ebook img

Antibodies: Applications and New Developments PDF

329 Pages·2012·9.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Antibodies: Applications and New Developments

Antibodies Applications and New Developments Edited By Eline P. Meulenberg Ambachtsweg 5, 6581 AX Malden The Netherlands eBooks End User License Agreement Please read this license agreement carefully before using this eBook. Your use of this eBook/chapter constitutes your agreement to the terms and conditions set forth in this License Agreement. Bentham Science Publishers agrees to grant the user of this eBook/chapter, a non-exclusive, nontransferable license to download and use this eBook/chapter under the following terms and conditions: 1. This eBook/chapter may be downloaded and used by one user on one computer. The user may make one back-up copy of this publication to avoid losing it. The user may not give copies of this publication to others, or make it available for others to copy or download. For a multi-user license contact [email protected] 2. All rights reserved: All content in this publication is copyrighted and Bentham Science Publishers own the copyright. You may not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit any of this publication’s content, in any form by any means, in whole or in part, without the prior written permission from Bentham Science Publishers. 3. The user may print one or more copies/pages of this eBook/chapter for their personal use. The user may not print pages from this eBook/chapter or the entire printed eBook/chapter for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained from the publisher for such requirements. Requests must be sent to the permissions department at E-mail: [email protected] 4. The unauthorized use or distribution of copyrighted or other proprietary content is illegal and could subject the purchaser to substantial money damages. The purchaser will be liable for any damage resulting from misuse of this publication or any violation of this License Agreement, including any infringement of copyrights or proprietary rights. Warranty Disclaimer: The publisher does not guarantee that the information in this publication is error-free, or warrants that it will meet the users’ requirements or that the operation of the publication will be uninterrupted or error-free. This publication is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of this publication is assumed by the user. In no event will the publisher be liable for any damages, including, without limitation, incidental and consequential damages and damages for lost data or profits arising out of the use or inability to use the publication. The entire liability of the publisher shall be limited to the amount actually paid by the user for the eBook or eBook license agreement. Limitation of Liability: Under no circumstances shall Bentham Science Publishers, its staff, editors and authors, be liable for any special or consequential damages that result from the use of, or the inability to use, the materials in this site. eBook Product Disclaimer: No responsibility is assumed by Bentham Science Publishers, its staff or members of the editorial board for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the publication purchased or read by the user(s). Any dispute will be governed exclusively by the laws of the U.A.E. and will be settled exclusively by the competent Court at the city of Dubai, U.A.E. You (the user) acknowledge that you have read this Agreement, and agree to be bound by its terms and conditions. Permission for Use of Material and Reproduction Photocopying Information for Users Outside the USA: Bentham Science Publishers grants authorization for individuals to photocopy copyright material for private research use, on the sole basis that requests for such use are referred directly to the requestor's local Reproduction Rights Organization (RRO). The copyright fee is US $25.00 per copy per article exclusive of any charge or fee levied. In order to contact your local RRO, please contact the International Federation of Reproduction Rights Organisations (IFRRO), Rue du Prince Royal 87, B-I050 Brussels, Belgium; Tel: +32 2 551 08 99; Fax: +32 2 551 08 95; E-mail: [email protected]; url: www.ifrro.org This authorization does not extend to any other kind of copying by any means, in any form, and for any purpose other than private research use. Photocopying Information for Users in the USA: Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Bentham Science Publishers for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Services, provided that the appropriate fee of US $25.00 per copy per chapter is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers MA 01923, USA. Refer also to www.copyright.com CONTENTS Foreword i Preface vi List of Contributors vii CHAPTERS 1. The Discovery and Development of the Antigen-Antibody Reaction Part 1: A Brief History 3 Part 2: Commercial Immunoassay Development and Applications 14 William Graham Wood 2. Production of Antibodies for Immunoanalytical Methods 29 Ludek Eyer and Milan Franek 3. Standardization of Immunoassays 48 H.A. Morris 4. Interferences in Immunochemical Methods 58 Slavica Dodig 5. Antibodies as Bioanalytical Tools in Food Analysis 68 Georg Mahlknecht 6. Immunoassays for Antibiotics in the Food Chain 76 Willem Haasnoot 7. Immunoassays for Detecting Prohibited Growth Promoters in the Food Chain 93 Ph. Delahaut 8. Application of Antibodies in the Field of Environmental Analysis – An Overview 112 Eline P. Meulenberg 9. Multi-Analyte Immunoassays for Water Monitoring 146 G. Proll 10. Principles and Applications of Immunoaffinity Chromatography 156 Abby J. Jackson, Matthew R. Sobansky and David S. Hage 11. Lateral Flow Assays 175 Geertruida A. Posthuma-Trumpie and Aart van Amerongen 12. Trends and Perspectives in Immunosensors 184 Caroline Viguier, Carol Crean and Richard O’Kennedy 13. Immunoelectrochemistry for the Detection of Clinical Biomarkers 209 Sonia Centi and Marco Mascini 14. Antibody Fragment Engineering and Applications in Diagnosis and Therapeutics 225 Xuemei Xie, Gabrielle Richard, and John Christopher Hall 15. Therapeutic Antibodies: State of the Art and Promises 280 Patrick Chames and Daniel Baty 16. Aptamers the Chemical Antibodies 300 Frans P. Houwen and Andreas Kage Index 315 i FOREWORD This book is intended to familiarise the reader with the history, development, terminology and theoretical considerations associated with the development, production and use of Immunoassays. The reader will be led through the theoretical and practical considerations associated with antibody, production and then into the practical applications and complications of antibody’s use in assays. Finally there are a series of chapters on specific applications and future technologies, ending with a chapter on Aptamers which may represent an alternative to antibodies and the future of assay development. This foreword will recount the theories and discoveries which have led to the explosion in commercial immunoassays and to their development as powerful research tools. The chapters provide details of the development of immunoassays establishing an “evolutionary tree”, the path of events and the stages which have been reached and possible directions for future research and developments. The relationship between immunoassays and other analytical techniques is presented clearly and there are indications as to potential future developments. Modern immunoassays have arisen from the desire to detect and quantify complex biological molecules under conditions for which chemical and physical analytical techniques were either unsuitable or not available. Current methodologies are based firmly in classical immunology. The theoretical high sensitivity and high specificity of the antibody-antigen interaction attracted the attention of workers wishing to exploit these properties in this search for improved analytical techniques. Indeed, modern trends are towards the development of increasingly sensitive assays; expanding the range of analytes being detected: to an increasing variety of substances which can be analysed in new and developing fields; to increasing rapidity of results and to simplicity of use in terms of the intervention needed and the skills of the operator in carrying out and interpreting the results. The driving force for these developments has changed as assays have been shown to be successful and the methods have become more established. Originally immunoassays were developed to facilitate the study of the immune system, particularly the role of antibody-antigen interactions as a defence against disease. The original assays were therefore used in clinical research and areas are closely related to medicine (Chapter 1). As an increasing usefulness of the assays was demonstrated the demand for greater sensitivity and accuracy increased. This has generated a greater knowledge of these type of assay outside the clinical field and their use in a wider variety of fields began to increase. As part of this demand there has been the development of a greater understanding of the nature of antibodies and their production. Despite earlier historical references to protection against disease by the injection of live organisms from smallpox pustules into healthy patients, the generally accepted beginnings of Immunology as a science are Jenner’s observations on and use of cowpox as a protection against smallpox. This then was the first scientifically reported observation of an antibody-antigen reaction, although not realised as being such at the time. What Jenner had observed was a clinically useful incidence of cross-reactivity. However it was not until over a hundred years, later that in 1897, Rudolph Kraus in Vienna reported that the interaction between a soluble antigen and the corresponding soluble antibody resulted in the formation of a precipitate. Thus the use of antibodies in assays systems was initiated and the production of these useful antibody molecules as a part of scientific study became a study in its own right (Chapter 2). Much of the development of immunoassays is dependent upon knowledge of the structure of antibodies. The gradual development of information regarding the structure of antibodies has been the key to the establishment of immunoassays. The fact that immunoglobulins are proteins initially allowed researchers to measure the concentration of immunoprecipitates by simply determining the concentration of nitrogen in ii the dried precipitate and then calculating the concentrations of antibody and antigen in the precipitate. This, obviously, was a time consuming and technically demanding procedure and hence the aim of research in one important aspect as to develop alternative methods for determining antigen concentration. In the aftermath of the development of radioisotope development and detection the application of such isotopes to the monitoring of the antibody antigen reaction was one of many attempts to use such material peacefully. However, despite considerable initial success the health and safety issues combined with the high costs of using radioactivity drove the search for yet another alternative method of detection. Thus returning to the structure of antibodies as a source of inspiration resulted in the use of protein biochemistry to carry out reactions linking labels to the antibody. The additional knowledge that IgG has a Y-shaped structure with the specific binding region at the ends of the arms, F , binding region and the stem, F, crystallisable, ab c forming a region on which chemistries can be conducted without interfering with the specific binding reactions provided a basis for future developments, labelled antibodies which retained their specific binding capabilities. Simultaneously the methods of separating the bound and unbound enzyme labelled antibody were being developed. A significant step was the description of the use of reagents, either antibody or antigen, bound to solid phases, including glass, plastic, latex and metals, which allowed the rapid and easy separation of the reactants in immunoassay systems. Thus the ELISA, Enzyme Linked Immunosorbent Assay was developed, using the F region to bind the antibody to solid substrates being one of the alternative models c of immunoassay. There are now numerous immunoassay types; however what all the immunoassayists have to understand is that the systems in all their forms consist of a molecule with a highly specific binding capacity and a system for detecting the reaction between this binding molecule and a specific analyte. Specifically for immunoassays the molecules concerned are conventional antibodies and antigens or haptens. Provided the reader remembers that all immunoassays are based on the measurement of antibody-antigen interactions and the variations attempt is only to provide more sensitive, accurate, reliable or robust means of achieving this, little misunderstanding will occur. However it is essential to standardise these assays. Without consistency in the results obtained when using any form of analytical method, the method is worthless. Thus having demonstrated the ability of techniques based on immune reactions to monitor concentrations of particular analytes in a highly specific and extremely sensitive format the immunoassayist must also consider reliability, reproducibility, simplicity of assays and assay formats. These aspects are dealt with in detail in (Chapter 3). The final important development in application of immunoassays to Food samples has been the consideration of matrix effects on the assay results. In essence, immunoassays were developed by the clinical researchers, who used the techniques as the means of rapid diagnosis. Such clinical studies routinely detected antibody or antibody’s level in body fluids, particularly the serum, under physiological conditions. This application of the assays in a single, or very limited number of matrices, with very similar characteristics simplifies the importance of matrix effects. However once the assays began to be applied to systems which are not simple, do not have physiological characteristics such as pH, ion balance and temperature. The effects of the matrix becomes significant. Thus in food systems the matrix has an important function and the variable effects on immunoassays. For the immunoassayist using the techniques in food related applications it is important to consider the matrices in which such reactions may occur and how the matrix may interfere with the reaction. In (Chapter 4) these matrix effects are discussed in detail and the options available in order to provide standardised, reliable assays are suitable for routine usage described. Having established the essentials of producing antibodies, developing assays and standardising these assays to provide reliable analytical tools, the second section of the text provides examples of the application of immunoassays in the field of food analysis. This is a very wide field and at one end can include aspects which might be more appropriately considered at environmental analysis and at other supportive clinical diagnosis for allergy. The first step is to understand how and when antibodies can be used in the analysis of iii food and food materials. The myriad of formats, ELISA, Transverse Flow, Lateral Flow, etc. and the varieties of arrangements, direct, indirect, competitive, non-competitive, sandwich etc. and the possibilities for single and multiple tests and multi-arrays, all need to be described and discussed in order to provide the analyst with information on which decisions will be based as to how to select a suitable assay for the particular analyte and matrix (Chapter 5). The adulterants and contaminants found in food can be considered myriad. Many bacterial and chemical contaminants are found in food purely as a result of accident but in other cases these, chemical contaminants may be found in the food as the consequence of the use of these in the environment or as treatments in food animals. One specific group of food contaminants which may be found in food are the antibiotics. These are used to treat diseases in animals but they and their residues may be found in the foods derived from those animals and may have unforeseen consequences. Older readers will recall Rachel Carson’s “The Silent Spring” as ground-breaking text defining the adverse consequences of the use of pesticides and the transfer of these materials along with the food chain. There is a similar progression of antibiotics along with the food chain which has potentially greater consequences for the human population. Simple financial consequences may be demonstrated by the example of the use of antibiotics to treat mastitis in cattle. This can if controls are ignored lead to the presence of antibiotics in milk; if this milk is used in cheese making the antibiotic can prevent the growth of the starter culture and lead to significant losses in terms of Cheese production. The presence of antibiotics in milk, it was at one time, considered to be the cause of various maladies in people, especially young children. Hence its detection in the food chain of antibiotics has a particular relevance for both human health and industrial profitability (Chapter 6). In a similar vein the treatment of animals with growth promoters results in the transfer of these materials and their residues along with the food chain as well as their release into the environment where they may, in the case of oestrogen-like agents, cause changes such as feminisation of fish and the modification of population ratios (Chapter 7). Immunoassays have other applications and one opportunity is in environmental analysis. This type of analysis develops simply and obviously from the detection of pesticides and other chemical agents, e.g. growth promoters, in food matrices to the detection of the same pesticides and their residues in the environmental samples, especially potable water (Chapter 8). A significant feature of antibody-based immunoassays is the specificity of the ligand and the application of this specificity to the detection of a single analyte; however in many instances the analyst requires a methodology which detects more than one analyte. The development and application of immunoassays, which have multi-analyte detection capabilities, is a major research aim. Having established the criteria for the single analyte assay in many formats and in numerous matrices the option for the development of multi-analyte assays was to return to a simple matrix and begins their development with the simplest of all matrices, water (Chapter 9). This foreword opens the section of the book which provides descriptions of novel and alternative assay methodologies and provides an indication as to the future development of immunoassays. There are many different alternative routes along which immunoassays that may develop. These four chapters demonstrate the lines of development which have been investigated. A specific chapter is dedicated to each because of the impact of these techniques that it may have had on the field. The importance of the method of separation of the reactants and non-reactants following the reaction of antibody with antigen was stated in the initial stages of immunoassay development. The interaction of the two large molecules often results in the formation of an insoluble precipitate which easily solves the problem of separation as unreacted components remain in solution allowing filtration or centrifugation, physical methods, to be used to separate the components. However when the analyte is a small molecule the reaction with antibody may not produce a precipitate necessitating the use of other methods for separating the antibody-analyte product from the unreacted antibody and analyte in the reaction mixture. Binding one or other of the components to a solid phase that allows the simplified separation of the bound materials. Thus the use of systems such as latex bound antibody allows the development of agglutination assays, provided the antigen was multivalent and thus allowed cross-linking of the latex beads via the bound antibody. If alternatively the analyte is monovalent and hence cross-linking is not possible and the alternatives are the use of magnetic beads, iv which can be separated from the solution very simply or the binding of one component of the reaction to another solid matrix which allows easy separation. A problem of these options is the matrix effect which can interfere with or totally prevent the reaction. Such problems can be reduced or eliminated by using a method which combines a separation technique and an immunological reaction. An important example of this type of technique is Immunoaffinity chromatography (Chapter 10). This technique is also important in establishing the use of chromatography in immunoassay systems. In chemistry the separation of components by chromatography began with the use of paper as the separation medium across which the liquid solvent carried solutes at different rates, separating Indian ink into its component colours, for example. To achieve greater and more complex separations chemists moved from paper to glass plates coated with other inert substances through which liquid might diffuse. Eventually the concepts were combined and plastic backed nitrocellulose “paper” sheets were developed. Immunoassayist eventually took this development in the form of Mylar-backed nitrocellulose and used it to produce lateral flow immunoassays, basis for both rapid diagnostic and simple “dipstick” immunoassay techniques (Chapter 11). Finally, the use of alternative methods of detecting the immune reaction has led to the development of some interesting alternative assays. As it has been described. One of the major problems which immunoassayists have been attempting to overcome is how to detect the reaction between the antibody and the antigen. The detection methods have in many cases been by means of secondary reaction, i.e. those reactions such as precipitation which occur as a result of the “primary” reaction, i.e. binding of the antibody to the antigen or hapten, however the requirements of the assay are that the “primary” reaction be measured directly. Two examples, amongst an increasing number, are immunosensors (Chapter 12) and immunoelectrochemistry (Chapter 13). All of these chapters provide considerable areas for research and development, however if this is not sufficient then in the final chapters the reader is given information as to other possibilities. The intention is for this book to lead the reader through the story of immunoassays and to suggest fields of current interesting research and potential future significant developments. In attempting to predict the future there is considerable room for error and hence the last three chapters describe current research with considerable potential rather than developing speculative ideas. In completing the story of immunoassays the research has now moved to considering alternatives to the antibody molecule. Antibodies are molecules which are normally developed in vivo by “challenging” the immune system of an animal with a “foreign” molecule. Simplistically the immune system is a defence mechanism which recognises “foreign” or “non-self” molecules and responds by producing antibodies which bind to and assist in the removal of these “threatening” molecules. Scientists have taken advantage of this natural defence mechanism to induce animals to produce antibodies to specific molecules. Again simplistically, the injection of the “foreign” molecules into animals results in an immune response and thus produces antibodies in the blood which will specifically bind to this molecule. By collecting the blood, it is possible to recover the antibody molecules and have these available for use in assays. Such a natural system of production results in a plethora of antibody molecules with a range of specificities and affinities. The first steps in moving away from this methodology were the development of antibodies from single cell clones, monoclonal antibodies. Monoclonal antibodies are identical antibody molecules produced from a clone of cells which have artificially been created by fusing an antibody producing cell with an “immortal” cell line to yield cells which can be grown in vitro and thus make the antibody more akin to a standard chemical reagent. Monoclonal antibodies are only one development in the attempts to modify or replace the conventional, animal-derived, polyclonal antibodies used in early immunoassays. One possibility is to use only parts of the antibody molecule, the F , antigen binding fragment. These type of modifications are ab refered to as “antibody engineering” (Chapter 14). Such techniques may currently be confined to the field of medical diagnostics, but it is possible that they may be increasingly useful to the food scientist. Similarly the modification of the antibody molecule to provide reagents which can be used in specialist situations as a matter of fact. Specifically antibodies which can be used as therapeutic reagents are being generated. Whether such techniques can be moved from the field of medical diagnosis to food analysis may simply depend upon the ingenuity of the researchers working in these fields (Chapter 15). v Finally there is a possibility that the antibody molecule may be removed completely and that assays will use an alternative. Some may suggest that the use of molecules derived from animals or involving the use of animals is ethically and morally questionable. Whether or not this is the case, science is moving on and the discovery of short sections of nucleotides which bind specifically, with high affinity to proteins and peptides, aptamers, has provided a potential alternative to the antibody molecule over a period of time. In the last two decades, since their discovery aptamers have been shown to have the potential to be more specific, have superb affinity and to function in a wider range of matrices than antibodies. Aptamers are short nucleotide sequences which can be produced without the use of animal, thus obviating the moral and ethical objections which are associated with antibodies. Further, Aptamers can be selected from a naïve DNA library. Specificity and affinity relates not only to proteins but may extend to a variety of other molecules. Significantly once the aptamer has been identified it can be reproduced very simply by cloning into E. coli and with sufficient quantities available sequence can be identified and further amounts produced by chemical synthesis. The final Chapter (Chapter 16) describes the capabilities and possibilities of aptamers and thus provides a range of potential future applications. For the student and the established research it is hoped that the text, prepared by authors of considerable standing in the field, would provide significant interest and suggestions for future research. Christopher Smith Professor, Food Science Co-Director, Manchester Food Research Centre Manchester Metropolitan University UK

Description:
Antibodies Applications and New Developments is an overview of the current developments of techniques and methods relating to immunodiagnostics and immunoanalysis. This eBook also deals with specialties in the fields of drug, pesticide, antigen and food contaminant detection. The volume is useful fo
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.