ebook img

Antibiotics and translation PDF

195 Pages·2012·13.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Antibiotics and translation

Dissertation zur Erlangung des Doktorgrades der Fakultät fur Chemie und Pharmazie der Ludwig-Maximilians-Universität München     Antibiotics and translation Overcoming emerging bacterial resistance to old and new antimicrobials                         Agata Lucyna Starosta aus Rzeszow, Polen 2011 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 (in der Fassung der Sechsten Änderungssatzung von 16. August 2010) von Herrn Prof. Dr. Roland Beckmann betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbstständig, ohne unerlaubte Hilfe erarbeitet. München, am 24.11.2011 Agata Lucyna Starosta Dissertation eingereicht am 24.11.2011 1. Gutachter: Herr Prof. Dr. Roland Beckmann 2. Gutachter: Herr Prof. Dr. Klaus Förstemann Mündliche Prüfung am 31.01.2012 2 Agata L. Starosta    List of contents  List of contents   Acknowledgements .................................................................................................................................. 5  List of original publications .................................................................................................................... 6  Contribution report ................................................................................................................................. 8  Abbreviations ........................................................................................................................................ 10  Summary ................................................................................................................................................ 11  1 Introduction ........................................................................................................................................ 12  1.1 Traditional antibiotics .................................................................................................................. 13  1.1.1 Introduction to antibiotics .................................................................................................... 13  1.1.2 Targets for antibiotic action ................................................................................................. 14  1.1.2.1 Inhibition of cell wall synthesis ..................................................................................... 14  1.1.2.2 Inhibition of DNA replication ........................................................................................ 16  1.1.2.3 Inhibition of RNA synthesis ........................................................................................... 16  1.1.2.4 Inhibition of protein synthesis ....................................................................................... 16  1.1.3 Protein synthesis ................................................................................................................... 17  1.1.3.1 Inhibitors of the small ribosomal subunit .................................................................. 22  1.1.3.2 Inhibitors of the large ribosomal subunit ................................................................... 23  1.1.3.2.1 Inhibitors of the peptidyl-transferase center ...................................................... 23  1.1.3.2.2 Inhibitors of the progressing nascent polypeptide chain .................................... 24  1.1.3.2.3 Inhibitors of the GTPase-associated center (GAC) ............................................ 24  1.1.4 Mechanism of cell death induced by bactericidal antibiotics .............................................. 25  1.2 Antibiotics used in these studies .................................................................................................. 27  1.2.1 Hygromycin A ....................................................................................................................... 27  1.2.2 Macrolides ............................................................................................................................ 29  1.2.3 Thiopeptides ......................................................................................................................... 31  1.2.4 Orthosomycins ...................................................................................................................... 34  1.2.5 Fusidic acid .......................................................................................................................... 35  1.3 Alternative antimicrobials targeting virulence ............................................................................ 36  1.3.1 Definition of virulence .......................................................................................................... 36  1.3.2 Colonization ......................................................................................................................... 36  1.3.3 Biofilm .................................................................................................................................. 36  1.3.4 Quorum sensing .................................................................................................................... 37  3 Agata L. Starosta    List of contents  1.3.5 Motility ................................................................................................................................. 37  1.3.6 Secretion systems .................................................................................................................. 37  1.3.7 Elongation factor P .............................................................................................................. 38  2 Objectives of these studies .................................................................................................................. 41  3 Cumulative thesis ............................................................................................................................... 43  3.1 Hygromycin A ............................................................................................................................. 43  3.1.1 Paper 1 .................................................................................................................................. 43  3.1.2 Paper 2 .................................................................................................................................. 43  3.2 Macrolides ................................................................................................................................... 47  3.2.1 Paper 3 .................................................................................................................................. 47  3.2.2 Paper 4 .................................................................................................................................. 47  3.3 Thiopeptides ................................................................................................................................ 50  3.3.1 Paper 5 .................................................................................................................................. 50  3.3.2 Paper 6 .................................................................................................................................. 50  3.4 Orthosomycins ............................................................................................................................. 52  3.5 Fusidic acid.................................................................................................................................. 53  3.5.1 Paper 7 .................................................................................................................................. 53  3.6 Elongation factor P ...................................................................................................................... 54  3.6.1 Paper 8 .................................................................................................................................. 54  4 Conclusions ........................................................................................................................................ 58  5 References .......................................................................................................................................... 59  4 Agata L. Starosta    Ackowledgements  Acknowledgements This would not be possible without the support of many people that I had a pleasure of meeting during my PhD studies. First of all I would like to thank Dr. Daniel Wilson for giving me an opportunity to work in his group in the Gene Center . I am grateful for the trust and support I received from him during all those years. I appreciate each and every advice, discussion, criticism and praise I ever received from him. That was a lesson I will never forget. I would like to thank Prof. Roland Beckmann for all the expertise, good advices and support as well as for providing us with a great scientific environment without which this work could not happen. I am grateful to all our collaborators for having fruitful time collecting all the data: to Prof. B. Cooperman for great work on thiopeptides; Prof. A. Bogdanov for macrolide story; Prof. K. Reynolds for hygromycin A studies; Prof. C. Spahn for first and hopefuly not the last Nature paper; Prof. G. Dinos for hosting me in Greece and support in experiments; and last but not least, to Prof. J. Remme for great work on EF-P. I would also like to thank people, whom I had a pleasure to have conducted the experiments with: Aleksandra Mikolajka, Alexandra Dönhöfer, Viktorija Karpenko, Gemma Atkinson and Vidya Dhote. Special thanks to Lauri Peil for being my Mass Spectrometry master, for all the hours we spent discussing the most crazy ideas and then making them come true. I would like to thank to all the former and present members of the Wilson and the Beckmann labs for the atmosphere, discussions, parties, trips and many more. Lots of thanks to Ingegerd Walz for all the help in the emergency situations. I would like to thank Prof. Klaus Förstemann, Prof. Mario Halic and Prof. Knud Nierhaus for being in my thesis committee. I am very grateful to Marta Danecka and Jean-Paul Armache for surviving corrections of my thesis. Wielki dzieki Marto i Jasiu za te wszystkie lata spedzone razem w Monachium, i w Krakowie (Marta). Bez waszego wsparcia wszystko byloby trudniejsze. Najbardziej chcialabym podziekowac moim kochanym rodzicom i kochanej siostrze, za wychowanie i wsparcie przez te wszystkie lata, ktore spedzilam z daleka od domu, bez was to wszysko nie byloby mozliwe. 5 Agata L. Starosta    List of original publications  List of original publications This thesis is based upon the following original publications Reprints were made with permission of the publisher. Paper 1 Palaniappan, N., Dhote, V., Ayers, S., Starosta, A.L., Wilson, D.N., and Reynolds, K.A. (2009). Biosynthesis of the aminocyclitol subunit of hygromycin A in Streptomyces hygroscopicus NRRL 2388. Chem Biol 16, 1180-1189. Paper 2 Dhote, V., Starosta, A.L., Wilson, D.N., and Reynolds, K.A. (2009). The final step of hygromycin A biosynthesis, oxidation of C-5''-dihydrohygromycin A, is linked to a putative proton gradient-dependent efflux. Antimicrob Agents Chemother 53, 5163-5172. Paper 3 Petropoulos, A.D., Kouvela, E.C., Starosta, A.L., Wilson, D.N., Dinos, G.P., and Kalpaxis, D.L. (2009). Time-resolved binding of azithromycin to Escherichia coli ribosomes. J Mol Biol 385, 1179-1192. Paper 4 Starosta, A.L., Karpenko, V.V., Shishkina, A.V., Mikolajka, A., Sumbatyan, N.V., Schluenzen, F., Korshunova, G.A., Bogdanov, A.A., and Wilson, D.N. (2010). Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition. Chem Biol 17, 504-514. Paper 5 Starosta, A.L.*, Qin, H.*, Mikolajka, A.*, Leung, G.Y., Schwinghammer, K., Nicolaou, K.C., Chen, D.Y., Cooperman, B.S., and Wilson, D.N. (2009). Identification of distinct thiopeptide-antibiotic precursor lead compounds using translation machinery assays. Chem Biol 16, 1087-1096. Paper 6 Mikolajka, A., Liu, H., Chen, Y., Starosta, A.L., Marquez, V., Ivanova, M., Cooperman, B.S., and Wilson, D.N. (2011). Differential effects of thiopeptide and orthosomycin antibiotics on translational GTPases. Chem Biol 18, 589-600. Paper 7 Ratje, A.H., Loerke, J., Mikolajka, A., Brunner, M., Hildebrand, P.W., Starosta, A.L., Donhofer, A., Connell, S.R., Fucini, P., Mielke, T., Whitford, P. C., Onuchic, J. N., Yu, Y., Sanbonmatsu, K. Y., Hartmann, R. K., Penczek, P. A., Wilson, D. N., and Spahn, C. M. (2010). Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 468, 713-716. Paper 8 Peil L.*, Starosta, A.L.*, Virumäe, K, Aktinson, G.C., Tenson, T., Remme, J., Wilson, D.N. (2011). Formation of ε(R)-β-lysyl-hydroxylysine on translation elongation factor EF-P requires YjeK, YjeA and YfcM. Under revision at Nature Chemical Biology * Equally contributed 6 Agata L. Starosta    List of original publications  List of publications not included in the thesis: Paper 9 Wilson, D.N., Schluenzen, F., Harms, J.M., Starosta, A.L., Connell, S.R., and Fucini, P. (2008). The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proc. Natl Acad. Sci USA 105, 13339-13344. Paper 10 Bhushan, S., Meyer, H., Starosta, A.L., Becker, T., Mielke, T., Berninghausen, O., Sattler, M., Wilson, D.N., and Beckmann, R. (2010). Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. Mol Cell 40, 138-146. 7 Agata L. Starosta    Contribution report  Contribution report Work presented in this dissertation comprises part of the results of my doctoral research conducted from October 2007 to November 2011 in cooperation with scientists from the laboratories of: Professor K. Reynolds (Portland, Oregon, US), Professor. B. Cooperman (Pennsylvania, Philadelphia,US), Professor A. Bogdanov (Moscow, Russia), Professor G. Dinos (Patras, Greece), Professor C. Spahn (Berlin, Germany) and Professor J. Remme (Tartu, Estonia). Paper 1 (Palaniappan et al., 2009) and Paper 2 (Dhote et al., 2009) I performed all the biochemical analysis determining the antimicrobial activities of Hygromycin A (HygA) and intermediates of HygA, using (i) Escherichia coli lysate based in vitro coupled transcription-translation assay (TT) with green fluorescence protein (GFP) as a reporter, and (ii) the AcPhe-Puromycin (AcPhe-Puro) synthesis assay. These results comprise Figure 6 (Paper 1), and Figure 4 (Paper 2), which I prepared for the papers as well as contributing to the interpretation and analysis of these results. Paper 3 (Petropoulos et al., 2009) I cultivated Deinococcus radiodurans cells and used sucrose gradient centrifugation protocol to isolated highly active 70S ribosomes, which were then used subsequently to evaluate the binding mode of azithromycin (AZI) to bacterial ribosomes in collaboration with Prof. Dinos. Paper 4 (Starosta et al., 2010) I carried out all the biochemical experiments to determine the inhibitory activity of tylosin (Tyl) and derivatives of Tyl using (i) TT assay using GFP and firefly luciferase (Fluc) as templates, and (ii) competition binding assay with [14C]-erythromycin and D. radiodurans 70S ribosomes. The results are depicted in Figures 3-6 and in Supplementary Table 1 of the paper. In addition, I participated in the interpretation of the results and made Figures 1, 3-6 as well as contributing to writing of the manuscript. Paper 5 (Starosta et al., 2009) I measured the potency of the entire library of thiopeptide precursor compounds to inhibit synthesis of GFP in TT assay. I also measured the ability of precursors to restore translation in the presence of inhibitory concentration of parental compounds, which is 8 Agata L. Starosta    Contribution report  presented in Figures 4-5. I prepared Figures 1-5 and participated in the preparations of the draft of the manuscript. Paper 6 (Mikolajka et al., 2011) I evaluated the antimicrobial activity of thiostrepton, micrococcin and evernimicin (Evn) in TT assay using GFP as a reporter gene. These results are presented in Supplementary Figure 3, which I prepared together with Figure 5. Paper 7 (Ratje et al., 2010) I grew Thermus thermophilus cells and prepared highly pure 70S ribosomal particles using sucrose gradient centrifugation protocol. The 70S ribosomes were used for preparation of the complex of EF-G stalled with GDP and fusidic acid on the 70S ribosome. Paper 8 (Peil et al. 2011) I cloned and purified elongation factor P (EF-P) which was used to raise rabbit polyclonal antibodies. I established the immuno-precipitation protocol using protein A and prepared all constructs used for the rescue experiments. I identified the YfcM protein using STRING database and cloned yfcM gene. I purified recombinant YfcM, which I characterized using differential scanning fluorimetry (DSF). I optimized protocol for expression of EF-P modified by 128 Da and established the in vitro hydroxylation assay. I prepared all figures and participated in preparation of the manuscript. Additionally, I started initial characterization of phenotypes of the efp and modification enzymes deletion strains. 9 Agata L. Starosta    Abbreviations  Abbreviations · 30SIC – 30S initiation complex · MiC – Micrococcin · 70SIC – 70S initiation complex · MIC – minimal inhibitory concentration · A/A position – both anticodon stem loop and · mRNA – messenger RNA aminoacyl arm of tRNA in A-site · MurNAc – N-acetyl-muramic acid · A/T position – anticodon stem loop in A site, · NLPH – National Laboratory of Public Health aminoacyl arm of tRNA bound to EF-Tu of the Ministry of Public Health and Population · aa-tRNA – aminoacyl-tRNA · OMT – 5-O-mycaminosyl-tylonolid · AB – subunits A and B of hygromycin A · ORF – open reading frame · AcPhe-Puro – AcPhe-Puromycin · P/E - anticodon stem loop in P site, aminoacyl · AHLs – acylated homoserine lactones arm bound to E-site · A-site – aminoacyl-tRNA binding site · PBS – penicillin-binding proteins · Avi – avilamycin · P-HygA – phosphorylated hygromycin A · AZI – azithromycin · Pi – Inorganic phosphate · Cryo-EM – cryo-electron microscopy · POST – post-translocation state · Des-HygA – desmethylenehygromycin A · PRE – pre-translocation state · DGI – German Society for Infectious Diseases  · Pseudomonas aeruginosa DH-HygA – 5”-dihydrohygromycin A · P-site – peptidyl-tRNA binding site · · DHS – deoxyhypusine synthase · PTC – peptidyl-transferase center · DOHH – deoxyhypusine hydroxylase · RF – release factor · E. coli – Escherichia coli · rRNA – ribosomal RNA · ECDC – European Center for Disease · SAM – S-adenosylmethionine Prevention and Control · SAXS – small-angle X-ray scattering · EF – elongation factor · SD – Shine-Dalgarno · EHEC – enterohemorrhagic E. coli · SRL – sarcin-ricin loop · Ery –erythromycin · SS – secretion systems · E-site – exit site · SSU – 30S small ribosomal subunits · Evn – evernimicin · SubA – subunit A, dehydrofucofuranose · FA – fusidic acid moiety of HygA · fMet-tRNAfMet – initiator-tRNA · SubB – subunit B, α-methyl cinnamic acid · GAC – GTPase-associated center moiety of HygA · GFP – green fluorescent protein · SubC – subunit C, aminocyclitol moiety of · GlcNAc – N-acetylglucosamine HygA · HygA – hygromycin A · ThS – thiostrepton IC – half-inhibitory concentration · tRNA – transfer tRNA · 50 · IF – initiation factor · TT – E. coli lysate-based in vitro coupled · K. pneumoniae – Klebsiella pneumoniae transcription-translation assay · LSU – 50S large subunit · Tyl – tylosin · MBL – metallo-β-lactamase · UTR – untranslated region · Met-HygA – methoxyhygromycin A       10

Description:
Mistranslated membrane proteins can increase the permeability of the membrane to antibiotics and activate the Richardson, J.S., Blanchard, S.C., and Cate, J.H. (2011). Structures of versus translation inhibition activity, but is required for bio- knockout mutants: the Keio collection. Mol. Syst.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.