Handbook of Experimental Pharmacology Continuation of Handbuch der experimentellen Pharmakologie Vol. 6711 Editorial Board G. V. R Born, London· A. Farah, Rensselaer, New York H. Herken, Berlin· A. D. Welch, Memphis, Tennessee Advisory Board S. Ebashi . E. G. Erdos· V. Erspamer· U. S. von Eiller· W. S. Feldberg G. B. Koelle· M. Rocha e Silva· J. R. Vane· P. G. Waser Antibiotics Containing the Beta-Lactam Structure Part I Contributors E. P. Abraham· Y.Aharonowitz· C. Ball· B. G. Christensen A. L. Demain· R. P. Elander· R. Kirby. J. E Martin· R. D. Miller D.-G. Mou· N. Neuss· T. N. Salzmann· E. O. Stapley· A.Tomasz S. B. Zimmerman Editors A. L. Demain and N. A. Solomon Springer-Verlag Berlin Heidelberg New York Tokyo 1983 Professor Dr. ARNOLD L. DEMAIN Ms. NADINE A. SOLOMON Fermentation Microbiology Laboratory Department of Nutrition and Food Science Massachusetts Institute of Technology Cambridge, MA 02139/USA With 83 Figures ISBN-13:978-3-642-81968-1 e-ISBN-13:978-3-642-81966-7 DOl: 10.1007/978-3-642-81966-7 Library of Congress Cataloging in Publication Data. Main entry under title: Antibiotics containing the beta-Iactam structure. (Handbook of experimental pharmacology; v. 61, pt. 1-) Includes index. I. Antibiotics - Synthesis. 2. Beta lactaIll/lses. 3. Fungi - Genetics. [DNLM: I. Antibiotics - Pharmacodynamics. 2. Beta·lactamases - Pharmaco dynamics. WI HA51L v. 61/QV 350 A62935] QP905.H3 vol. 61, pt. I, etc. 615'.1s 82-19689 [QD315] [541.7'6] This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich. © by Springer·Veriag Berlin Heidelberg 1983 Softcover reprint of the hardcover 1st edition 1983 The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product Liability: The publisher can give no guarantee for information about drug dosage and application thereof contained in this book. In every individual case the respective user must check its accuracy by consulting other pharmaceutical literature. 2122/3130-543210 Preface It is quite amazing that the oldest group of medically useful antibiotics, the p-Iactams, are still providing basic microbiologists, biochemists, and clinicians with surprises over 50 years after Fleming's discovery of penicillin production by Penicillium. By the end of the 1950s, the future of the penicillins seemed doubtful as resistant strains of Staphylococcus aureus began to increase in hospital populations. However, the development of semisynthetic penicillins provided new structures with resistance to penicillinase and with broad-spectrum activity. In the 1960s, the discovery of cephalosporin C production by Cephalosporium and its conversion to valuable broad-spectrum antibiotics by semisynthetic means excited the world of chemotherapy. In the early 1970s, the 40-year-old notion that p-lactams were produced only by fungi was destroyed by the discovery of cephamycin production by Streptomyces. Again this basic discovery was exploited by the development of the semisynthetic cefoxitin, which has even broader activity than earlier p-lactams. Later in the 1970 s came the discoveries of nocardicins from Nocardia, clavulanic acid from Streptomyces, and the carbapenems from Streptomyces. Now in the 1980s we learn that p-lactams are produced even by unicellular bacteria and that semisynthetic derivatives of these monobactams may find their way into medicine. Indeed, the future of the prolific p-lactam family seems brighter with each passing decade. Considering the level of excitement in this area, we felt that this would be the right time for the leaders in the field to survey past and present research, development, and clinical applications of p-Iactams and prospects for future progress. We were pleasantly surprised that so many busy people agreed to give up their time to contribute to this project. The result is this volume in two parts describing all aspects of p-Iactam antibiotics. Cambridge ARNOLD L. DEMAIN NADINE A. SOLOMON List of Contributors Sir E. P. ABRAHAM, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OXl 3RE, Great Britain Dr. Y. AHARONOWITZ, Department of Microbiology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel Dr. C. BALL, Squibb Institute for Medical Research, Biological Process Development, E. R. Squibb & Sons, Inc., Georges Road, New Brunswick, NJ 08903jUSA Dr. B. G. CHRISTENSEN, Merck Sharp & Dohme Research Laboratories, P.O. Box 2000, Rahway, NJ 07065jUSA Professor Dr. A. L. DEMAIN, Fermentation Microbiology Laboratory, Department of Nutrition and Food Science, Massachusetts Institute of Technology, Cambridge, MA 02139jUSA Dr. R. P. ELANDER, Fermentation Research and Development, Bristol-Myers Co., Industrial Division, P.O. Box 657, Syracuse, NY 1320IjUSA Dr. R. KIRBY, University of Cape Town, Department of Microbiology, Rondebosch 7700, South Africa Professor Dr. J. F. MARTIN, Department of Microbiology, Faculty of Biology, University of Leon, Leon, Spain Dr. R. D. MILLER, Eli Lilly & Co., P.O. Box 685, Lafayette, IN 47902jUSA Dr. D.-G. MOD, Research Laboratories, Eastman Kodak Company, Kodak Park, Rochester, NY 14650jUSA Dr. N. NEDSS, Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, IN 46205/USA Dr. T. N. SALZMANN, Merck Sharp & Dohme Research Laboratories, Rahway, NJ 07065(USA VIII List of Contributors Dr. E. O. STAPLEY, Merck Sharp & Dohme Research Laboratories, Department of Basic Macrobiological Research, P.O. Box 2000, Rahway, NJ 07065/USA Dr. A. TOMASZ, The Rockefeller University, 1230 York Avenue, New York, NY 10021/USA Dr. S. B. ZIMMERMAN, Merck Sharp & Dohme Research Laboratories, Department of Basic Macrobiological Research, P.O. Box 2000, Rahway, NJ 07065/USA Contents CHAPTER 1 History of P-Lactam Antibiotics. E. P. ABRAHAM A. The Past Fifty Years . . . . . . . . . . . . . . . . . .. 1 I. Fleming's Discovery. . . . . . . . . . . . . . . .. 1 II. Discovery of the Therapeutic Power of Penicillin in Systemic Infections . . . . . . . . . . . . . . . . . . 2 III. Large-Scale Production . . . . . . . . . . . . 2 IV. Wartime Interest in Penicillin in Europe and Japan 3 V. Isolation, Structure, and Synthesis. . . . . . 4 VI. Penicillin-Resistant Bacteria . . . . . . . . . . 5 VII. 6-Aminopenicillanic Acid and New Penicillins. . . 6 VIII. 7-Aminocephalosporanic Acid and the Cephalosporins . 7 IX. New fJ-Lactam Compounds . . 9 X. Biosynthesis . . . . . . . . . 9 XI. Mode of Action and Resistance. 10 B. The Future 11 References . . . . . . . . . . . . . . 13 CHAPTER 2 Mode of Action of p-Lactam Antibiotics - A Microbiologist's View. A. TOMASZ. With 17 Figures A. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 15 I. Mode of Action Studies: Benefits for Basic and Applied Sciences. 15 II. Mode of Action of Penicillin: A Multilevel Problem . . . .. 16 B. Journey of the Extracellular Antibiotic to the Intracellular Targets 17 I. Extracellular Barriers . . . . . . . . . . . . 17 II. Barriers in the Bacterial Envelope. . . . . . . . . . . 17 III. The Outer Membrane of Gram-Negative Bacteria. . . . 18 IV. The End of the Journey: Arrival at the Plasma Membrane 19 C. The Biochemical Targets of fJ-Lactam Antibiotics. . . . . . . 20 I. Selective Toxicity of fJ-Lactams. . . . . . . . . . . . 20 II. Localization of Radioactively Labeled Penicillin in Bacteria. 23 III. Morphological and Biochemical Effects of Penicillin . 23 IV. Penicillin-Sensitive Enzymes . . . . . . . . . . . . . . 25 x Contents 1. Molecular Basis of Specificity . . . . . . . . . . 26 2. Studies with Model Substrates and Model Enzymes . 29 V. Penicillin-Binding Proteins (PBPs). . . . . . . . . . 35 1. Enzymatic Activity of PBPs with Model Substrates . 35 2. Penicillin Binding and Inactivation of Enzyme Activity 36 3. Localization of PBPs . . . . . . . . . . . . . 37 4. Labeling of PBPs in Live, Growing Bacteria . . . 38 5. Selective Affinity of PBPs for Various p-Lactams . 40 6. Selective Morphological Effects . . . . . . . 41 VI. Penicillin-Sensitive Enzymes in Cell Wall Synthesis 46 1. Penicillin-Sensitive Enzymes as PBPs . . . 50 D. Physiological Consequences of p-Lactam Inhibition. 51 I. Search for the Killing Targets . . . . . 51 II. Labeling of PBPs in Live Bacteria. . . . . . 53 III. In Vivo Labeling of PBPs in Pneumococci . . 54 IV. Dynamic Experiments with the Labeling of PBPs in Growing Pneumococci. . . . . . . . . . . . . . . . . . . . . 55 V. PBP Alterations in Intrinsically p-Lactam-Resistant Bacteria 57 VI. Several Physiologically Important PBPs in Pneumococci 57 E. Variations in the Physiological Effects of Penicillins. . 60 I. The Single Target - Unbalanced Growth Model. 60 II. From Inhibited Enzyme to Inhibited Target Cell 61 III. Inhibition of Growth, Loss of Viability, Lysis. . 61 IV. The PBPs of Penicillin-Tolerant Bacteria. . . . 63 V. Penicillin-Induced Death, Without Lysis (Group A Streptococci). 64 VI. Reversible Growth-Inhibitory Effect of Penicillin . . . . . . . 64 VII. Penicillin Tolerance in Bacteria with Suppressed Murein Hydrolase Activity . . . . . . . . . . . . . . . . . . . . . . . . . 66 VIII. Penicillin-Induced Lysis and Death in E. coli . . . . . . . . . 68 IX. How and Why Does Penicillin Cause Cell Wall Degradation? 69 X. Possible Causes of Penicillin-Induced Cell Wall Degradation in E. coli. . . . . . . . . . . . . . . . . . . . . . . . . . 71 XI. Penicillin-Induced Lysis and Natural Inhibitors of Autolysis . . 72 XII. Attempts to Define the Events Responsible for the Triggering of Autolytic Activity in Pneumococci. . . . . . . . . . . . .' . 73 F. Environmental Factors That Modulate the Antibacterial Effects of Penicillin . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 I. Protection Against the Lytic (and Cidal) Effects by Alteration of the pH of the Medium. . . . . . . . . . . . . . . . . . . 74 II. The Effect of Exogenous Murein Hydrolases on Penicillin-Treated Tolerant Bacteria. . . . . . . . . . . . . . . . . . . . . 75 III. Synergistic Bactericidal Action of Penicillin and Human Polymor phonuclear White Blood Cells (PMN) . . . . . . . . . . . . 75 IV. Inhibition of Penicillin-Induced Lysis by Extracellular Lipids and Lipoteichoic Acids . . . . . . . . . . . . . . . . . . . . 75 V. Penicillin-Induced Release of Cell Surface Components into the Medium. . . . . . . . . . . . . . . . . . . . . . . . . 76 Contents XI VI. Phenotypic Tolerance in Nongrowing Cells. 76 G. Conclusion 78 References . . . . . . . . . . . . . . . . . . . 84 CHAPTER 3 Strain Improvement and Preservation of p-Lactam-Producing Microorganisms. R. P. ELANDER. With 9 Figures A. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 97 B. Distribution of p-Lactam Antibiotics and Related Metabolites in Nature. 99 C. Strain Improvement Programs in Commercially Important p-Lactam Fermentation Organisms . . . . . . . . . ........... 109 I. Mutation and Enhanced Penicillin Formation in P. chrysogenum. 110 II. Mutagenesis and Yield Improvement in the Cephalosporin C Organism, Acremonium chrysogenum. . . . . . . . . . . . . 112 III. Rational Screening or Selection for Improved Mutants or Mutants Producing Modified p-Lactam Antibiotics . . . . . . . . . . 114 1. Mutants Screened Directly on Agar Plates. . . . . . . . . 115 2. Selection of Mutants for Resistance to Toxic Antibiotic Pre- cursors or Analogs of Precursors . . . . . . . . . . . . . 115 3. Selection of Mutants Resistant to Metallic Ions. . . . __ . . 116 4. Isolation of Specific Morphological Mutants of A. chrysogenum 117 5. Use of Auxotrophic Strains or Revertants of Auxotrophic Strains . . . . . . . . . . . . . . . . . . . . .. 117 6. Mutational Biosynthesis and New Biosynthetic p-Lactams 118 D. Actinomycetes Producing New p-Lactam Antibiotics 119 I. Cephamycins (7-Methoxycephalosporins). . . . . . 119 1. Cephamycin Fermentations . . . . . . . . . . 121 2. Improvement in Strains of Nocardia lactamdurans . 123 II. Nocardicins . . . . . . . . 123 1. Strain Improvement . . . 124 2. Nocardicin A Fermentation 126 III. Clavulanic Acid. . . 129 IV. Hydroxyethylclavam 129 V. Thienamycin . . . . 130 VI. Olivanic Acids . . . 130 VII. PS-5 and Related Carbapenems . 131 VIII. C-19393 S2 and H2 . . . . . . 133 IX. Carpetimycins . . . . . . . . 134 E. Unicellular Bacteria Producing Sulfazecins and Related Structures 134 F. Maintenance and Long-Term Preservation of Strains of Penicillium chrysogenum and Acremonium chrysogenum 135 I. Studies with P. chrysogenum 136 II. Studies with A. chrysogenum 138 References . . . . . . . . . . . . 140 XII Contents CHAPTER 4 Genetics of /l-Lactam-Producing Fungi. C. BALL. With 4 Figures A. Introduction. . . . . . 147 B. Aspergillus nidulans. . . . . . . . . . 147 I. The Parasexual Cycle . '.' . . . . 148 II. The Genetics of Penicillin Production 149 C. Penicillium chrysogenum . 150 I. Early Studies. . . . . 151 II. Later Studies. . . . . 153 D. Cephalosporium acremonium 157 E. Recombination Between Naturally Incompatible Fungi 159 References . . . . . . . . . . . . . . . . . . . . . 160 CHAPTER 5 Genetics of fJ-Lactam-Producing Actinomycetes. R. KIRBY. With 4 Figures A. Introduction. . . . . . . . . . . . . . . 163 B. fJ-Lactam Antibiotics and the Actinomycetales 165 C. Streptomyces Genetics . . . . . . . . . . 167 I. Plasmids in Streptomyces . . . . . . . 171 II. Plasmids in fJ-Lactam-Producing Streptomyces 175 D. Antibiotic Production in Actinomycetes. . . . . 176 I. Unstable Genetic Systems in Streptomyces Which do not Involve Plasmids . . . . . . . . . . . . 177 II. Protoplast Fusion and Streptomyces . . . . . . . . 178 III. Transformation and Streptomyces . . . . . . . . . 179 IV. Restriction and Modification Systems in Streptomyces. 180 V. Genetic Engineering and Streptomyces . . . . . 181 E. The Genetics of fJ-Lactam Antibiotics and the Future. 183 References . . . . . . . . . . . . . . . . . . . . . 184 CHAPTER 6 Biosynthesis of fJ-Lactam Antibiotics. A. L. DEMAIN. With 6 Figures A. Introduction. . . . . . . . . . . 189 B. Hydrophobic fJ-Lactam Antibiotics . 191 I. Biosynthetic Precursors . . . . 191 II. Terminal Biosynthetic Reaction 197 C. Hydrophilic fJ-Lactam Antibiotics . 198 I. Early Biosynthetic Steps. . . . 200 II. Formation of the Bicyc1ic Ring Structure 201 III. Epimerization of Isopenicillin N to Penicillin N 203 IV. Conversion of Penicillin N to Cephalosporin C . 203 V. Formation of Additional Cephalosporins by Actinomycetes 206 D. Antibiotic Production by Pairs of Blocked Mutants. . . . . . 208