesIC valuesfrom149(eugenol)to62,31and39ppmfor7,14and15,respectively.Thepresence 50 oforetdhuercegsr IoCu5p0 vsailnueths efraormo m14a9t i(ceurginegnoml) atoy 6a2ff, e3c1t athnde r3e9a pcptimvi tfyoro 7f, n1i4t raondco 1m5,p roesupnedctsiveeiltyh.e Trhbey pmreosednicfye ing of other groups in the aromatic ring may affect the reactivity of nitro compounds either by modifying the theelectronicdistributionorthelocationinthepalisade. Forexample,thereplacementofthehydroxyl electronic distribution or the location in the palisade. For example, the replacement of the hydroxyl groupbyacetyldecreasesstronglytheactivityofnitroeugenolderivatives,i.e.,comparesIC values 50 of7graonudp 1b0y, a1c4etaynl dde1c6re,a1s5esa nstdro1n7g.lyT thhees aecrtievsiutylt osfc naintrobeeuagtetnrioblu dteerdivtaotivthees, hi.ieg.,h ceosmtpealercetsr IoCn5i0c vaatlutreasc otifo 7n of and 10, 14 and 16, 15 and 17. These results can be attributed to the highest electronic attraction of the thehydroxylgroup,whichenhancesthenucleophilicreactionwithdoublebonds. hydroxyl group, which enhances the nucleophilic reaction with double bonds. Figure 6. Schematic representation of nitro compounds 7 and 14 location in cell membrane. Figure6.Schematicrepresentationofnitrocompounds7and14locationincellmembrane. The compound-position and orientation in the membrane is determined by the chemical structure Thecompound-positionandorientationinthemembraneisdeterminedbythechemicalstructure of the adsorbed molecule. Eugenol and derivatives must orientate themselves with the side alkyl chain oftheadsorbedmolecule. Eugenolandderivativesmustorientatethemselveswiththesidealkylchain parallel to the membrane chains, and the hydroxyl group anchored to the polar surface. Consequently, paralleltothemembranechains,andthehydroxylgroupanchoredtothepolarsurface. Consequently, the nitro group in compound 7 is located near the surface, whereas in compound 14 the nitro group is thenitrogroupincompound7islocatednearthesurface,whereasincompound14thenitrogroupis buried into the palisade. In the latter, the spatial arrangement could enhance the nucleophilic attack of buriedintothepalisade. Inthelatter,thespatialarrangementcouldenhancethenucleophilicattackof double bonds on the electrophilic nitro groups, affecting the membrane permeability and probably the doublebondsontheelectrophilicnitrogroups,affectingthemembranepermeabilityandprobablythe transport of electrons. A similar configuration should be adopted by 15. This mechanism of action transportofelectrons. Asimilarconfigurationshouldbeadoptedby15. Thismechanismofaction reduces IC50 values from 149 (eugenol) to 62, 31 and 39 ppm for 7, 14 and 15, respectively. The presence reducesIC valuesfrom149(eugenol)to62,31and39ppmfor7,14and15,respectively.Thepresence of other g50roups in the aromatic ring may affect the reactivity of nitro compounds either by modifying the ofoeltehcetrrognrioc udpisstriinbuthtieona roorm thatei clorcinatgiomn ainy athffee cptatlihseadree.a cFtoirv ietxyaomfpnleit,r othceo rmepploacuenmdesnet itohf etrhbe yhymdorodxifyyl ing thegeroleucptr boyn iaccedtiyslt rdiebcurteiaosneso srtrtohneglloyc tahteio anctiinvitthy eopf nalitisroaedueg.eFnoorl edxearimvaptlive,esth, ie.er. ecpolmacpeamreesn ICto50f vtahleuehsy odfr 7o xyl groaunpd b1y0, a1c4e atynldd 1e6c, r1e5a saensds 1tr7o. nTghleyset hreesauclttsiv ciatyn obef naitttrriobeuutegde ntoo lthdee rhiivgahteisvte esl,eic.ter.ocnoicm apttararectsioInC 5o0f vthaelu es of7hyadnrdox1y0l, g1r4ouapn,d w1h6i,ch1 5enahnadnc1e7s. tThhe ensueclreeospuhltislicc arenacbteioant twriibthu dteodubtole tbhoenhdisg. hestelectronicattractionof thehydOronx tyhleg ortohuerp h,awnhdi,c thhee nchheamnicceasl rtheaectnivuictyle oofp thhiel incitrreoa cgtrioounpw dietchredaoseusb blye bsuobnsdtistu.tion of the ortho hyOdrnoxtyh egrootuhpe rbyh aa nmde,ththoxeyc ghreomupic (aclomrepaoctuinvditsy 7o afntdh 1e1n) dituroe tgor iotsu lpowdeerc preoasisteivseb iyndsuucbtisvtei teuftfeioctn, bouft the ortiht otahkeysd trhoex myoglreocuulpe dbeyepaemr ient hthoex myegmroburapne(c. oTmhepseo utwnod osp7paonsidte1 f1ac)tdoruse intoduitcse lao swliegrhtp doescirteivaseei onnd uthcet ive effeICct50, vbaultueit. takesthemoleculedeeperinthemembrane. Thesetwooppositefactorsinduceaslight Thus, our results indicate that the growth inhibition observed for eugenol derivatives evaluated in decreaseontheIC value. 50 this work could be a consequence of two different and parallel mechanisms: (i) accumulation in fungal Thus,ourresultsindicatethatthegrowthinhibitionobservedforeugenolderivativesevaluated membrane by lipophilic interaction and (ii) Michael-type reactions between eugenol derivatives and inthisworkcouldbeaconsequenceoftwodifferentandparallelmechanisms: (i)accumulationin membrane components or ROS production by enzymatic reduction of nitro compounds. fungalmembranebylipophilicinteractionand(ii)Michael-typereactionsbetweeneugenolderivatives The second mechanism seems to be more important and probably these chemical reactions induce andmembranecomponentsorROSproductionbyenzymaticreductionofnitrocompounds. the production of reactive oxygen species. It is known that ROS are generated in cells by a variety of Thesecondmechanismseemstobemoreimportantandprobablythesechemicalreactionsinduce processes associated with the normal function of cells or induced by the presence of exogenous cytotoxic theproductionofreactiveoxygenspecies. ItisknownthatROSaregeneratedincellsbyavariety substrates. In addition, plants produce high amounts of ROS to avoid fungus infection, and therefore the ofpinraobcileistys eosf apsasthoocgiaetne dto wreidthucteh tehen oRrOmS alelvfueln mctaiyo nbeo tfhcee clalsusoer oifn fduuncgeicdidbey eftfhecet p[2r9e]s. eTnoc eeluocfideaxtoeg tehniso us cythoytpooxtihcessuisb, sthtrea etfefse.ct Ionf athded mitoiostn a,cptilvaen ntsitrporeoudguencoel hdiegrhivaatmivoesu onnts RoOfSR pOroSdtuoctaiovno hidasf buenegnu asssiensfseecdt.i on, andFitghuerree 7fo srheotwhes tihnea bluilmityinoesfcpeantche oygieelndst omreeadsuucreedt hine RthOe Sablesevneclem aanyd bperetsheenccea uosf eniotfrof ucnomgipcioduenedfsf eacntd[ 29]. Tomeleuncaiddaiotneet hthisath iys puostehde assis a, tphoesietifvfeec ctoonftrtohle. Lmuomsitnaecstcievnecen iitsr ao emuegaesnuorel dofe rHiv2Oat2i vcoenscoenntRraOtioSnp orro dRuOcSt ion hasprboedeunctaiosnse. ssed. Figure7showstheluminescenceyieldsmeasuredintheabsenceandpresence ofnitrocompoundsandmenadionethatisusedasapositivecontrol. Luminescenceisameasureof H O concentrationorROSproduction. 2 2 MolecMuloesle2cu0l1e9s ,22041,91, 2243,9 x FOR PEER REVIEW 8 o8f o1f41 4 Figure 7. Effect of compounds 7, 11, 14 and 15 on production of reactive oxygen species by BotryFtiigsucirnee 7re. aE.fCfeocmt opf ocuonmdpsocuonndcse 7n,t r1a1t,i o14n sanwde r1e5 eoqnu parlotdoutchteioirnI oCf revaactliuvees ,owxyhgeerne asspemcieens abdyi oBnoetruytsies d 50 aspocsiniteirveae. cConomtroplowunadssa pcopnlcieedntaratt1io0npsp wmerfien eaqlucoaln ctoe ntthreaitri oInC5(0a ,vaanludesb, iwndheicraeates smtaetnisatdiciaolned iuffseerde nacse s positive control was applied at 10 ppm final concentration (a, and b indicate statistical differences withrespecttothenegativecontrol). with respect to the negative control). The results shown in Figure 7 indicate that nitroeugenol derivatives induce ROS production The results shown in Figure 7 indicate that nitroeugenol derivatives induce ROS production in in conidia in an amount equal or larger than that generated by menadione (positive control), conidia in an amount equal or larger than that generated by menadione (positive control), which is a whichisamodelcytotoxiccompoundthatinducesROSproductioninsidethecellbymitochondria model cytotoxic compound that induces ROS production inside the cell by mitochondria uncoupling uncoupling[30]. Interestingly,themagnitudeofROSproductionfollowsthesameorderofIC values, [30]. Interestingly, the magnitude of ROS production follows the same order of IC50 values, i.e., 1550 > 11 > i.e.,15>11>7. Inotherwords,theformationofROScorrelatesquitewellwiththeinhibitionactivity 7. In other words, the formation of ROS correlates quite well with the inhibition activity suggesting that suggestingthatnitrocompoundsareactingonthefungusmembranebygeneratingreactiveoxygen nitro compounds are acting on the fungus membrane by generating reactive oxygen species and by speciesandbyalterationofmembraneinasimilarwaytothatreportedforeugenolbothinfungiand alteration of membrane in a similar way to that reported for eugenol both in fungi and bacteria [31]. bacteria[31]. 4. Materials and Methods 4. MaterialsandMethods 4.1. Chemistry 4.1. Chemistry Unless otherwise stated, all chemical reagents were purchased with the highest commercially Unlessotherwisestated,allchemicalreagentswerepurchasedwiththehighestcommercially available purity (Merck, Darmstadt, Germany or Aldrich, St. Louis, MO, USA) and were used without availparbelveiopuusr iptyur(iMficeartciokn,.D Maremltisntga dpto,iGntesr mwaerney moreaAsuldrerdic ho,nS ta. LStouuairst-,SMciOen,tiUfiSc AS)MaPn3d awpperaerautuses danwdi tharoeu t prevuionucosrpreucrteifidc. aIRti ospne.cMtrae lwtinerge preocionrtdsewd earse thmine afislumr eodr KonBra pSetluleatsr ti-nS cai eNnictiofilect SImMpPa3cta 4p2p0a srpaetuctsroamnedtearr e unco(rTrheecrtmedo. SIcRiesnptiefcict,r Saawn eJoreser, eCcAor, dUeSdAa).s tmhaixn vafillumeso arreK eBxrppreeslsleedts inin camN−1. i1cHo-l eatnIdm 13pCa-cNtM42R0 ssppeecctrtrao wmeerete r (TherremcoordSecdie nint iCfiDc,CSla3 nsoJlousteio,nCsA a,nUd SreAfe)r.eνnmceadx vtoa ltuhees reasriedeuxapl preesaske dof iCnHcmCl−3 1a.t 1δH =- 7a.2n6d p1p3mC- aNnMd Rδ=s 7p7e.0ct0r a wereprpemco rfdore d1Hin aCnDd C13lC,s orleusptieocntisvealnyd, orenf ear eBnrcuekderto Athveanrcees id40u0a lDpiegaitkalo fNCMHRC slpeacttrδo=m7et.e2r6 p(Bprmukearn, d 3 3 δ=7R7h.0e0inpstpemttenfo, rG1eHrmaanndy)1,3 Cop,ererastpinegct iavte 4ly0,0o.1n MaHBrzu fkoerr 1AHv aanncde 140000.6D MigHitza lfNorM 13RC.s pCehcetmroimcael tsehrif(tBsr uarkee r, Rheirnesptoerttteedn i,nG δe prmpman ayn)d, ocopuepralitnign gcoantst4a0n0t.s1 (JM) aHrez gfiovren1 Hin aHnzd. S1i0li0ca.6 gMel H(Mzefrockr 1230C0-.3C00h emmesihca) lwsahsi futsseadr e repofrotre dcoilunmδnp cphmromanadtogcoraupphlyin (CgCc)o annsdta sniltisca( Jg)eal rpelagteivs eanndin HHF-z2.54S ifloirc athgine lla(yMere crchkro2m0a0t–o3g0ra0pmhye s(ThL)Cw).a s usedSfpoortsc owluerme dnecthecrtoemd oanto TgLraCp bhyy h(eCaCtin)ga nafdtesri lsipcraagyienlgp wlaittehs 2a5n%d HH2SFO-245 i4n fHo2rOt.h inlayerchromatography (TLC).SpotsweredetectedonTLCbyheatingaftersprayingwith25%H SO inH O. 2 4 2 Molecules2019,24,1239 9of14 Molecules 2019, 24, x FOR PEER REVIEW 9 of 14 4.2. Synthesis 4.2. Synthesis EuEguengeonlowl awsaiss oisloaltaetdedf rformomc lcolovveesse esssseennccee,, aaccccoorrddiinngg ttoo tthhee sstatannddaradrd pprorcoecdeudrue r[e32[3].2 S].ynSythnetshise soifs of newneewu geuegneonlodl edreirvivataitviveessa arree sshhoowwnn iinn SScchhememe e2. 2. H3CO O O NO2 10 c H3CO a H3CO b H3CO c H3CO HO HO HO O NO2 NH2 HN O 1 7 8 9 O d H3CO H3CO H3CO b c H3CO H3CO H3CO NO2 NH2 HN 11 12 13 O SchSecmheem2e. 2S: ySnytnhtheessisis ooff nneeww eeuuggeennolo dledreivraivtiavteisv. eCso.nCdoitniodnist:i o(an) sN:a(Na)ON3/aKNHOSO3/4, KSiHOS2/OH24O,S (1iO:12),/ rH.t. 25O.5 h(1; :1), r.t.(b5). 5Znh,; H(bC)OZOnN,HH4,C MOeOONHH, r4.t,. M5 he;O (cH) ,Arc.2tO., 5DhM;A(cP), CAHc22COl,2 rD.tM 2.A5 Ph,; (CdH) (2CCHl23)2rC.tO2, .d5imh;et(hdy)ls(uClpHh3a)t2eC, O, dimKe2CthOy3l,s ruelfpluhxa otev,erKn2igChOt. 3,refluxovernight. GeneralProcedures General procedures Reduction of nitroeugenol derivatives to anilines. Nitroeugenol derivatives 7 and 11 were Reduction of nitroeugenol derivatives to anilines. Nitroeugenol derivatives 7 and 11 were trantrsafnosrfmormededt otot hthee rreessppeeccttiivvee anainliinlien (e8 (a8nda n1d2, r1e2s,preectsipveelcyt)i vbeyl yth)eb fyolltohweinfogl plorwociendgurpe.r oZcne idnu proew. dZenr in pow(1d00e rm(1g0, 0prmevgi,opusrleyv itoreuastelyd twreiathte HdCwl i5th%H) aCnld5 %am)manodniuamm mfoormniautme (f1o mrmL)a twee(r1em adLd)ewd etroe aa dsdtirerdedt oa stirsroeldutsioonlu otifo nnitroofenuigtreoneoulsg (e7n, 2o0ls0 (m7,g2, 090.6 m× g10,−94 .m6o×l; 1101−, 140m0 molg;,1 41.,481 0×0 1m0−4g m,4o.4l)8 in× m1e0t−ha4nmolo (l5).0in–1m0 emthL)a.n ol (5.0T–h1e0 smolLu)ti.oTnh weasso lsutitriroend wata srosotmirr etedmapterroatoumre tfeomr p5 ehra, taunrde fcoorm5plhet,ea nddisacpopmeaprlaentcee doifs atphep esatarratnincge of thepsrtoadruticnt gwparso cdonufcirtmweads bcyo nTfiLCrm (AedcObEyt:Tn-LhCex(aAnec,O 1E:3t):.n T-hhee xreaancete,d1 :m3)i.xtTuhree wreaasc ftieltdermedi,x atnudre thwe assolfivletnetr ed, andevtahpeosroatlevde nint evvaacupuomra.t eTdhei ncrvuadceu ruemac.tiTonh epcrorudducet rweaacst idoinssoplrvoeddu icnt AwcaOsEdt i(s1s0o lmveLd) ainndA tchOe Eotrg(1an0icm L) andphthaeseo wrgaasn wicapshheads ewwitha sbwrinaes h(3e d× w10i tmhLb)r,i nderie(3d ×wi1th0 amnLh)y,ddrroiuesd Nwai2tShOa4 nahnydd vraocuusuNma evSaOporaantdedv. aTchueu m 2 4 pure product was obtained by CC. evaporated. ThepureproductwasobtainedbyCC. Acetylation reaction. Phenols 7, 8 and aniline 12 were reacted with acetic anhydride to give 10, 9, Acetylation reaction. Phenols 7, 8 and aniline 12 were reacted with acetic anhydride to give and 13, respectively, by the following synthetic procedure. To a stirred solution of phenol (100 mg, 5.6 × 10, 9, and 13, respectively, by the following synthetic procedure. To a stirred solution of phenol (10010m−4 g,m5o.6l) ×o1r 0−a4nimlinoel )o(1r0a0n ilminge, (140.408m ×g ,41.04−84 ×m1o0l)− 4inm odl)icihnlodriocmhleothroanmee th(1a5n em(1L5) mwLa)sw aadsdaeddd ed 4-N,N-dimethylaminopyridine (DMAP) (10 mg, 8.2 × 10−5 mol). Acetic anhydride (0.25 mL) was added 4-N,N-dimethylaminopyridine(DMAP)(10mg, 8.2 × 10−5 mol). Aceticanhydride(0.25mL)was and the reaction was left to continue at room temperature (1.5–2 h for phenols; 1.5 h for aniline). After addedandthereactionwaslefttocontinueatroomtemperature(1.5–2hforphenols;1.5hforaniline). this period, complete disappearance of the starting product was confirmed by means of the TLC (ethyl After this period, complete disappearance of the starting product was confirmed by means of the acetate: n-hexane 1:3). Aqueous potassium hydrogen sulphate solution (10%, 20 mL) was added, and the TLC(ethylacetate: n-hexane1:3). Aqueouspotassiumhydrogensulphatesolution(10%,20mL)was organic phase was extracted with dichloromethane. The extract was washed with water (3 × 20 mL), addderide,da wnidtht ahnehoyrdgroaunsic Npah2SaOse4 awnda svaecxuturamc teevdapworitahtedd.i cPhulroer coommeptohuanndes. wTehree oebxttariancetdw bya sCwC.a shedwith water(34-×all2y0l-2m-aLm),indor-i6e-dmewthitohxyapnhheyndolr o(u8s): NCao2mSOpo4uanndd v8 acwuaus msyenvtahpesoirzaetde df.roPmu rethceo mniptrooueungdesnwole re obtdaeinrievdatbivye C7 Cby. reduction of the nitro group. Pure compound 8 was obtained by CC (1:8–1:7, AcOEt in Molecules2019,24,1239 10of14 4-allyl-2-amino-6-methoxyphenol (8): Compound 8 was synthesized from the nitroeugenol derivative7byreductionofthenitrogroup. Purecompound8wasobtainedbyCC(1:8–1:7,AcOEt in hexane), as white crystal (94.5 mg, 55% yield); melting point: 107–108◦C. IR (film) υ /cm−1: max 3308(OH),3372(NH),3308(C=CHAr),3072(CH=CH ),1608(C=C),1221(C-N),1190(C-O),1132 2 (C-O),1080,896. 1HNMR:δ3.24(2H,d,J=6.7Hz,H-1(cid:48));3.69(2H,b. s,NH );3.84(3H,s,OCH ); 2 3 5.05(2H,m,H-3(cid:48));5.33(1H,s,OH);5.93(1H,m,H-2(cid:48));6.19(1H,s,H-3);6.25(1H,s,H-5). 13CNMR:δ 40.1(C-1(cid:48));55.9(OCH );101.8(C-5);109.4(C-3(cid:48));115.3(C-3);131.1(C-4);131.6(C-6);138.0(C-1);134.0 3 (C-2(cid:48));137.9(C-1);146.6(C-2). 2-acetamide-4-allyl-6-methoxyphenylacetate(9): Compound9wassynthesizedbyacetylationof 8. Purecompound9wasobtainedbyCC(1:9–1:5,ethylacetateinhexane)aswhitecrystal(103mg, 70%);meltingpoint: 146–149◦C;IR(film)υmax/cm−1: 3320(N-H),3060-2800(C=CAr),1750(C=O), 1250(C-CO-O),1120(C-O),900-730(C-HAr). 1HNMR:δ2.15(3H,s,C-CH );2.35(3H,s,C-CH );3.36 3 3 (2H,d,J=6.5,H-1(cid:48));3.80(3H,s,OCH );5.10(2H,m,H-3(cid:48));5.95(1H,m,H-2(cid:48));6.56(1H,s,H-3);7.14 3 (1H,b.s,-NH);7.70(1H,s,H-5). 13CNMR:δ20.5(CH CO );24.7(CH CO );40.4(C-1(cid:48));56.0(OCH ); 3 2 3 2 3 108.0(C-5);113.9(C-3(cid:48));116.3(C-3);127.9(C-4);130.9(C-6);136.8(C-2(cid:48));138.9(C-1);150.7(C-2);168.0 (CH CO );168.4(CH CO ). 3 2 3 2 4-allyl-2-methoxy-6-nitrophenylacetate(10): Compound10wassynthesizedbyacetylationof 7. Purecompound10wasobtainedbyCC(1:9–1:7,ethylacetateinhexane)asyellowcrystal(0.45g, 75%);meltingpoint: 60–61◦C;IR(film)υmax/cm−1: 3100-2800(C=CAr),1750(C=O),1550(−NO ), 2 1250(C-CO-O),1250-1050(C-O),900–730(C-HAr). 1HNMR:δ2.36(3H,s, CO-CH ); 3.43(2H,d, 3 J=6.5Hz.H-1(cid:48));3.87(3H,s,-O-CH );5.17(2H,m,H-3(cid:48));5.92(1H,m,H-2(cid:48));7.03(1H,s,H-3);7.43(1H, 3 s,H-5). 13CNMR:δ20.2(CH CO );39.5(C-1(cid:48));56.5(OCH );116.0(C-5);117.1(C-3(cid:48));117.4(C-3);132.1 3 2 3 (C-4);135.2(C-6);139.1(C-2(cid:48));142.4(C-1);152.6(C-2);167.9(CH CO ). 3 2 5-allyl-1,2-dimethoxy-3-nitrobenzene (11): Potassium carbonate (1.0 g, 7.25 × 10−3 mol) was addedtoastirredsolutionof7(600mg, 2.87 × 10−3 mol)indryacetone(60mL).Then, dimethyl sulphate(1.2mL,1.27×10−2mol)wasaddedandthereactionwaslefttocontinueovernightunder reflux. Complete disappearance of the starting product was confirmed by TLC (1:3 ethyl acetate: hexane). Thecrudereactionproductisdilutedinacetone(30mL),water(50mL),andextractedwith dichloromethane(3×50mL).TheextractisdriedwithanhydrousNa SO andvacuumevaporated. 2 4 Pure product (513 mg, 80%) was obtained by CC (1:9–1:7, ethyl acetate in hexane as marron oil. Compound11: IR(film)υmax/cm−1: 3100-2800(C=CAr),1550(-NO ),1400-1000(C-O),1000-650 2 (H C=CH ). 1HRMN:δ3.38(2H,d,J=6.4Hz,H-1(cid:48));3.90(3H,s,OCH );3.95(3H,s,OCH );5.14(2H, 2 2 3 3 m,H-3(cid:48));5.91(1H,m,H-2(cid:48));6.92(1H,s,H-3);7.16(1H,s,H-5). 13CRMN:δ39.6(C-1(cid:48));56.4(OCH ); 3 61.9 (OCH ); 115.6 (C-6); 116.3 (C-3(cid:48)); 117.3 (C-3); 135.7 (C-4); 136.3 (C-2(cid:48)); 141.1 (C-5); 144.7 (C-1); 3 153.9(C-2). 5-allyl-2,3-dimethoxyaniline(12): Aniline12wassynthesizedfromthenitroeugenolderivative11 byreductionofthenitrogroup. Purecompound12wasobtainedbyCC(1:8–1:5,AcOEtinhexane) asmarronoil(45.7mg,46%yield). Compound12: IR(film)υ /cm−1: 3500-3300(NH ),3100-2800 max 2 (C=CAr),1400-1000(C-O),1000-650(H C=CH ). 1HNMR:δ3.25(2H,d,J=6.4Hz,H1(cid:48));3.69(2H,b.s, 2 2 NH );3.79(3H,s,OCH );3.82(3H,s,OCH );5.07(2H,m,H-3(cid:48));5.95(1H,m,H-2(cid:48));6.17(1H,s,H-3); 2 3 3 6.23(1H,s,H-5). 13CδNMR:40.3(C-1(cid:48)); 55.6(OCH ); 59.9(OCH ); 102.7(C-6); 108.8(C-3(cid:48)); 115.7 3 3 (C-3);134.3(C-4);136.2(C-2(cid:48));137.5(C-5);140.2(C-1);152.8(C-2). N-(5-allyl-2,3-dimethoxyphenyl)acetamide(13): Compound13wassynthesizedbyacetylationof 12. Purecompound13wasobtainedbyCC(1:5-1:3,ethylacetateinhexane)aswhitecrystal(64mg, 53%);meltingpoint: 78–79◦C;IR(film)υ /cm−1: 3300(N-H),3100-2800(C=CAr),1715(R-(CO)-R’), max 1400-1000(C-O),1000-650(H C=CH ). 1HNMR:δ2.18(3H,s,CH CON);3.31(2H,d,J=6.4Hz,H-1(cid:48)); 2 2 3 3.82(3H,s,OCH );3.82(3H,s,OCH );5.07(2H,m,H-3(cid:48));5.92(1H,m,H-2(cid:48));6.47(1H,s,H-3);7.81 3 3 (1H,s,H-5);7.83(-HN).13CNMR:δ24.7(CH CON);40.3(C-1(cid:48));55.6(OCH );60.5(OCH );107.6(C-6); 3 3 3 112.4(C-3(cid:48));115.7(C-3);131.7(C-4);135.4(C-2(cid:48));136.2(C-5);137.1(C-1);151.7(C-2);168.2(CH CON). 3

Description:
Keywords: Botrytis cinerea; eugenol; mycelial growth; resistant isolate; reactive Chemical structure of eugenol (1), isoeugenol (2) and safrole (3). C.; Kaminker, P.; Held, J.; Gibson, B.; Baldwin, M.A.; Benz, C.C. Vitamin K3.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.