ebook img

Antifungal Activity of Commercial Essential Oils and Biocides against Candida Albicans PDF

12 Pages·2017·1.03 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Antifungal Activity of Commercial Essential Oils and Biocides against Candida Albicans

pathogens Article Antifungal Activity of Commercial Essential Oils and Biocides against Candida Albicans ElisaSerra1,LiliaAraidaHidalgo-Bastida1,JoannaVerran2 ID,DavidWilliams3 andSladjanaMalic1,* 1 SchoolofHealthcareScience,ManchesterMetropolitanUniversity,ManchesterM15GD,UK; [email protected](E.S.);[email protected](L.A.H.-B.) 2 SchoolofResearch,EnterpriseandInnovation,ManchesterMetropolitanUniversity, ManchesterM15GD,UK;[email protected] 3 SchoolofDentistry,CardiffUniversity,CardiffCF144XY,UK;[email protected] * Correspondence:[email protected] Received:12December2017;Accepted:23January2018;Published:25January2018 Abstract: Managementoforalcandidosis,mostfrequentlycausedbyCandidaalbicans,islimiteddue totherelativelylownumberofantifungaldrugsandtheemergenceofantifungaltolerance. Inthis study,theantifungalactivityofarangeofcommercialessentialoils,twoterpenes,chlorhexidineand triclosanwasevaluatedagainstC.albicansinplanktonicandbiofilmform. Inaddition,cytotoxicityof themostpromisingcompoundswasassessedusingmurinefibroblastsandexpressedashalfmaximal inhibitoryconcentrations(IC50). Antifungalactivitywasdeterminedusingabrothmicrodilution assay. Theminimuminhibitoryconcentration(MIC)wasestablishedagainstplanktoniccellscultured inarangeofconcentrationsofthetestagents. Theminimalbiofilmeradicationconcentration(MBEC) wasdeterminedbymeasuringre-growthofcellsafterpre-formedbiofilmwastreatedfor24hwiththe testagents. Alltestedcommercialessentialoilsdemonstratedanticandidalactivity(MICsfrom0.06% (v/v)to0.4%(v/v))againstplanktoniccultures,withanoticeableincreaseinresistanceexhibitedby biofilms(MBECs>1.5%(v/v)). TheIC50softhecommercialessentialoilswerelowerthantheMICs, whileaonehourapplicationofchlorhexidinewasnotcytotoxicatconcentrationslowerthantheMIC. Inconclusion, thetestedcommercialessentialoilsexhibitpotentialastherapeuticagentsagainst C.albicans,althoughhostcellcytotoxicityisaconsiderationwhendevelopingthesenewtreatments. Keywords: Candidaalbicans;oralcandidosis;commercialessentialoils;biocides;antifungalactivity; minimuminhibitoryconcentration;minimalbiofilmeradicationconcentration;cytotoxicity 1. Introduction Candida are commensal fungal microorganisms that can colonise the oral cavity, where they are mainly found on the posterior part of the tongue and the oral mucosa. Changes in the oral environmentthatleadtoincreasedCandidagrowthcaninstigateoralcandidosis[1]. Therisingnumber ofimmunocompromisedandimmunodeficientpatientshasresultedinanincreasedincidenceoffungal infections. Tohighlightthis,Candida-relatedinfectionsaffect65%ofHIVpositiveindividualsandover 80%ofAIDSpatients[2–4].Thehigherlifeexpectancyofthegeneralpopulationhasalsoledtoarisein denturewearing,withaconcomitantincreaseinCandida-associatedstomatitis[5–7].Eventhoughmore than17Candidaspeciescancausehumaninfection,oralcandidosisaremainlycausedbyC.albicans[8]. Inthemouth,Candidatypicallygrowsasbiofilms,whicharethree-dimensionalstructuresattachedto surfacesincludinghumantissueorabioticsubstrates(e.g.,adenture). Biofilmcellsareembeddedin aself-producedextracellularpolymericmatrixandimportantlyoftenexhibitanelevatedtoleranceto antimicrobialagentsandhostdefences[5]. Pathogens2018,7,15;doi:10.3390/pathogens7010015 www.mdpi.com/journal/pathogens Pathogens2018,7,15 2of12 Currenttherapiesfororalcandidosisincludeuseoftopicalorsystemicantifungalagents,suchas polyenes and azoles. Polyenes (e.g., nystatin and amphotericin B) are fungicidal through binding to ergosterol in the fungal cell membrane and inducing cell membrane damage. Azoles, such as fluconazoleandmiconazole,arefungistaticbyinhibitingtheenzymelanosteroldemethylase,involved inergosterolbiosynthesis[9]. Importantly,therangeofavailableantifungalsarelimitedcomparedto antibiotics[9]andcoupledwiththeriseofCandidaresistance,especiallywithinbiofilms,thishasledto aninterestinthediscoveryofnewantifungalcompounds[10]. Essential oils are natural products produced by aromatic plants and are mainly composed by terpenes and terpenoids [11]. Being lipophilic, these oils typically integrate into membrane structurescausingincreasedcellpermeability,leachingofintracellularcomponentsandinactivation ofenzymes[12,13]. EssentialoilscanactagainstCandidabyinhibitingergosterolsynthesis[14–18], alteringcellwallmorphology[15,17–19],inhibitingenzymesinvolvedincellwallsynthesis[18,20], changingcellmembranepermeability[21,22]andproducingoxygenreactivespecies[23].Furthermore, essential oils can also interact with the mitochondrial membrane leading to cidal effects [11]. Antimicrobial,anti-aseptic,anti-inflammationandanti-oxidantactivityofessentialoils,aloneandin combinationwithcommercialagentsiswellknown[13,24–26]. However,limitedknowledgeexists regardingessentialoilactivityagainstbiofilmsandalsohostcellcytotoxicity. Theaimofthisstudywasthereforetoinvestigatetheantifungalpotentialoftwelvecommercial essentialoilsandtwoterpenes(E-cinnamaldehydeandlinalool)againstC.albicansplanktonicand biofilmgrowth. Thecytotoxicityofthemostactivecommercialessentialoilswasestablishedagainst mousefibroblasts. Antifungalactivityofcommercialessentialoilswascomparedtochlorhexidine (CHX) and triclosan. These two biocides have previously shown antimicrobial properties against awiderangeoforalpathogensandarefrequentcomponentsinmouthwashesandtoothpastes[27,28]. 2. Results 2.1. MinimumInhibitoryConcentration(MIC)80andMinimalLethalConcentration Theminimuminhibitoryconcentration(MIC)80ofthetestagentsagainstC.albicansNCYC1363 and C. albicans 135BM2/94 are shown in Table 1. The commercial essential oils that inhibited the growthatthelowestconcentrationsweremelissaandgeraniol,whilemyrtleandsagehadthelowest fungistaticpotential(p<0.001). Fungicidal activity was also expressed as the lowest concentration of antimicrobial agent that killed the microorganism (minimal lethal concentration) (Table 2). All tested compounds, with exception of triclosan, had minimal lethal concentrations against C. albicans at tested concentrations. However, these lethal concentrations were generally higher than the previously establishedMICs. Table 1. Minimum inhibitory concentration 80 of commercial essential oils and biocides against C.albicansNYCY1363andC.albicans135BM2/94intheplanktonicform. MinimumInhibitoryConcentration80[%(v/v)][(g/L)] Antimicrobial C.albicansNYCY1363 C.albicans135BM2/94 Basil 0.1(0.9) 0.1(0.9) Bergamot 0.3(2.6) 0.3(2.6) Cinnamon 0.1(1.0) 0.1(1.0) Citronella 0.1(0.9) 0.1(0.9) Geranium 0.07(0.6) 0.06(0.5) Lavender 0.2(1.8) 0.1(0.9) Melissa 0.06(0.5) 0.06(0.5) Myrtle 0.4(3.5) 0.3(2.7) Peppermint 0.1(0.9) 0.1(0.9) Pathogens2018,7,15 3of12 Table1.Cont. MinimumInhibitoryConcentration80[%(v/v)][(g/L)] Antimicrobial C.albicansNYCY1363 C.albicans135BM2/94 Sage 0.4(3.7) 0.3(2.7) Spearmint 0.2(1.6) 0.1(1.1) Teatreeoil 0.2(1.8) 0.2(1.8) E-cinnamaldehyde 0.03(0.3) 0.01(0.1) Linalool 0.1(0.9) 0.1(0.9) CHX 2×10−3(2.1×10−2) 5×10−3(5.3×10−2) Triclosan 5.66×10−4(8.4×10−3) 5.89×10−4(8.8×10−3) Minimalinhibitoryconcentration80(MIC80)definedasthelowestconcentrationoftheantimicrobialagentthatled to80%reductioninabsorbancecomparedtocontrolswithoutagent.MICvaluesarein%(v/v)andinbracketsare theequivalentMICvaluesin(g/L). Table2. MinimallethalconcentrationofcommercialessentialoilsandbiocidesagainstC.albicans NYCY1363andC.albicans135BM2/94intheplanktonicgrowthmode. MinimalLethalConcentration[%(v/v)][(g/L)] Antimicrobial C.albicansNCYC1363 C.albicans135BM2/94 Basil 0.5(4.5) 0.5(4.5) Bergamot 0.5(4.4) 0.5(4.4) Cinnamon 0.1(1.0) 0.1(1.0) Citronella 0.1(0.9) 0.1(2.7) Geranium 0.1(0.9) 0.1(0.9) Lavender 0.5(4.4) 0.3(2.6) Melissa 0.1(0.9) 0.1(0.9) Myrtle 1(8.8) 1(8.8) Peppermint 0.3(2.7) 0.1(0.9) Sage 1(9.2) 1(9.2) Spearmint 1(9.2) 1(9.2) Teatreeoil 0.5(4.5) 0.3(2.7) E-cinnamaldehyde 0.03(0.3) 0.03(0.3) Linalool 0.3(2.6) 0.3(2.6) CHX 2.5×10−3(2.7×10−2) 5×10−3(5.3×10−2) Triclosan NA NA MinimallethalconcentrationwasdefinedasthelowestconcentrationoftheantimicrobialagentthatkilledC.albicans. MLCvaluesarein%(v/v)andinbracketsaretheequivalentMLCvaluesin(g/L).NA=noantimicrobialactivity attestedconcentrations. 2.2. MinimalBiofilmEradicationConcentration80 TheantifungalactivityofbiocidesandcommercialessentialoilsagainstC.albicansbiofilmswas expressedastheminimalbiofilmeradicationconcentration(MBEC)[29]. Mosttestagentswerenot activeagainstbiofilmsattestedconcentrationsanddidnotpreventregrowthafterremovalofthe antimicrobial (Table 3). The antimicrobials that exhibited an MBEC against both tested C. albicans strainsweremelissageranium,E-cinnamaldehydeandlinalool(Table3). Table3.Minimalbiofilmeradicationconcentration80ofcommercialessentialoilsandbiocidesagainst C.albicansNCYC1363andC.albicans135BM2/94. MinimalBiofilmEradicationConcentration80[%(v/v)][(g/L)] Antimicrobial C.albicansNYCY1363 C.albicans135BM2/94 Basil NA NA Bergamot NA NA Cinnamon NA NA Citronella NA NA Geranium 2.5(22.3) 2(17.9) Pathogens2018,7,15 4of12 Table3.Cont. Pathogens 2018, 7, 15 4 of 12 MinimalBiofilmEradicationConcentration80[%(v/v)][(g/L)] Antimicrobial Melissa 1.5 (13.3) 1.5 (13.3) C.albicansNYCY1363 C.albicans135BM2/94 Myrtle NA NA Lavender NA NA Peppermint NA NA Melissa 1.5(13.3) 1.5(13.3) SagMe yrtle NAN A NNAA SpeaPremppinertm int NAN A NNAA Tea treeS oagile NAN A NNAA Spearmint NA NA E-cinnamaldehyde 0.8 (8.4) 0.8 (8.4) Teatreeoil NA NA Linalool 1 (8.7) 1.5 (13.1) E-cinnamaldehyde 0.8(8.4) 0.8(8.4) CHLXin alool 01.0(78 .7) 1.5(N13A.1 ) TriclosCaHn X >5 × 10−3 (70..4057 × 10−2) >5 × 10−N3 A(7.45 × 10−2) Triclosan >5×10−3(7.45×10−2) >5×10−3(7.45×10−2) Minimal biofilm eradication concentration 80 (MBEC80) defined as the lowest antimicrobial cMoninceimntarlabtiioofinl mthearta dpirceavtieonntceodn caetn lteraatsito n808%0( MreBgEroCw80t)hd oefif nCeadnadsidtha,e alofwteers tthaen tbimioicfirlombi awlcaosn tcreenattreadtio wnitthha t preventedatleast80%regrowthofCandida,afterthebiofilmwastreatedwithantimicrobialsfor24h.MBECvalues antimicrobials for 24 h. MBEC values are in % (v/v) and in brackets are the equivalent MBEC values are in % (v/v) and in brackets are the equivalent MBEC values in (g/L). NA = no antimicrobial activity at inte s(gte/dL)c.o NncAen =tr antoio anns.timicrobial activity at tested concentrations. 22.3.3. .HHaalfl fMMaaxximimaal lInInhhibibitiotorryy CCoonncceenntrtraatitoionn (I(CIC5500) )aaggaaininsst tFFibibrroobblalassttss TThhee hhaalfl fmmaaxximimaal lininhhibibitiotoryry coconncceenntrtaratitoionn (I(CIC5500) )CCHHXX, ,cicninnnaammoonn, ,EE-c-icninnnaammaaldldeehhyyddee, ,ggeeraranniuiumm aanndd mmeleilsissasa ono nfibfriborbolabslat sptroplriofelirfaetriaotnio anftaefrt ear 1 ah 1anhd 2an4 dh e2x4phosuexrep owsuasr edewtearsmdineteedr m(Fiingeudre( F1i;g Tuarbele1 ; 4T).a bTlhee4 )h.iTghheeshti gchyetosttocxyitcoittoyx oiccictyurorcecdu rwreidthw Eit-hcinEn-cainmnaalmdeahldyedhey, dfoe,llfoowlloewd ebdy bgyegraenraiunmiu m(p( p< <0.00.000010)1,) , wwhhiicchh hhaallvveedd pprroolliiffeerraattioionne evveenna attt htheelo lwowesetscto cnocnecnetnrattriaotniotnes tteesdt.eIdn.d Ienedde,eadc, oan ccoenntcreantitornatoiofn0 .o00f 30%.00(v3/%v ) (vE/-vc)in Ena-cminanldaemhaylddeeahnydde0 .0a1n%d (v0/.0v1)%ge r(avn/viu) mgeinrahnibiuitmed i5n0h%iboiftecdel l5p0r%ol ifoefr actieolln p(Traoblilefe4r)a.tMionel is(Tsaabwlaes 4th).e Mleealsitsscay towtoaxs icthceo mlemasetr cciyaltoetsosexnict iacloomilm,hearlcviianlg epsrsoelnifteiraal tiooinl, ahta0l.v03in%g (vp/rov)li(fper<at0i.o0n00 a1)t. 0A.013%h e(xvp/ovs) u(rpe <o f 0f.i0b0r0o1b)l.a sAts 1to hc ienxnpaomsuonrer eosfu flitbedroibnlassimts iltaor cciyntnotaomxiocnit yreassumlteeldis sina bsuimtpilraorl ocnygtoetdoxexicpitoys uarse mledeltisoshai gbhuetr pcryotlootnogxiecdit yex(ppo<s0u.r0e0 0le1d). Ato 1hhigahpepr lcicyattoiotonxoicfiCtyH (Xp w< a0s.0c0y0t1o)t.o Axi c1o hn laypaptltihcaethioignh oefs tCcHonXc ewntarsa tciyotnotteosxtiecd o(nICly5 0ato tfh0e. 0h1i%gh(evs/t vc)o)nwcehnicthrawtioans theisgtheedr (tIhCa5n0 tohfe 0M.01IC%, w(vh/vil)e) wah24ichh wexapso hsuigrheeart t7ha×n 1t0h−e4 M%I(Cv/, vw)hwilaes as 2u4ff ihc ieexnptotosuhrael vaet f7i b×r o1b0l−a4%st p(vr/ovl)if weraasti osun.fficient to halve fibroblast proliferation. (A) (B) Figure1.Cont. Pathogens2018,7,15 5of12 Pathogens 2018, 7, 15 5 of 12 (C) (D) (E) Figure 1. Cytotoxicity of selected antimicrobials against murine fibroblasts. Fibroblast numbers Figure 1. Cytotoxicity of selected antimicrobials against murine fibroblasts. Fibroblastnumbers (normalised by the control (0% (v/v) antimicrobial) after a 1 h (red square) and 24 h application (blue (normalised by the control (0% (v/v) antimicrobial) after a 1 h (red square) and 24 h application circle) of CHX (A); cinnamon (B); E-cinnamaldehyde (C); geranium (D) and melissa (E). (bluecircle)ofCHX(A);cinnamon(B);E-cinnamaldehyde(C);geranium(D)andmelissa(E). Table 4. Half maximal inhibitory concentration (IC50) against fibroblasts after 1 h and 24 h application Table4.Halfmaximalinhibitoryconcentration(IC50)againstfibroblastsafter1hand24happlication of the antimicrobial. oftheantimicrobial. Half Maximal Inhibitory Concentration [% (v/v)] [(g/L)] Antimicrobial HalfMaximalInhibitoryConcentration[%(v/v)][(g/L)] Antimicrobial 1 h 24 h Cinnamon 0.03 (0.316)h 0.0214 (h0.11) GeranCiuinmn amon 0.01 (00.0.038()0 .36) 00.0.011( 0(0.1.10)7) MelisGsaer anium 0.03 0(.00.13)( 0.08) 0.00.103(0 (.007.3)) Melissa 0.03(0.3) 0.03(0.3) E-cinnamaldehyde 0.003 (0.03) 0.002 (0.02) E-cinnamaldehyde 0.003(0.03) 0.002(0.02) CHX CHX 0.01 (00.0.115()0 .15) 77.3.232× ×1 10−0−44 ((00.0.00088)) Half maximal inhibitory concentration (IC50) defined as the antimicrobial concentration that inhibits Halfmaximalinhibitoryconcentration(IC50)definedastheantimicrobialconcentrationthatinhibitsthe50%ofcell tphreo l5if0e%rat ioofn cceolml pparroeldifteoracotinotnro lcsowmitphaoruetda gteon tc.oICnt5r0ovlsa luweistharoeuint a%g(evn/tv.) IaCn5d0i nvbarlaucekse tasraer einth e%e q(uv/ivva) leanntdIC i5n0 valuesin(g/L). brackets are the equivalent IC50 values in (g/L). 33.. DDiissccuussssiioonn EEsssseennttiiaall ooiillss aarree nnaattuurraall pprroodduuccttss oofftteenn eexxttrraacctteedd ffrroomm ppllaannttss aanndd tthheeyy ffrreeqquueennttllyy eexxhhiibbiitt aannttiimmiiccrroobbiiaall,, aanntit-ia-asespeptitci,ca, natni-tiin-filnafmlammamtoartyorayn danandt ia-onxtiid-oaxnitdaacntitv iatcietisv.iTtihees.p Trihmea rpyriamimaroyf tahimis roesfe tahrcish rwesaesartoche wvaalsu taote evthaeluaanteti ftuhne gaanltiafcutnivgiatyl aocftiv12ityc oomf 1m2 ecrocmialmeesrsceinatli easlsoeinlstiaalg oaiilnss atgCa.inalsbti cCan. as.lbAiclalntse. sAteldl tested commercial essential oils demonstrated antifungal activity against planktonic C. albicans, with MICs ranging from 0.06% (v/v) to 0.4% (v/v) and MLCs from 0.1% (v/v) to 1% (v/v). Comparison of Pathogens2018,7,15 6of12 commercial essential oils demonstrated antifungal activity against planktonic C. albicans, with MICs rangingfrom0.06%(v/v)to0.4%(v/v)andMLCsfrom0.1%(v/v)to1%(v/v).Comparisonofresults with those of other studies is problematic given differences in assay techniques [30,31]. In addition, thebotanicalsource,climateandenvironmentalconditions,timeofharvestingandextractionmethodcan affectbothcompositionandantimicrobialactivityofcommercialessentialoils[31–33]. Theeffectofplantoriginonantimicrobialpropertiescanbeappreciatedbycomparingtheactivity ofcinnamonoilextractedfromCinnamomumzeylanicumleavesandCinnamomumaromaticumleaves. BothtypesofcinnamonoilsarefromtheevergreencinnamomumplantbutCinnamomumaromaticum extract contains a higher amount of E-cinnamaldehyde, which could explain the higher antifungal activity (MICs 0.0006% (v/v)–0.0096% (v/v)) [32] compared to the present study using Cinnamomumzeylanicum(MIC0.1%(v/v))extract. TheimpactthattheamountofE-cinnamaldehyde hasonantifungalpropertiesofanessentialoilwasalsoevidentinthisstudy(MICsof0.03%(v/v) and0.01%(v/v)). Geraniumandmelissaoilsexhibitedhighestantifungalpotential. Bothcommercial oilscontaingeraniolandcitronellol,whichareantifungal[34]andlikelyresponsibleforthesimilar antifungal activity of these oils (p > 0.90). However, the MIC of melissa oil was lower than that previouslyreported[35,36]. Thispresentstudyrevealedantifungaleffectsforbergamotoil(MICof 0.3% (v/v) and MLC of 0.5% (v/v)) which has previously only had limited attention. The MIC of basiloil0.1%(v/v)(0.9g/L)waslowerthanpreviouslyreported,namely0.5%(v/v)[30]and0.312% (v/v)[32]butcomparabletotheMIC(1250µg/mL)foundagainstafluconazoleresistantC.albicans strain[15]. Themaincompoundofbasilandlavenderoilsislinalool,whichpreviouslyhashadMICs rangingfrom0.06%(v/v)to0.12%(v/v)[37]. Comparingactivityofpurelinalooltothoseofbasil andlavenderoils,theanticandidalactivityofterpenewasnotsignificantlyhigherthanthatofbasil (p>0.99). TeatreeoilhadanMICof0.2%(v/v)andthiswassimilartothatrecordedbyHammeretal. against C. albicans [38]. Sage oil exhibited MICs of 0.3% (v/v) (2.7 g/L) and 0.4% (v/v) (3.7 g/L), whichwerecomparabletotheMICof2.78g/Lreportedusingadiskdiffusionmethod[39]butlower thantheMICof1.32mg/mLmeasuredbybrothmicrodilutionassay[40]. Despitetheirdifferencesin composition,peppermintandspearmintoilshadsimilarantifungalactivitieswithMICsof0.1%(v/v) and0.1%(v/v)–0.2%(v/v),respectively(p>0.07). However,whiletheMICsofspearmintoilwere similartothosereportedbyHammeretal.[30],theMICofpeppermintoilwashigherthanthatfound byThoseetal.[41]. Myrtleoilhadthelowestantifungalpotential,eventhoughitsMICswerelower thanthosepreviouslyreportedbyMahboubietal. (MICof0.8–1.6%(v/v))[42]. CHXandtriclosan, two biocides whose antimicrobial properties are widely recognised and both commonly added to mouthwashes and toothpastes, were also evaluated in this study. Triclosan exhibited fungistatic activityonlyatconcentrationshigherthanthoseusedintoothpasteformulations(0.3%(w/v)[43]) butdidnotexhibitfungicidaleffectsattestedconcentrations. Themajorityofagentshadlimitedantibiofilmactivity. Bacteriainbiofilmscanbebetween10and 1000timesmoretoleranttoantibioticsthantheirplanktoniccounterpartsandsimilarfindingshave beenreportedforCandida[44]. Themechanismsbywhichbiofilmcellshaveelevatedantimicrobial tolerance are complex and likely multifactorial. These include altered gene expression following surface attachment, reduced growth rates in biofilms, variable nutrient availability that induces changesinphenotypeandthepresenceofextracellularpolymericsubstancesthatimpedespenetration ofagentsintothebiofilm[45]. Fewstudieshavepreviouslyreportedactivityofcommercialessential oilsorbiocidesagainstC.albicansbiofilms[46,47]. Inthepresentstudy,frommelissaoil,geranium oil, E-cinnamaldehydeandlinaloolallhadanti-biofilmactivity, whilstCHXonlyhadanti-biofilm activityagainstC.albicansNCYC1363. A3minapplicationofcinnamon(1mg/mL)andcitronella (1mg/mL)oilshasbeenfoundtoreducebiofilmcellnumbersimmediatelyaftertreatmentbutthis effectwasnotevident48hposttreatment[46]. Theseresultsconcurwiththecurrentstudy,whereno antibiofilmactivitywasnotedforcinnamonandcitronellaoilsafter24h. AnMBECofteatreeoilof 12.5%(v/v)hadpreviouslybeenreported[47],whichisahigherconcentration(8%(v/v))thantested Pathogens2018,7,15 7of12 inthisstudy,asdifficultieswereencounteredinformingastablesuspensionoftheoil-mediumusing 1%(v/v)Tween80. Fewstudieshaveinvestigatedthecytotoxiceffectsoftheseoils. CytotoxicityofCHX,cinnamon, E-cinnamaldehyde,geraniumandmelissaoilshadadose-andtime-dependentcytotoxicity. Overall, thecommercialessentialoilshalvedfibroblastproliferationatconcentrationslowerthantheirMICs. The IC50 values for E-cinnamaldehyde, geranium and cinnamon oils were actually 10-fold lower than their MIC 80, while melissa oil had an MIC 80 of 0.06% (v/v) and an IC50 of 0.03% (v/v). Althoughadifferent assay and cell type was used, the melissa oil results (IC50 0.3 g/L) were in accordancewiththoseofPauletal.[48]whodidnotseeasignificantchangeinleukocytesviability after3htreatmentwith150µg/mLmelissaoil. SeveralstudieshaveusedE-cinnamaldehydetoinhibit proliferationofcancercellsandreportedIC50srangingfrom45.8to129.4mM[49],higherthanthose obtainedinthisstudywithfibroblasts(0.16–0.26mM).Barrosetal. foundthatatconcentrationslower than those evaluated in this study (5 µg/mL), Cinnamomum zeylanicum oil had cytoxicity towards erythrocytes[50].A1hexposureoffibroblaststoCHX(0.01%(v/v))halvedcellproliferationcompared tocontrols. However,thisconcentrationwaslowerthantheMICs(2.5×10−3%(v/v)and5×10−3% (v/v))foundinthecurrentstudy. ThisfindingwassimilartothecytotoxiceffectofCHXpreviously reportedusingmacrophages[51]andhumanalveolarbonecells[52]. Eveniftheseresultsshowed thatcommercialessentialoilswerecytotoxic,itshouldbetakenintoaccountthatcytotoxicitywas conductedin2Dculture,whichisnotablydifferentfrominvivoconditions. Furtherinvestigationon mammaliancellscouldbeperformedin3Dcultureorex/invivomodelstobettermimicthebiological structureofthetissues. 4. MaterialsandMethods 4.1. EssentialOilsandBiocidesPreparation Twelvecommercialessentialoils(EssentialOilsDirectLtd.,Oldham,UK)(Table5),twoterpenes (E-cinnamaldehydeandlinalool(Sigma-Aldrich,Gillingham,UK)),chlorhexidinedigluconate(CHX) (Sigma-Aldrich, Gillingham, UK) and triclosan (Irgasan from Sigma-Aldrich, Gillingham, UK) wereevaluated. Table5.Listofcommercialessentialoilstested. PlantSpecies EssentialOil Origin Ocimumbasilicum Basiloil Leaves Citrusbergamia BergamotFCFoil Peel Cinnamomumzeylanicum Cinnamonleafoil Leaves Cymbopogonwinterianus Citronellaoil Aerialparts Pelargoniumgraveolens Geraniumoil Floweringherb Lavandulaangustifolia Lavenderoil Floweringherb Melissaofficinalis Melissaoil Leavesandtops Myrtuscommunis Myrtleoil Leaves Menthapiperita Peppermintoil Wholeplant Salviaofficinalis Sageoil Leaves Menthaspicata Spearmintoil Aerialparts Melaleucaalternifolia Teatreeoil Leavesandtwigs Thecommercialessentialoilsweretestedatarangeofconcentrationsagainstplanktonicgrowth(2% (v/v)to0.007%(v/v)andbiofilms(8%(v/v)to0.125%(v/v)). AllagentswerepreparedinSabouraud DextroseBroth(SDB;OxoidLtd,Basingstoke,UK).Toenhancedispersionofessentialoilsinthemedium, 1%(v/v)Tween80(Sigma-Aldrich,Gillingham,UK)wasadded. Inthecaseofbiofilmstudies,0.015% (w/v)AgarBacteriological(LP0011Oxoid)wasaddedtoSDB[53].CHXwasusedinSDBatconcentrations between 0.04% (v/v) to 3.1 × 10−4% (v/v) and from 0.08% (v/v) to 6.2×10−4%(v/v) for planktonic andbiofilmgrowthexperiments,respectively. A20%(w/v)stocksolutionoftriclosanwaspreparedin Pathogens2018,7,15 8of12 DimethylSulfoxide(DMSO)(FisherChemical,Loughborough,UK).Serialdoublingdilutionsofthestock solutionwerepreparedinSDByieldingfinalconcentrationsfrom5.2×10−6%(v/v)to6.7×10−4%(v/v) andfrom1.7×10−4%(v/v)to5×10−3(v/v)forplanktonicandbiofilmexperiments,respectively. 4.2. Microorganisms CandidaalbicansNYCY1363andC.albicans135BM2/94wereusedtoassessantifungalactivity of commercial essential oils and biocides. Candida albicans 135BM2/94 is a clinical strain from the SchoolofDentistry(CardiffUniversity),whichhasbeendescribedasahighinvaderoftissues[54]. StrainsweresubculturedontoSabouraudDextroseAgar(SDA)(CM0041Oxoid)andgrownat37◦C inanaerobicincubatorfor24h. AcolonyofC.albicanswasinoculatedin20mLofSDBandincubated aerobicallywithshaking(150rev/min)overnightat37◦C.TheovernightculturewaspreparedinSDB toaturbidityequivalenttoa0.5McFarlandStandardandusedforfurtherexperiments. 4.3. MinimumInhibitoryConcentrationandMinimalLethalConcentration Theminimuminhibitoryconcentration(MIC)andtheminimallethalconcentration(MLC)were determinedusingabrothmicrodilutionassay. Themethodwasadaptedfromthatpreviouslyreported by Malic et al. [29]. Briefly, 100 µL of antimicrobial and 100 µL of overnight culture diluted to 1×105CFU/mL were added to the wells of 96-well microtitre plates (Thermo Fisher Scientific, HemelHempstead,UK).ControlsincludedCandidasuspensionculturedinSDB,withorwithout0.5% (v/v)ofTween80. Inaddition,whentriclosanwastested,SDBcontaining1%(v/v)DMSOwasusedas control.Theplateswerecoveredwiththelidssuppliedbythemanufacturerandsprayedwith3%(v/v) ofTriton100-X(Sigma-Aldrich,Gillingham,UK)inpureethanoltoreducecondensation. Theplates were incubated aerobically at 37 ◦C with shaking at 110 rpm, for 24 h. Growth was estimated by measuringturbidityofeachwellbyspectrophotometricabsorbanceat620nm(ThermoScientific™ Multiskan™ GO Microplate Spectrophotometer), shaking 3 s before the reading. The absorbance readingswerestandardisedagainstmicrobial-freecontrols. Theminimalinhibitoryconcentration 80(MIC80)wasdefinedasthelowestconcentrationoftheantimicrobialagentthatshowedatleast 80%reductioninabsorbancecomparedtothecontrol. TheMLCwasdeterminedbyplatingselected well contents (where no visible growth was evident) on to SDA and incubating for 24 h at 37 ◦C. The MLC was defined as the lowest concentration of antimicrobial agent that killed the Candida as shown by no colony growth on SDA. All concentrations were tested in quadruplicate and on threeseparateoccasions. 4.4. MinimalBiofilmEradicationConcentration80 Theminimalbiofilmeradicationconcentration(MBEC)methodwasadaptedfromMalicetal. (2013) [29]. Briefly, a 96-well microtitre plate containing 200 µL of an overnight culture diluted at 1×105CFU/mL was incubated for 48 h at 37 ◦C without agitation to allow biofilm formation. ControlsincludedCandidasuspensionculturedinSDB,withorwithout1%(v/v)ofTween80and 0.015% (w/v) Agar Bacteriological. When triclosan was tested, SDB containing 8% (v/v) DMSO wasalsousedascontrol. After48h, theSDBwasremovedandthemicrotitreplateinvertedonto tissuepapertoremoveresidualmedium. Thebiofilmwaswashedthreetimeswith100µLofPBS. OnehundredµLoftestagentwasaddedtothebiofilmandtheplateincubatedstaticallyfor24hat 37◦C.Afterincubation,testagentwasremovedandthebiofilmwashedtwicewith100µLofPBS. TwohundredµL of SDB was added to each well and the biofilm disrupted by repeated pipetting. Thethreereplicateswerethenpipettedintoamicrocentrifugetubewhichwasthencentrifugedfor 3minat3000rev/min(HettichUniversalMikro12–24,Hettich,Tuttlingen,Germany).Thesupernatant containingresidualtestagentwasdiscardedandthemicroorganismsresuspendedinfreshSDBand threewellsofa96-wellplatewereinoculatedwiththesuspension. Theturbidityofthesuspension wasmeasuredbyspectrophotometerabsorbanceat620nmpriortoandafterincubationfor24hat 37◦Cwithshakingat110rev/min. Theminimalbiofilmeradicationconcentration80(MBEC80)was Pathogens2018,7,15 9of12 definedasthelowestantimicrobialconcentrationthatpreventedatleast80%regrowthofCandida. Allexperimentswereconductedonthreeseparateoccasions. 4.5. HalfMaximalInhibitoryConcentration Mouse fibroblasts (NIH 3T3; Sigma-Aldrich, Gillingham, UK) were cultured in Dulbecco ModifiedEagleMedium(DMEM,Sigma)supplementedwith10%(v/v)foetalbovineserum(FBS) (Gibco, BRL), 1% (v/v) penicillin/streptomycin (Sigma-Aldrich, Gillingham, UK) and 1% (v/v) L-glutamine (Sigma-Aldrich, Gillingham, UK). Serial doubling dilutions of commercial essential oils and biocides were prepared in the fibroblast culture medium at final concentrations ranging from 0.25% to 0.007% (v/v) for the commercial essential oils and from 0.04% to 3 × 10−4% (v/v) forchlorhexidine. FibroblastswereharvestedusingtrypsinEDTA(EDTA0.25%(w/v),Trypsin0.53 mM,ThermoFisherScientific,HemelHempstead,UK)anddilutedtoadensityof5×105cells/mL. One-hundredµlofthecellsuspensionwasusedtoinoculatea96-wellplate(5×104 cellsperwell) whichwasthenincubatedat37◦Cand5%CO for1.5h. A100-µLvolumeoftheantimicrobialwas 2 thenadded. After1and24h,themediumwasremovedandthecellswashedtwicewith100µLofPBS. ThreehundredµLofDMEMcontaining10%(v/v)ofalamarBlue(AlamarBlueCellViabilityReagent, Invitrogen)wasaddedtoeachwellandtheplateincubatedfor1.5h. Fluorescencewasreadwith aSynergyHTplatereader(BioTek®Instruments,Winooski,VT,USA)withexcitationandemission wavelengthsof545nmand590nm,respectively. Thehalfmaximalinhibitoryconcentration(IC50) wasdefinedastheantimicrobialconcentrationthatinhibited50%cellproliferationcomparedtothe control(i.e.,DMEMwithoutantimicrobialagent). Eachconditionwasstudiedintriplicateandon threeseparateoccasions. 4.6. StatisticalAnalysis StatisticalanalysiswasperformedusingGraphPadPrismVersion7.0(GraphPadSoftware,Inc., LaJolla,CA,USA).Datawerepresentedasarithmeticmean±SD.Thedifferencebetweentreatments wasstatisticallyanalysedusingone-wayanalysisofvariance(ANOVA)followedbyTukeymultiple comparisonstest. Statisticallysignificantdifferencesweresetatp<0.05. 5. Conclusions This study showed that all the twelve commercial essential oils, two terpenes and triclosan and CHX had antifungal activity against planktonic C. albicans. Six of these compounds (CHX, cinnamon, E-cinnamaldehyde, linalool, geraniumandmelissa)werealsoactiveagainstC.albicans biofilms,whichareusuallychallengingtoeffectivelyinhibit. Cytotoxicityscreeningrevealedthatthe commercialessentialoilshalvedfibroblastproliferationatconcentrationslowerthanthoserequired toinhibitC.albicansgrowth. Furtherinvestigationontheeffectoftheseagentsagainstmammalian cellsishoweverwarrantedbeforeanyinvivoapplication. Theantifungalpotentialoftheseessential oilscouldbeafuturetherapeuticfortopicalcandidosisasanoptiontoovercomeemergingantifungal drugresistance. AuthorContributions: ElisaSerraperformedalltheexperiments,analysedthedataandwroteadraftofthe paper;AraidaHidalgo-Bastidadesignedtheexperimentsrelatedtocellculture(cytotoxicitywork),reviewed andrevisedthedraftmanuscript;SladjanaMalic,JoannaVerranandDavidWilliamsdraftedthework,designed theexperimentsrelatedtothemicrobiologywork,oversawthelaboratorywork,reviewedandrevisedthedraft manuscript;Allauthorsapprovethefinalmanuscriptforsubmission. ConflictsofInterest:Theauthorsdeclarenoconflictsofinterest. References 1. Muzyka,B.C.Oralfungalinfections.Dent.Clin.N.Am.2005,49,49–65.[CrossRef][PubMed] Pathogens2018,7,15 10of12 2. Palmer, G.D.; Robinson, P.G.; Challacombe, S.J.; Birnbaum, W.; Croser, D.; Erridge, P.L.; Hodgson, T.; Lewis,D.;McLaren,A.;Zakrzewska,J.M.AetiologicalfactorsfororalmanifestationsofHIV.OralDis.1996, 2,193–197.[CrossRef][PubMed] 3. McCarthy,G.M.;Mackie,I.D.;Koval,J.;Sandhu,H.S.;Daley,T.D.Factorsassociatedwithincreasedfrequency ofHIV-relatedoralcandidiasis.J.OralPathol.Med.1991,20,332–336.[CrossRef][PubMed] 4. Farah,C.S.;Ashman,R.B.;Challacombe,S.J.Oralcandidosis.Clin.Dermatol.2000,18,553–562.[CrossRef] 5. Gleiznys,A.;Zdanavicˇiene˙,E.;Žilinskas,J.Candidaalbicansimportancetodenturewearers.Aliterature review.Stomatologija2015,17,54–66.[PubMed] 6. Yasui,M.;Ryu,M.;Sakurai,K.;Ishihara,K.Colonisationoftheoralcavitybyperiodontopathicbacteriain completedenturewearers.Gerodontology2012,29,494–502.[CrossRef][PubMed] 7. Douglass,C.W.;Shih,A.;Ostry,L.WilltherebeaneedforcompletedenturesintheUnitedStatesin2020? J.Prosthet.Dent.2010,87,5–8.[CrossRef] 8. Sardi, J.C.O.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A.M.; Mendes Giannini, M.J. Candida species: Currentepidemiology,pathogenicity,biofilmformation,naturalantifungalproductsandnewtherapeutic options.J.Med.Microbiol.2016,62,10–24.[CrossRef][PubMed] 9. Williams,D.; Lewis,M.Pathogenesisandtreatmentoforalcandidosis. J.OralMicrobiol. 2011, 1, 1–11. [CrossRef][PubMed] 10. Boros-Majewska,J.;Salewska,N.;Borowski,E.;Milewski,S.;Malic,S.;Wei,X.Q.;Hayes,A.J.;Wilson,M.J.; Williams,D.W.NovelNystatinA1derivativesexhibitinglowhostcelltoxicityandantifungalactivityinan invitromodeloforalcandidosis.Med.Microbiol.Immunol.2014,203,341–355.[CrossRef][PubMed] 11. Nazzaro,F.; Fratianni,F.; DeMartino,L.; Coppola,R.; DeFeo,V.Effectofessentialoilsonpathogenic bacteria.Pharmaceuticals2013,6,1451–1474.[CrossRef][PubMed] 12. Sikkematb,J.;deBontt,J.A.M.Interactionsofcyclichydrocarbonswithbiologicalmembranes.J.Biol.Chem. 1994,269,8022–8028. 13. Bakkali,F.;Averbeck,S.;Averbeck,D.;Idaomar,M.Biologicaleffectsofessentialoils—Areview.FoodChem.Toxicol. 2008,46,446–475.[CrossRef][PubMed] 14. Adil,M.; Singh,K.; Verma,P.K.; Khan,A.U.Eugenol-inducedsuppressionofbiofilm-forminggenesin Streptococcus mutans: An approach to inhibit biofilms. J. Glob. Antimicrob. Resist. 2014, 2, 286–292. [CrossRef][PubMed] 15. Cardoso, N.N.R.; Alviano, C.S.; Blank, A.F.; Romanos, M.T.V.; Fonseca, B.B.; Rozental, S.; Rodrigues, I.A.; Alviano,D.S.SynergismEffectoftheEssentialOilfromOcimumbasilicumvar. MariaBonitaandItsMajor ComponentswithFluconazoleandItsInfluenceonErgosterolBiosynthesis.Evid.BasedComplementAltern.Med. 2016,2016,5647182.[CrossRef][PubMed] 16. Rajput, S.B.; Karuppayil, S.M. Small molecules inhibit growth, viability and ergosterol biosynthesis in Candidaalbicans.Springerplus2013,2,1–6.[CrossRef][PubMed] 17. Samber,N.; Khan,A.; Varma,A.; Manzoor,N.Synergisticanti-candidalactivityandmodeofactionof Mentha piperita essential oil and its major components. Pharm. Biol. 2015, 53, 1496–1504. [CrossRef] [PubMed] 18. Shreaz,S.;Wani,W.A.;Behbehani,J.M.;Raja,V.;Karched,M.;Ali,I.;Siddiqi,W.A.;Ting,L.Fitoterapia Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 2016, 112, 116–131. [CrossRef][PubMed] 19. deCastro,R.D.;Lima,E.O.Anti-CandidaActivityandChemicalCompositionofCinnamomumzeylanicum BlumeEssentialOil.Braz.Arch.Biol.Technol.2013,56,749–755.[CrossRef] 20. Bang, K.; Lee, D.; Park, H.; Rhee, Y. Inhibition of fungal cell wall synthesizing enzymes by trans-cinnamaldehyde.Biosci.Biotechnol.Biochem.2000,64,1061–1063.[CrossRef][PubMed] 21. Cox,S.D.;Mann,C.M.;Markham,J.L.;Bell,H.C.;Gustafson,J.E.;Warmington,J.R.;Wyllie,S.G.Themodeof antimicrobialactionoftheessentialoilofMelaleucaalternifolia(Teatreeoil). J.Appl. Microbiol. 2000,88, 170–175.[CrossRef][PubMed] 22. Rajkowska, K.; Nowak, A.; Kunicka-styczy, A.; Siadura, A. Biological effects of various chemically characterizedessentialoils:InvestigationofthemodeofactionagainstCandidaalbicansandHeLacells. RSCAdv.2016,6,97199–97207.[CrossRef]

Description:
Keywords: Candida albicans; oral candidosis; commercial essential oils; biocides; antifungal activity; minimum environment that lead to increased Candida growth can instigate oral candidosis [1] (normalised by the control (0% (v/v) antimicrobial) after a 1 h (red square) and 24 h application.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.