molecules Article Antifungal Activity and Action Mode of Cuminic Acid from the Seeds of Cuminum cyminum L. against Fusarium oxysporum f. sp. Niveum (FON) Causing Fusarium Wilt on Watermelon YangSun1,†,YongWang1,†,LiRongHan1,XingZhang1,2andJunTaoFeng1,2,* 1 ResearchandDevelopmentCenterofBiorationalPesticide,NorthwestA&FUniversity, Yangling712100,China;[email protected](Y.S.);[email protected](Y.W.); [email protected](L.R.H.);[email protected](X.Z.) 2 EngineeringandResearchCenterofBiologicalPesticideofShaanxiProvince,Yangling712100,China * Correspondence:[email protected];Tel.:+86-029-87092122 † Jointfirstauthorship. Received:31October2017;Accepted:21November2017;Published:30November2017 Abstract:Inordertodevelopanovelbiofungicide,theantifungalactivityandactionmodeofcuminic acid from the seed of Cuminum cyminum L. against Fusarium oxysporum f. sp. niveum (FON) on watermelonwasdeterminedsystematically. Inthisstudy,themedianeffectiveconcentration(EC ) 50 value for cuminic acid in inhibiting mycelial growth of FON was 22.53 µg/mL. After treatment withcuminicacid,themycelialmorphologywasseriouslyinfluenced;cellmembranepermeability and glycerol content were increased markedly, but pigment and mycotoxin (mainly fusaric acid) weresignificantlydecreased. Synthesisgenesofbikaverin(Bike1,Bike2andBike3)andfusaricacid (FUB1,FUB2,FUB3andFUB4)bothweredownregulatedcomparedwiththecontrol,asconfirmed byquantitativeRT-PCR.Ingreenhouseexperiments,cuminicacidatallconcentrationsdisplayed significantbioactivitiesagainstFON.Importantly,significantenhancementofactivitiesofSOD,POD, CATanddecreaseofMDAcontentwereobservedafterinvivocuminicacidtreatmentonwatermelon leaves. Theseindicatedthatcuminicacidnotonlyshowedhighantifungalactivity,butalsocould enhancetheself-defensesystemofthehostplant. Aboveall,cuminicacidshowedthepotentialasa biofungicidetocontrolFON. Keywords: watermelonfusariumwilt;p-isopropylbenzoicacid;biofungicide;diseasemanagement 1. Introduction Watermelonisoneofthemostimportantfruitsworldwide. InChina,watermeloncultivationhas beenincreasingyearbyyearduetoitscomparativelyhigheconomicvalueandincreasingconsumption, but it is susceptible to fusarium wilt disease in continuous monocropping cultivation systems [1]. WatermelonfusariumwiltcausedbyFusariumoxysporumf.sp.niveum(FON)isadestructivesoil-borne disease leading to serious economic losses and limiting watermelon production throughout the world[2]. Importantly,FONisdifficulttoeliminatefromsoil. Laboratorystudieshasreportedthatthree biologicalformsofF.oxysporumcouldsurvivemorphologicallyunchangedfor11ormoreyears[3]. Morethan50%ofFusariumspeciesaretoxigenicandproduceharmfulsecondarymetabolites(SM), suchasthepigmentsfusarubinsandbikaverin[3],aswellasthemycotoxins,fumonisins,fusarins[4], andfusaricacid[5,6]. Intheprogressionoftheinfection,fusariumspeciesdamagehostplantsthrough intrusionofhyphaeintohostvascularsystem,secretionofhydrolyticenzymesandmycotoxinswhich Molecules2017,22,2053;doi:10.3390/molecules22122053 www.mdpi.com/journal/molecules Molecules2017,22,2053 2of13 leadtowatermelonrootandstemnecrosis,cellularapoptosis,foliarwiltingandthendeathwithina fewweeks[7,8]. Due to the fact FON can survive for several years in soil as chlamydospores and many hosts aresymptomless[9],fusariumwiltisdifficulttocontrol,althoughtraditionalcroprotationsarean effectivestrategytocontrolFON[10]. Formanyotherpathogens,theapplicationoffungicidehasbeen acommonandsuccessfulmethodfordiseasemanagement,however,theapplicationoffungicides shouldbephasedoutbecauseoftheincreasingattentiontoenvironmentalandhumanhealthand thedevelopmentoffungicideresistance[9,11]. Someexperimentshavedocumentedthatfungicides have drastic effects on the soil biota and most cause a decline in soil fertility [12]. Consequently, alternativecontrolstrategiesforthisdiseasewouldbeusefulandurgentinreducinghealthhazards, environmentaldamageandthepollutionpotential[13]. Biofungicidesmaybeanattractivealternative methodforcontrollingthisdisease. Biofungicides are living organisms (plants, microscopic animals such as nematodes, and microorganisms, including bacteria, fungi and viruses) or natural products derived from these organisms,thatareusedtosuppresspestpopulationsandpathogens[14]. Firstly,manystudieshave reportedthatusingnonpathogenicFusariumspp. fusariumwiltscouldbecontrolled[15]. Secondly, someantagonisticstrainsshowedhighbioactivitiesagainstfusariumwilt,suchasTrichodermaspp.[16], Bacillusspp.[17]andAspergillusspp.[18].Thirdly,plantextractsorphytochemicals,suchasessentialoils, steroids,phenolicacidsandalkaloidshadgoodantifungalactivities. Forexample,ithasbeenreported thatessentialoilsfrompepper,cassiatree,mustardandclovecouldsuppressdiseasedevelopment causedbyF.oxysporumf. sp.melonisonmuskmelonandreducethepopulationdensityofpathogenin greenhouseexperiments[19].Wuetal. foundmanybenzoicacidanaloguessuchasgallicacid,ferulic acidandp-hydroxybenzoicacidstronglyinhibitedFONgrowth[20–22]. Cuminic acid (p-isopropylbenzoic acid), isolated from the seed of Cuminum cyminum. L. [23], belongstothebenzoicacidchemicalgroup[24]. Inapreviousstudy,ithasbeenreportedthatcuminic acid possessed good inhibition towards several plant pathogens, such as Sclerotinia sclerotiorum, Phytophthoracapsici,Rhizoctoniacerealis,andFusariumoxysporum. EC valuesofcuminicacidagainst 50 mycelialgrowthofP.capsicandS.sclerotiorumwereonly19.7µg/mLand7.3µg/mL,respectively[25], whichwerelowerthantheEC valueofotherbenzoicacidderivativesinpreviousreports[20–22]. 50 In pot experiments, after the application of cuminic acid at 1000 µg/mL, control efficacies of over 60%againstP.capsicandS.sclerotiorumwereobtained,whichwascomparablewiththeefficacyof metalaxyl(250µg/mL)[24]andprocymidone(100µg/mL)[25]. Consideringthebroadspectrumandsignificantantifungalactivityofcuminicacidandthedifficult managementoffusariumwilt,it’snecessarytoevaluatecuminicacidasapotentialbiopesticideto controlfusariumwiltonwatermelon. Theobjectivesofthisresearchwereto:(a)determinetheeffectof cuminicacidonFONcolonygrowth;(b)evaluatetheeffectofcuminicacidonthemorphologicaland physiologicalcharacteristicsofFON;(c)testtheefficacyofcuminicacidagainstFONinwatermelon plantingreenhouseexperiments,andstudytheeffectofcuminicacidontheantioxidantdefensive enzymesinwatermelonplantsubjectedtofusariumwilt;(d)examinetheeffectofcuminicacidon differencesinthetranscriptionlevelsforFONgenesassociatedwiththebiosynthesisoffusaricacid andbikaverinbyaquantitativeRT-PCRmethod. 2. Results 2.1. EffectofCuminicAcidonFONColonyGrowth TheeffectsofvariousconcentrationsofcuminicacidonthemycelialgrowthofFONareshownin Table1,andcuminicacidwerefoundtoinhibitthemycelialgrowthofcuminicacidinadose-dependent manner.MycelialgrowthofFONwasstronglyinhibitedbycuminicacidatarelativelowconcentration of25µg/mL.Basedonlog-transformationanalysis,EC EC andEC valueswerecalculatedas5.6, 30, 50 70 22.53and91.3µg/mL,respectively. Molecules2017,22,2053 3of13 Molecules 2016, 21, 2053 3 of 12 TaTbalbel e1.1 T.hTeh eefeffefcetc toof fccuummiinniicc aacciidd oonn FFOONN ccoolloonnyyg grroowwthth.. Confidence Interval of EC50 CompoCuonmdps oundsRegreRsseigorne sEsqiounaEtiqouna t ion ECE50C (5μ0g(·µmgL·m−1L) −1) Confiden(pc(pe <<I 0n0.t0e.05r5)v )alofEC50 χ2χ2 Cuminic acid Y = 3.83 + 0.86X 22.53 17.85–25.96 4.83 Cuminicacid Y=3.83+0.86X 22.53 17.85–25.96 4.83 Note: Data represents the mean value of triplication. The EC50 was assessed based on logN-toraten:sDfaotramreaptrieosnen atsntahleymsiesa. nYv: aPluroeboiftt-riinphlicibatiitoion.nT (h%e)E;C X50: lwoags-dasosesses.e dbasedonlog-transformationanalysis. Y:Probit-inhibition(%);X:log-dose. 2.2. Effect of Cuminic Acid on Mycelial Morphology of FON 2.2. EffectofCuminicAcidonMycelialMorphologyofFON A cAlecalre aerffeefcfte cotf otfhteh ceucmuminiinci cacaicdid oonn mmyycceeliliaa mmoorrpphhoollooggyy ooff FFOONN wwaasso obbsseervrveded( F(iFgiugruere1) 1.)A. Afteftrer 7 d7aydsa’y isn’ciuncbuabtiaotnio, ntr,etraetamtmenetn wtwitihth cucummininicic aacciidd aatt tthhee EECC5500,, tthhee ccoolloorr ooff mmyycceelilaiaw waassv ivsiisbilbeleli glihgtherter thatnh acnonctornotlr o(Fli(gFuigrue r1ea1,da,)d i)ni nPPDDAA pplalatetess, ,wwhhililee tthhee mmyycceelliiaa ooff tthhee ccoonnttrroollw weereren natautruarla,lu, nuinseisreiartiaete anda nudnuifnoirfmor m(Fi(gFuigruer 1eb1,bc),c b)yb ySESEMM. .FFoorr sstrtraaiinnss aammeennddeedd wwiitthh ccuummiinnicica accidida attt htheeE CEC505,0m, mycyecleialiaw wereere sevseerveelrye ldyedfoerfmoremde,d t,wtwiniinnign ganandd clculustseterreedd ((FFiigguurree 11ee,,ff)).. Figure 1. Effect of cuminic acid on mycelia morphology of FON. (d–f) Untreated plates; (a–c) Plates Figure1.EffectofcuminicacidonmyceliamorphologyofFON.(d–f)Untreatedplates;(a–c)Plates treatrteeadt ewdiwthi tchucmuimniicn iaccaidci data EtCEC50 vavlauleu e(2(22.25.353 μµgg/m/mLL).) V.Vaalulueess aarree mmeeaannss aanndd ssttaannddaarrdde errrororsr.s. 50 2.3. EffectofCuminicAcidonCellMembranePermeabilityofFON To confirm the membrane-disruption effects of cuminic acid on the hyphal cells, the relative conductivity of the mycelia treated with cuminic acid were determined. As shown Figure 2, the relativeconductivityofthemyceliatreatedwithcuminicacidincreasedgraduallyduringincubation, beingabout45.78%higherthanthatofcontrolafter120minincubation. Figure 2. Mycelial relative conductivity of FON with or without cuminic acid treatment at the concentration of EC50 value (22.53 μg/mL). Values are means and standard errors. Molecules 2016, 21, 2053 3 of 12 Table 1. The effect of cuminic acid on FON colony growth. Confidence Interval of EC50 Compounds Regression Equation EC50 (μg·mL−1) χ2 (p < 0.05) Cuminic acid Y = 3.83 + 0.86X 22.53 17.85–25.96 4.83 Note: Data represents the mean value of triplication. The EC50 was assessed based on log-transformation analysis. Y: Probit-inhibition (%); X: log-dose. 2.2. Effect of Cuminic Acid on Mycelial Morphology of FON A clear effect of the cuminic acid on mycelia morphology of FON was observed (Figure 1). After 7 days’ incubation, treatment with cuminic acid at the EC , the color of mycelia was visible lighter 50 than control (Figure 1a,d) in PDA plates, while the mycelia of the control were natural, uniseriate and uniform (Figure 1b,c) by SEM. For strains amended with cuminic acid at the EC , mycelia were 50 severely deformed, twining and clustered (Figure 1e,f). Figure 1. Effect of cuminic acid on mycelia morphology of FON. (d–f) Untreated plates; (a–c) Plates Molecules2017,22,2053 4of13 treated with cuminic acid at EC50 value (22.53 μg/mL). Values are means and standard errors. Molecules 2016, 21, 2053 4 of 12 2.3. Effect of Cuminic Acid on Cell Membrane Permeability of FON To confirm the membrane-disruption effects of cuminic acid on the hyphal cells, the relative conductivity of the mycelia treated with cuminic acid were determined. As sh own Figure 2, the relative conductivity of the mycelia treated with cuminic acid increased gradually during FigFuirgeu r2e. 2M. yMceylicaell iarellraetliavteiv ceocnodnudcuticvtiivtyit yofo fFFOONN wwitihth oorr wwiitthhoouutt ccuummiinniicc aaccidid trtereaatmtmenentta tatt htehe incucboantcciooennnct,er nbatteriioantnigo o naf obEfoCEu5C0t v540a5vlu.a7el8u (%e22( 2h.52i3.g5 μh3geµ/rgm /thLma)L.n V) .taVhlaualetu seo saf racero emnmtereaoannls s aaafntneddr s s1ttaa2nn0dd maarriddn ee irrnrroocrruss.b. ation. 2.4. Glycerol Content of Mycelia 2.4. GlycerolContentofMycelia After treatment with cuminic acid, the content of glycerol was always significantly higher than Aftertreatmentwithcuminicacid,thecontentofglycerolwasalwayssignificantlyhigherthan theth ceocnotrnotrl owlwithitohuotu ctucummininici caaccidid ttrreeaattmmeenntt ((FFiigguurree 33)).. AAss tthheec coonncceenntrtaratitoionnw wasasin icnrceraesaesde,dth, ethgel ygcleyrcoelrol concotenntet notf othfeth meymceylcieal iinacirnecarseeadse odvoevr etirmtiem. Te.hTeh gelygcleyrcoelr ocolncotenntetsn ftsorf othrrteher eceocnocnencetrnattriaotniosn osf ocfucmuimniicn iaccid (ECac30i,d E(CEC50 3a0n,dE CE5C07a0)n sdigEnCif7i0c)ansitglyn iifinccarneatlsyedin bcrye 7a9se.3d%b,y 31739..536%%,3 a1n3d.5 663%1.a5n7d%6, 3re1s.5p7e%ct,ivreeslyp ectively Figure 3. Glycerol content of mycelia of FON with or without cuminic acid treatment at Figure3.GlycerolcontentofmyceliaofFONwithorwithoutcuminicacidtreatmentatconcentrations coonfceEnCtra(t5io.6nµs go/f mECL)3,0 E(5C.6 μ(2g2/.m53Lµ),g E/Cm5L0 )(2a2n.d53E μCg/m(9L1.)3 aµngd/ EmCL7)0. (B9a1r.s3 dμegn/omteLt)h. eBsatrasn ddeenrrootre othfeth srteaend 30 50 70 error of three experiments. Data represents means of three replicates with standard deviation. Data experiments.Datarepresentsmeansofthreereplicateswithstandarddeviation.Data(means±SD, (means ± SD, n = 3) followed by the same letters in the row show no significant differences (small n=3)followedbythesamelettersintherowshownosignificantdifferences(smallletters,p<0.05). letters, p < 0.05). 2.5. MycotoxinConcentrationofFONinLiquidCulture 2.5. Mycotoxin Concentration of FON in Liquid Culture Mycotoxin(mainlyfusaricacid)concentrationofFONinPDBwassuppressedbycuminicacid Mycotoxin (mainly fusaric acid) concentration of FON in PDB was suppressed by cuminic acid treatmentinaconcentrationdependentmanner. Significantsuppressionwasfoundevenatthelower treEaCtmevnat luine cao ncocenncternattrioanti.oTnh deempyecnodteonxtin mcoanncneenrt.r aStiigonnifwicaasndt escurepapsreedssbiyon2 4w.5a7s– 6f6o.2u2n%d ceovmenp aaret dthe 50 lowweitrh EcoCn5t0r ovla(lFuigeu rceon4)c.entration. The mycotoxin concentration was decreased by 24.57–66.22% compared with control (Figure 4). Figure 4. Mycotoxin production (mainly fusaric acid) concentration in FON with cuminic acid treatments at concentrations of EC30 (5.6 μg/mL), EC50 (22.53 μg/mL) and EC70 (91.3 μg/mL) in liquid culture. Bars denote the stand error of three experiments. Data represents means of three replicates with standard deviation. Data (means ± SD, n = 3) followed by the same letters in the row show no significant differences (small letters, p < 0.05). Molecules 2016, 21, 2053 4 of 12 2.3. Effect of Cuminic Acid on Cell Membrane Permeability of FON To confirm the membrane-disruption effects of cuminic acid on the hyphal cells, the relative conductivity of the mycelia treated with cuminic acid were determined. As shown Figure 2, the relative conductivity of the mycelia treated with cuminic acid increased gradually during incubation, being about 45.78% higher than that of control after 120 min incubation. 2.4. Glycerol Content of Mycelia After treatment with cuminic acid, the content of glycerol was always significantly higher than the control without cuminic acid treatment (Figure 3). As the concentration was increased, the glycerol content of the mycelia increased over time. The glycerol contents for three concentrations of cuminic acid (EC , EC and EC ) significantly increased by 79.3%, 313.56% and 631.57%, respectively 30 50 70 Figure 3. Glycerol content of mycelia of FON with or without cuminic acid treatment at concentrations of EC30 (5.6 μg/mL), EC50 (22.53 μg/mL) and EC70 (91.3 μg/mL). Bars denote the stand error of three experiments. Data represents means of three replicates with standard deviation. Data (means ± SD, n = 3) followed by the same letters in the row show no significant differences (small letters, p < 0.05). 2.5. Mycotoxin Concentration of FON in Liquid Culture Mycotoxin (mainly fusaric acid) concentration of FON in PDB was suppressed by cuminic acid treatment in a concentration dependent manner. Significant suppression was found even at the lower EC value concentration. The mycotoxin concentration was decreased by 24.57–66.22% 50 comMopleacureleds2 w017it,h22 c,2o0n53trol (Figure 4). 5of13 FigFuigrue re4. 4M. yMcyoctooxtoinx inprpordoudcutciotino n(m(maaininlyly ffuussaarriicc aacciidd)) ccoonncceennttrraattiioonn inin FFOONNw witihthc ucmuminiincica ciadcid tretartematemnetsn tast actocnocnencetnratrtiaotinosn osfo EfCE3C0 3(05.(65 μ.6gµ/mg/Lm), LE)C,E50C (5202.(5232 .μ53g/µmgL/)m aLn)da EnCd7E0 (C9710.3( 9μ1g.3/mµgL/) minL l)iqinuid culltiquureid. Bcaurlstu dree.noBtaer tshdee sntoatnedt heerrsotra nodf tehrrreoer eoxfptehrriemeeenxtpse. rDimatean trse.prDeasteantrse pmreesaennst somf teharnese orefpthlirceaetes wirtehp slitcaantdesarwdi tdhesvtiaantdioanrd. Ddaevtaia (tmioena.nDsa ±ta S(Dm,e nan =s 3±) SfoDll,onw=e3d) bfoyl ltohwee sdambyet lheettsearms einl etthteer sroinwt hsheorwow no sigsnhiofiwcannot dsiigfnfeifirecnacnetsd (isffmeraelnl cleestt(esrms,a pll <le 0tt.0er5s),. p<0.05). 2.6. GreenhouseExperiments The effect of cuminic acid on FON was evaluated under greenhouse conditions (Table 2). Ourexperimentsdemonstratedthatcuminicacidatallconcentrationshasasignificantsuppression effectonFON.Inplantsundercuminicacidat2000µg/mLweobtaineda21.5%diseaseindexand 74.5%efficacy,whichwasnotsignificantlydifferencefromcarbendazimat1000µg/mL.However,in plantsundercuminicacidat1000µg/mL,thediseaseindexandefficacywere38.8%and54.5%,which waslowerthanundercarbendazimat1000µg/mL. Table2.Effectofcuminicacidoncontroloffusariumwiltonwatermelon. Compound Concentration DiseaseIndex(%) Efficacy(%) 1000µg/mL 38.8±2.5b 54.5±2.3b Cuminicacid 2000µg/mL 21.4±1.51c 74.5±1.5a 3000µg/mL 24.8±1.15c 71.9±1.22a Carbendazim 1000µg/mL 23.2±1.18c 72.8±1.4a Water ___ 85.5±3.5a ___ Note:Resultsarethemeansof10watermelonplantsandfromtwoindependentexperiments.Meansfollowedby thesameletterswerenotsignificantdifferentaccordingtoLSD(α=0.05). 2.7. AssayofDefenseEnzymeActivitiesandMalondialdehyde(MDA)Content Theactivitiesofsuperoxidedismutase(SOD),peroxidase(POD)andcatalase(CAT)areshown inFigure5a–candthecontentofMDAisshowninFigure5d. ActivitiesofSOD,POD,CATunder cuminicacidtreatmentinwatermelonleaveswereenhancedincomparisonwithcontrol,exceptfor cuminicacidtreatmentat4000µg/mLinPODactivities. SODandPODactivitiesexperiencedthe trendinalltheplants,andthehighestenzymeactivity(43.65%)wasfoundintreatmentwithcuminic acidat1000µg/mL(Figure5a)anda27.87%increasewasobservedcomparedwithcontrol(Figure5b). As for CAT activity, the highest enzyme activity was found after cuminic acid treatment at 2000µg/mL,whichcorrespondedtoa59.55%(Figure5c)increasecomparedtocontrol. However, MDAcontentdecreasedsteadilyinallthesamplesduringthewholeexperimentalperiodwiththe increasedconcentrationofcuminicacid. Molecules 2016, 21, 2053 5 of 12 2.6. Greenhouse Experiments The effect of cuminic acid on FON was evaluated under greenhouse conditions (Table 2). Our experiments demonstrated that cuminic acid at all concentrations has a significant suppression effect on FON. In plants under cuminic acid at 2000 μg/mL we obtained a 21.5% disease index and 74.5% efficacy, which was not significantly difference from carbendazim at 1000 μg/mL. However, in plants under cuminic acid at 1000 μg/mL, the disease index and efficacy were 38.8% and 54.5%, which was lower than under carbendazim at 1000 μg/mL. Table 2. Effect of cuminic acid on control of fusarium wilt on watermelon. Compound Concentration Disease Index (%) Efficacy (%) 1000 μg/mL 38.8 ± 2.5b 54.5 ± 2.3b Cuminic acid 2000 μg/mL 21.4 ± 1.51c 74.5 ± 1.5a 3000 μg/mL 24.8 ± 1.15c 71.9 ± 1.22a Carbendazim 1000 μg/mL 23.2 ± 1.18c 72.8 ± 1.4a Water ___ 85.5 ± 3.5a ___ Note: Results are the means of 10 watermelon plants and from two independent experiments. Means followed by the same letters were not significant different according to LSD (α = 0.05). 2.7. Assay of Defense Enzyme Activities and Malondialdehyde (MDA) Content The activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) are shown in Figure 5a–c and the content of MDA is shown in Figure 5d. Activities of SOD, POD, CAT under cuminic acid treatment in watermelon leaves were enhanced in comparison with control, except for cuminic acid treatment at 4000 μg/mL in POD activities. SOD and POD activities experienced the trend in all the plants, and the highest enzyme activity (43.65%) was found in treatment with cuminic acid at Molecules2017,22,2053 6of13 1000 μg/mL (Figure 5a) and a 27.87% increase was observed compared with control (Figure 5b). Molecules 2016, 21, 2053 6 of 12 2.8. Quantitative RT-PCR To confirm whether the biosynthesis of fusaric acid and pigment in FON would be affected by cuminic acid, expression of genes including the ones involved in the synthesis of bikaverin (Bike1, Bike2 and Bike3), fusaric acid (FUB1, FUB2, FUB3 and FUB4) and components of a velvet-like complex (Lae1 and Vel1) were quantified (Table 3). Relative to expression in the wild-type strain (Figure 6), synthesis genes of bikaverin (Bike1, Bike2 and Bike3) and fusaric acid (FUB1, FUB2, FUB3 and FUB4) both exhibited decreased expression compared with the internal control. Table 3. qRT-PCR primers applied in this study. Gene Name Accession Number Primer Sequence (5′-3′) Forward CGGTATCTGTGGTGGTGTC Bike1 AJ278141 Reverse TCGGGAGGTGATGTTGTG Forward TGCCTGCTCCACAGTCTACG Bike2 AM229668 Reverse GCCAATCTTGACCGCCAC Forward CGCCAAAGTCATCAAGGA Bike3 AM229667 Reverse AGGCTCAGGCACCACAAA Figure 5. SOD (a); POD (b) and CAT (c) activFiotriewsa ardn d MDA AacCtiTvTitCyG (CdC) ToCf GthTeC wAaTtCerTmCe lon leaves Figure5.FSUOBD1 (a); POD(b)FFanUdJ_C02A1T05( c)activitiesandMDAactivity(d)ofthewatermelonleaves treated with cuminic acid at 0, 1000, 2000 and 30R0e0v μegrs/em L, respGeActAivCeClyC. ADGatCa AreTpCreAsAenAtCs mTTeAanTs of three treatedwithcuminicacidat0,1000,2000and3000µg/mL,respectively. Datarepresentsmeansof repthlirceaetiroenpslFi UcwaBitti4ho n sstawnidtharsdta dnedFvaFirUadtJi_do0en2v.1 iD0a8tai otan (.mDeaFataonrs(wm ±a eSradDn ,s n± =S 3D) ,fConlA=loC3wC)efCodTl lbToyGw tCehdTeC bsAyamTthCee AlseCattmAereGsl ientt ethrse irnow shothwe rnoow sisghnoiwficnaonst idginfiffiecreanntcedsi f(fsemreanlcle lse(tstemrsa,l lplR e<et tv0e.er0rs5s,e)p. <0C.0G5T).AAAAATATCCTTCCGAATAATC Forward GCCAACTGCTGTCACTAT FUB2 FFUJ_02106 Reverse TTCCGAGGTGGAGATTAG As for CAT activity, the highest enzyme activity was found after cuminic acid treatment at 2.8. QuantitativeRT-PCR Forward CCCGATACACCATACCCT 2000 μg/mL, wFhUiBch3 correspondFFeUdJ _to02 1a0 75 9.55% (Figure 5c) increase compared to control. However, ToconfirmwhetherthebiosynthesisoffuRseavreicrsaec idandpCiCgAmAeCnTtTinCTFTOGNCCwGoTuGldAGbe affectedby MDA content decreased steadily in all the samples during the whole experimental period with the Forward TATTGGTACGGGCACAGG cuminicacid,Leaxe1p ressionofgFeVnEeGs_i0n0c5l3u9d ingtheonesinvolvedinthesynthesisofbikaverin(Bike1, increased concentration of cuminic acid. Reverse GGCATAAAGCCAGGAGGA Bike2andBike3),fusaricacid(FUB1,FUB2,FUB3andFUB4)andcomponentsofavelvet-likecomplex Forward CTACTAAGGAGGAAAGGGACT (Lae1andVel1V)elw1 erequantifieFdN(5T4a8b1l4e2 3). Relativetoexpressioninthewild-typestrain(Figure6), Reverse TCCATCAAACCAGGAAACT synthesisgenesofbikaverin(Bike1,Bike2andBike3)andfusaricacid(FUB1,FUB2,FUB3andFUB4) Forward GAGGGACCGCTCTCGTCGT Related actin gene Foxq13729 bothexhibiteddecreasedexpressioncomparedRwevitehrsteh eintGeGrnAaGlcAoTnCtrCoAl.GACTGCCGCTCAG Figure 6. Gene expression level of synthesis of fusaric acid (FUB1, FUB2, FUB3 and FUB4) and bikaverin Figure6.Geneexpressionlevelofsynthesisoffusaricacid(FUB1,FUB2,FUB3andFUB4)andbikaverin (Bike1, Bike2 and Bike3), and components of a velvet-like complex (Lae1 and Vel1) relative to without (Bike1,Bike2andBike3),andcomponentsofavelvet-likecomplex(Lae1andVel1)relativetowithout treatment cuminic acid. Values are the means ± standard error (SE) of three repeated experiments. treatmentcuminicacid.Valuesarethemeans±standarderror(SE)ofthreerepeatedexperiments. Expressions of FUB3, FUB4 and Bike2 were about 0.88, 0.77 and 0.46 fold lower relative to the internal control. However, genes of components of a velvet-like complex (Lae1 and Vel1) exhibited significantly increased expression (1.95 and 1.37-fold). Molecules2017,22,2053 7of13 Table3.qRT-PCRprimersappliedinthisstudy. GeneName AccessionNumber Primer Sequence(5(cid:48)-3(cid:48)) Forward CGGTATCTGTGGTGGTGTC Bike1 AJ278141 Reverse TCGGGAGGTGATGTTGTG Forward TGCCTGCTCCACAGTCTACG Bike2 AM229668 Reverse GCCAATCTTGACCGCCAC Forward CGCCAAAGTCATCAAGGA Bike3 AM229667 Reverse AGGCTCAGGCACCACAAA Forward ACTTCGCCTCGTCATCTC FUB1 FFUJ_02105 Reverse GAACCCAGCATCAAACTTAT Forward CACCCTTGCTCATCACAG FUB4 FFUJ_02108 Reverse CGTAAAAATATCCTTCCGAATAATC Forward GCCAACTGCTGTCACTAT FUB2 FFUJ_02106 Reverse TTCCGAGGTGGAGATTAG Forward CCCGATACACCATACCCT FUB3 FFUJ_02107 Reverse CCAACTTCTTGCCGTGAG Forward TATTGGTACGGGCACAGG Lae1 FVEG_00539 Reverse GGCATAAAGCCAGGAGGA Forward CTACTAAGGAGGAAAGGGACT Vel1 FN548142 Reverse TCCATCAAACCAGGAAACT Forward GAGGGACCGCTCTCGTCGT Relatedactingene Foxq13729 Reverse GGAGATCCAGACTGCCGCTCAG ExpressionsofFUB3,FUB4andBike2wereabout0.88,0.77and0.46foldlowerrelativetothe internalcontrol. However,genesofcomponentsofavelvet-likecomplex(Lae1andVel1)exhibited significantlyincreasedexpression(1.95and1.37-fold). 3. Discussion In previous study, cuminic acid and cuminic aldehyde, as the major bioactive constituents of C. cyminum seed, were reported to possess broad spectrum antifungal activities [23,25]. Cuminic acidasarepresentativechemicalofthebenzoicacidgroup, alsoexhibitedasignificantantifungal activityandenhancedthedefensecapacityofplantsagainstPhytophthoracapsic[24]. Thisstudywas focusedonthebiochemistryandphysiologyalterationsinFusariumoxysporumf. sp. niveummediated bycumunicacid,andconfirmsthatthischemicalhasavaluefordevelopmentandutilizationasa potentialbiofungicide. Inthecurrentstudy,resultsshowedthatthegrowthofFONwasstronglyinhibitedbycuminic acidinaconcentration-dependentmanner,withanEC valueof22.53µg/mL.Cuminicacidexhibited 50 asignificanthigherantifungalactivityinPDAplatescomparedwithotherchemicalsofthebenzoic acidgroup,suchascinnamicacid[26],gallicacid[20]andsinapicacid[8]. Interestingly,wefoundthat thecolorofmyceliainthestrainstreatedwithcuminicacidattheEC inPDAplateswasvisiblylighter 50 thanthatincontrol,andmyceliawereabnormalbySEM.Inaddition,thecellmembranepermeability andglycerolcontentweresignificantlyenhanced,whichwasconsistentwiththeactivityofcuminic acidagainstPhytophthoracapsic[24],whichindicatedthatthemechanismofactionofcuminicacid againstplantpathogensmightbethroughdamagingthemycelialstructureandinducingintracellular plasmaleakage. Mycotoxin (mainly fusaric acid) production is widely distributed among the whole Fusarium species [27], particularly pathogenic strains of F. oxysporum. It is an important pathogenic factor causingwiltdiseasesinvariousplants,suchaswatermelon,tomatoandcucumber. Importantly,there isanincreasedvirulencetothehostwiththeincreaseofmycotoxinproductionbyF.oxysporum[28]. Intheinitiationofinfectionandsymptomdevelopment,thetoxinsproducedbypathogenswerea Molecules2017,22,2053 8of13 pathogenicitydeterminantinFON[29]. Inthecurrentstudy,asignificantreductionofmycotoxinwas observedaftertreatmentwithcuminicacid,indicatingthatcuminicacidcouldreducethepathogenicity ofFONbyinhibitingthesecretionofmycotoxins(mainlyfusaricacid). Accordingtothereductionof pigmentsandfusaricacidproduction,weselectedninegenesassociatedwiththebiosynthesisoffusaric acid[5,30]andpigments[3]todeterminewhetherFONtreatmentwithcuminicacidwouldaffectthe biosynthesisoffusaricacidandpigmentbyquantitativeRT-PCR.Synthesisgenesofbikaverin(Bike1, Bike2andBike3)andfusaricacid(FUB1,FUB2,FUB3andFUB4)werebothdownregulatedcompared withthecontrol,whichwasconsistentwithpreviousresults. Previousstudieshavedocumentedthat genesofcomponentsofavelvet-likecomplex(Lae1andVel1)participatedinthebiosynthesisofand modulatetheexpressionoffusaricacid[3,5]. However,thesesignificantlyoverexpressedgenesinthis studystillneedtobefurtherstudied. Ingreenhouseexperimenta,cuminicacidatallconcentrationshadasignificantsuppressiveeffect onFON.Aftertreatmentwithcuminicacidat2000µg/mL,thediseaseindexandefficacywerenot significantlydifferentfromthoseaftertreatmentwithcarbendazimat1000µg/mL,indicatingthat cuminicacidhassignificantantifungalactivitiesagainstFONandpossessespotentialasabiofungicide. ReactiveOxygenSpecies(ROS)areharmfultoseveralcellularcomponentsandtheycancause lipid peroxidation and induce membrane injury, then resulting in cell senescence [31]. Moreover, antioxidantenzymessuchasSOD,POD,CATplaycrucialrolesinsuppressingoxidativestress. When ROS increases, SOD directly catalyzes the conversion of O2− into H O , which is then converted 2 2 into water and oxygen by CAT [32], while POD decomposes H O into H O and O . Meanwhile, 2 2 2 2 theenzymePODparticipatesintheconstruction,rigidificationandlignificationofcellwalls,which protectsplanttissuesfromdamage[33]. Inaddition,thehighMDAreflectsthehigherproductionof H O andROS[34]. Inthepresentstudy,activitiesofSOD,POD,CATinwatermelonleavesunder 2 2 cuminicacidtreatmentweresignificantlyenhancedincomparisonwithcontrol. Correspondingly, adecreasedMDAcontentincuminicacidtreatedwasobserved. Thesedataclearlysuggestedthat cuminicacidcouldpreventFONdevelopmentandreducetheleveloflipidperoxidationthrougha mechanisminvolvingactivationofantioxidantdefensiveenzymes. In conclusion, cuminic acid has a high inhibition effect in the mycelial growth of FON on watermelon plants. Although further work is needed to entirely understand the mode of action ofcuminicacidagainstFON,wecanconcludethatcuminicacidusedinthisstudycouldbedeveloped asapromisingbiofungicide. 4. MaterialsandMethods 4.1. PathogenStrainsandFungicides Fusariumoxysporumf. sp. niveumwerecollectedfrominfectedwatermelonplantandmaintained onpotatodextroseagar(PDA)[24]mediumprovidedbytheLaboratoryofResearchandDevelopment CenterofBiorationalPesticide,NorthwestA&FUniversity. Cuminicacid(98%)andcarbendazim (98.0%)usedintheexperimentwerepurchasedfromtheSigmaCo. (St. Louis,MO,USA). 4.2. EffectofCuminicAcidonFONColonyGrowth Theeffectofcuminicacidoncolonygrowthwasdeterminedasfollows:PDAmediawasamended with a series of cuminic acid addtions at the final concentrations of 0, 3.125, 6.25, 12.5, 25, 50 and 100µg/mL.A5-mmmycelialplugtakenfromtheleadingedgeof7-day-oldcolonieswasinoculated intothecenteroftheamendedPDAmedium. Platewasincubatedinagrowthchamberat28◦Cfor 7days,colonydiameterwasdeterminedbymeasuringtheaverageoftwoperpendiculardirections on each plate. According to previous studies [24], the EC values were calculated by regressing 50 percentagegrowthinhibitionagainstthelogofcuminicacidconcentration. Eachconcentrationwas testedthricewiththreereplicates. Molecules2017,22,2053 9of13 4.3. EffectofCuminicAcidonMycelialMorphologyofFON Myceliaplugscutfromthemarginof7-day-oldcolonywereplacedonPDAplatescontaining cuminicacidattheEC (22.5µg/mL)forinhibitionofmycelialgrowth. Controlwasplateswithout 50 cuminicacid. After7daysat28◦C,themarginofmediumarea(10mm × 10mm)wasplacedon slideglass. High-resolutionimagesofmycelialmorphologychangesincuminicacidtreatedsamples wereobtainedbyscanningelectronmicroscope(SEM,JSM-6360LV,JEOL,Tokyo,Japan)[35]. Three replicateswereprocessedandtheexperimentwasrepeatedtwice. 4.4. EffectofCuminicAcidonCellMembranePermeabilityofFON Mycelialcellmembranepermeabilitywasexpressedastherelativeconductivity. Tenmycelial plugswereaddedinto250-mLflaskscontaining100mLofpotatodextrosebroth(PDB).Theflasks wereshakenat180rpmand28◦Cfor5days,partialflaskswereamendedwithcuminicacidatthe EC (22.5 µg/mL). Control was flasks without cuminic acid. The flasks were shaken for 2 days, 50 myceliasamples(0.5gofmycelia)werecollectedbyfiltrationthroughfilterpaper,andsuspended in20mLofdistilledwater. Conductivityofthetreatedwaterwasmeasuredafter5,30,60,120,180, 240minwithaconductivitymeter(CON510Eutech/Oakton,BukitBatok,Singapore),after240min, finalconductivitywasdeterminedbymyceliawereboiledfor5mintocompletelykillthetissuesand releaseallelectrolytesandcooledto25◦C.Theexperimentwiththreereplicateswasrepeatedthree times. Therelativeconductivitywascalculatedasfollowingformula[36]: Conductivityatdifferenttimes Relativeconductivity= ×100% (1) Finalconductivity 4.5. GlycerolContentofMycelia Glycerol content was determined using the described method [37] with minor modifications. Astandardcurveforglycerolwasobtainedaccordingtothedescribedmethod. ThemyceliaofFON strainwaspreparedasdescribedabove. Inaddition,partialflaskswereamendedwithcuminicacidat theEC (5.6µg/mL),EC (22.5µg/mL)andEC (91.3µg/mL).Mycelia(0.5gpersample)were 30 50 70 groundwithafrozenpestleandamortar. Thesamplewaswashedthricewithautoclaveddistilled waterandtransferredto10-mLcentrifugetubes. Thevolumeforeachsamplewasadjustedto10mL withwater. Accordingtothestandardcurve, glycerolcontentofthesamplewascalculated. Each treatmentwasprocessedwiththreereplicates,andthetestwasrepeatedthreetimes. 4.6. MycotoxinConerntrationofMycelia Mycotoxin(mainlyfusaricacid)concentrationwasdeterminedasdescribedbyWuetal.[26]. Astandardcurvewaspreparedwithstandardoffusaricacid(SigmaCo.). Tenmycelialplugswere addedinto250-mLflaskscontaining100mLPDB.Theflaskswereshakenat150rpmand28◦Cfor 10 days, partial flasks were amended with cuminic acid at the EC , EC and EC , Control was 30 50 70 flaskswithoutcuminicacid. Theflaskswerecontinuedtoshakefor4days,andtheculturefiltrate wascollectedafterfiltration. TheculturefiltratewasacidifiedtopH2with2MHCLandanequal volume of ethyl acetate was added, followed by vigorous shaking for 1 min, and held for 30 min. Thecollectedorganicphasewasthenplacedinanewtube. Theaboveprocedurewasrepeatedthree times. Theorganicphasewascentrifugedat4000rpmfor15minandthesupernatantwascollected anddried. Thedriedresiduewasredissolvedwithethylacetateto5mL.ByUVspectrophotometry (UV-5100spectrophotometer,YuanXi,Shanghai,China),theOD wasmeasured. Eachtreatment 268 wasprocessedwiththreereplicates,andthetestwasrepeatedthreetimes. Molecules2017,22,2053 10of13 4.7. PreparationofFONInoculumandtheWatermelonSeedlings Tenmycelialplugswereaddedinto250-mLflaskscontaining100mLPDB.Theflaskswereshaken at150rpmand28◦Cfor7–10days,dependingonexperiments.Thesporesuspensionswerefilteredand adjustedto1×106cfu/mLwithahemacytometer(ThermalFisherScientific,Hennigsdorf,Germany). The watermelon seeds were surface disinfected in sodium hypochlorite (5%, w/v) for 5 min, washed twice with sterile water and then germinated in a 9 cm diameter sterile plates containing wetfilterpaper. Thegerminatedseedsweresownintoeachnurserycups(4cmdiameter,6cmhigh) containingasterilizedmixtureofnurserysoil,organicmanureandsand(2:1:1,w/w). Theseedlings weregrowningreenhouse(naturallightat32/18◦C(day/night)and50–70%humiditywith). Seeding werewateredwhenneeded.Watermelonseedlings(twocotyledonperiodstage)weretransplantedinto pots(10cmdiameter,15cmhigh)containingenoughsterilizedmixtureofnurserysoil. Theseedings (twotrueleavesstage)wereusedforallexperiments. 4.8. GreenhouseExperiments Experimentswerecompletelyrandomizeddesignswithfivetreatments. Thefivetreatmentswere asfollows: water,cuminicacidat1000,2000and4000µg/mL,andcarbendazimat1000µg/mL.10mL oftreatmentwerepouredintotheplantrootwhen10mLofFONsporesuspension(106cfu/mL)was inoculated. Duringtheprocedureoftreatment,plantrootswereinjuredbyminorvulnerablecuts. After3weeksoftreatment,10watermelonplantspertreatmentwereexaminedanddiseaseseverity wasmeasuredaccordingtoRojanetal.[38]. Thediseaseindexandefficacywerecalculatedaccording toZhaoetal.[39]. Tenplantspertreatmentwereappliedandtheexperimentwasrepeatedtwice. 4.9. AssayofDefenseEnzymesActivitiesandMalondialdehyde(MDA)Content Watermelon leaves cut from the plants treated with cuminic acid in the above section were collectedonice. Threegofleafpersamplewerehomogenizedandsuspendedin8mLof0.5mM phosphatebuffer, pH7.8, containing0.2mMEDTAand2%PVPPandcentrifugedat100,000rpm for20at4◦Candtheresultingsupernatantsweredirectlyusedforassay. PODandSODactivities weredeterminedbythemethodsofGarcia-Limonesetal.[40]. CATactivitywasassyedfollowing theproceduresdescribedbySunetal.[41]. AsforMADcontent,theassaymixtureconsistedof5% trichloroaceticacid(TCA)and0.6%thiobarbituricacid(TBA).MDAconcentrationwasdetermined accordingtothemethodsdescribedbyHeathandPacker[2]. Fiveleavespertreatmentwereusedand theexperimentwasconductedtwice. 4.10. QuantitativeRT-PCR QuantitativeRT-PCRwascarriedoutinFONtoexaminedifferencesintranscriptlevelsforgenes associatedwiththebiosynthesisoffusaricacid[5,30]andpigment[3]. ThemyceliaofFONstrain waspreparedasdescribedin2.4. TotalRNAwasisolatedfrommyceliaofFONstrainusingaRNA extractionkit(Takara,Dalian,China)accordingtothemanufacturer’sprotocol. First-strandcDNAwas generatedfromRNAusingthePrimeScriptRTreagentkit(Takara). Inthisstudy,actingenewassetas theinternalcontrol,andallappliedprimersforqRT-PCRwerelistedinTable3. qRT-PCRwascarried outina20µLreactionmixturescontaining12µLSYBRPremixExTaqII(Takara),0.8µLofeachprimer and1.6µLtemplatedDNA.AllquantitativeRT-PCRswereperformedwithanCFX96TMreal-time detectionsystem(Bio-Rad, Hercules, CA,USA).Eachsamplewasruntwiceinthreeindependent biologicalexperiments. Witharelatedactingene(Foxq13729)asthereferencegene,relativeexpression levelsoftargetgeneswerecalculatedaccordingtothe2−(cid:52)(cid:52)Ctmethod[42]. 4.11. StatisticalAnalysis Inthisstudy,datafromrepeatedexperimentswerecombinedforanalysis,owningtothefactthe variancesbetweenexperimentswerehomogeneous. AlldatawereprocessedandanalyzedusingSPSS
Description: