ebook img

Antibacterial Surfaces with Nanoparticle Incorporation for Prevention of Hospital-Acquired Infections PDF

246 Pages·2016·5.59 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Antibacterial Surfaces with Nanoparticle Incorporation for Prevention of Hospital-Acquired Infections

Antibacterial Surfaces with Nanoparticle Incorporation for Prevention of Hospital-Acquired Infections This thesis is presented to UCL in partial fulfilment of the requirements for the Degree of Doctor of Philosophy Sandeep K. Sehmi 2016 Supervised by: Professor Alexander J. MacRobert, Professor Ivan P. Parkin and Dr Elaine Allan Declaration I, Sandeep Sehmi, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. ii Abstract This thesis describes the incorporation of nanoparticles into polymers as antibacterial surfaces for preventing hospital-acquired infections (HAIs). With a high prevalence of HAIs, the use of antibacterial materials can contribute in reducing bacterial contamination associated with frequently touched surfaces in hospitals (e.g. push plates, bed rails, or keyboards). The combination of nanoparticles and light-activated antibacterial agents demonstrate lethal bactericidal activity when encapsulated into medical grade polymer sheets. Upon white light activation, these polymers exhibit significant photobactericidal activity against a range of Gram-negative and Gram-positive bacteria via the production of reactive oxygen species at the polymer surface, through multi-site mechanistic pathways (Type I and/or Type II). These samples are tested under various light intensities to mimic clinical surroundings, but more significantly, some materials show highly efficacious antibacterial activity in dark conditions. All polymers are prepared using a simple ‘swell-encapsulation-shrink’ method, which impregnates the nanoparticles into the polymer substrate and on the surface. These include copper and zinc oxide nanoparticles synthesised with different capping agents. The antibacterial activity of a commonly used biocide encapsulated into the polymer is also assessed. The photosensitiser (crystal violet) is then coated onto the polymer surface in the case of ZnO nanoparticles and activated by white light (~500 – 6600 lux). The combination of crystal violet and zinc oxide nanoparticles is investigated further by adapting the microbiological protocol to more closely replicate a clinical environment and using a lower intensity of light to carry out the antibacterial testing. In addition, the mechanisms operating within the crystal violet and zinc oxide system are examined using specific inhibitors and singlet oxygen quenchers to determine iii whether Type I, Type II, or both photochemical pathways are responsible for the reduction of bacteria in the light and dark. The samples were tested against a range of hospital pathogens, including Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa and Clostridium difficile endospores. The novel and highly effective antimicrobial materials detailed in this thesis demonstrate a very strong potential to be used in hospitals for reducing the incidence of HAIs. iv Acknowledgements Firstly, I would like to give special thanks to my primary and secondary supervisors, Prof. Alexander MacRobert, Prof. Ivan Parkin and Dr. Elaine Allan for their invaluable expertise, advice and support over the last three years. Thank you for giving me the opportunity to do an inter-disciplinary PhD that I have enjoyed so much and gained countless experience in a range of subject fields. I would especially like to thank Elaine for teaching me microbiology (from scratch!). I have appreciated every discussion and meeting we have had as a group. You have all provided endless guidance and encouragement and I’ve thoroughly enjoyed being part of this research team. I would like to thank students and mentors at the Division of Surgery and Interventional Sciences research group and the Eastman Dental Institute who have supported me along the way. Thank you to collaborators from the Chemistry department at Imperial College. UCL Chemistry has been my home for the last 7 years so it will definitely be missed the most! I would like to thank every single person who has helped me and shared the experience with me, in particular, my partner in crime, Sapna Ponja! I look forward to celebrating this moment with you when you become Dr as well . Its going to be so weird not seeing you everyday and I just want to thank you for being a huge part of this crazy amazing experience. I would like to thank my wonderful best friends and family for their love and support along the way. Last but definitely not least, I would like to thank my parents for being the most supportive and motivational people in my life. All the success throughout my education has been possible because of you and I would not be where I am today if it wasn’t for you. You’re both extremely hardworking people which has inspired me to strive for excellence and I hope to continue to make you proud in the future. Love you both! v Publications Publications associated with this thesis: 1. SK Sehmi, S Noimark, J Weiner, E Allan, AJ MacRobert, IP Parkin. Potent Antibacterial Activity of Copper Embedded into Silicone and Polyurethane. ACS Applied Materials & Interfaces, 7 (41), 22807- 22813, 2015. 2. SK Sehmi, E Allan, AJ MacRobert and IP Parkin. The Bactericidal Activity of Glutaraldehyde-Impregnated Polyurethane. MicrobiologyOpen, 2016. doi: 10.1002/mbo3.378 3. SK Sehmi, S Noimark, JC Bear, WJ Peveler, M Bovis, E Allan, AJ MacRobert and IP Parkin. Lethal Photosensitisation of Staphylococcus aureus and Escherichia coli using Crystal Violet and Zinc Oxide-Encapsulated Polyurethane. Journal of Materials Chemistry B, 3 (31), 6490-6500, 2015. 4. SK Sehmi, S Noimark, SD Pike, JC Bear, WJ Peveler, CK Williams, E Allan, IP Parkin and AJ MacRobert. Enhancing Antibacterial Activity of Light-Activated Surfaces Containing Crystal Violet and ZnO nanoparticles: Investigation of Nanoparticle Size, Capping Ligand and Dopants. ACS Omega, 1 (3), 334-343, 2016. 5. SK Sehmi, K Alkhuder, S Noimark, SD Pike, CK Williams, MSP Shaffer, IP Parkin, AJ MacRobert and E Allan. Antibacterial surfaces for Hospitals with Activity against Hospital-Acquired Pathogens and Clostridium Difficile Spores. (Manuscript in preparation) vi Table of Contents 1. Hospital-Acquired Infections 1 1.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Introduction to the Incidence of Hospital-Acquired Infections . . 1 1.3 Antimicrobial Resistance . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Common Pathogens in Hospitals . . . . . . . . . . . . . . . . . . 5 1.4.1 Methicillin-resistant Staphylococcus aureus . . . . . . 7 1.4.2 Escherichia coli . . . . . . . . . . . . . . . . . . . . . . 7 1.4.3 Pseudomonas aeruginosa . . . . . . . . . . . . . . . . 8 1.4.4 Clostridium difficile . . . . . . . . . . . . . . . . . . . . 9 1.5 Prevention Strategies . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 Alternative methods to basic cleaning . . . . . . . . . . . . . . . 13 1.6.1 Ozone . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6.2 Steam vapour . . . . . . . . . . . . . . . . . . . . . . 14 1.6.3 Hydrogen peroxide . . . . . . . . . . . . . . . . . . . . 1 4 1.6.4 Gas plasma . . . . . . . . . . . . . . . . . . . . . . . . 15 1.6.5 UV light . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.6.6 High-intensity narrow spectrum . . . . . . . . . . . . . 16 1.7 Antibacterial Surfaces . . . . . . . . . . . . . . . . . . . . . . . . 16 1.7.1 Biocide leaching . . . . . . . . . . . . . . . . . . . . . 17 1.7.2 Antimicrobial polymers . . . . . . . . . . . . . . . . . 18 1.7.3 Anti-adhesive coatings . . . . . . . . . . . . . . . . . 19 1.7.4 Silver-coated surfaces . . . . . . . . . . . . . . . . . . 19 1.7.5 Copper and copper alloy surfaces . . . . . . . . . . . 20 1.7.6 Light-activated antibacterial surfaces . . . . . . . . . 20 1.7.6.1 Titanium oxide-based antibacterial surfaces . 21 1.7.6.2 Dye-based antibacterial surfaces . . . . . . . . 22 1.7.7 Concerns over antibacterial surfaces . . . . . . . . . . 22 2. Photo-Activated Surfaces 38 vii 2.1 Introduction to Photodynamic Therapy . . . . . . . . . . . . . . 38 2.1.1 Photochemistry . . . . . . . . . . . . . . . . . . . . . 41 2.1.1.1 Non-radiative transitions . . . . . . . . . . . . 42 2.1.1.2 Radiative transitions . . . . . . . . . . . . . . . 42 2.1.2 Mechanism of action . . . . . . . . . . . . . . . . . . 42 2.2 Antibacterial Action of Nanoparticles . . . . . . . . . . . . . . . 47 2.2.1 Use of nanoparticles in a clinical environment . . . . 47 2.2.1.1 Antibacterial mechanism of nanoparticles . . 49 2.2.2 Copper nanoparticles . . . . . . . . . . . . . . . . . . 50 2.2.3 Magnesium oxide nanoparticles . . . . . . . . . . . . 51 2.2.4 Zinc oxide nanoparticles . . . . . . . . . . . . . . . . . 53 2.3 Dye and nanoparticle-incorporated polymers . . . . . . . . . . 54 2.3.1 Polymer types . . . . . . . . . . . . . . . . . . . . . . . 5 5 2.3.1.1 Polyvinyl chloride . . . . . . . . . . . . . . . . 55 2.3.1.2 Silicone . . . . . . . . . . . . . . . . . . . . . . 56 2.3.1.3 Polyurethane . . . . . . . . . . . . . . . . . . . 56 2.3.2 Overview of the research at the Materials Research Centre, UCL . . . . . . . . . . . . . . . . . . . . . . . . 56 2.4 Research aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3. Copper-Encapsulated Silicone and Polyurethane; Antimicrobial Polymers without White Light Activation 75 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.2.1 Chemicals and Reagents . . . . . . . . . . . . . . . . . 77 3.2.2 Synthesis of Copper Nanoparticles . . . . . . . . . . . 78 3.2.3 Material Preparation . . . . . . . . . . . . . . . . . . 78 3.2.3.1 Polymer System Optimisation – Organic Solvent Concentration . . . . . . . . . . . . . . . . . . 78 3.2.3.2 Polymer Samples Prepared for Antibacterial Testing . . . . . . . . . . . . . . . . . . . . . . 79 3.2.4 Material Characterisation . . . . . . . . . . . . . . . . 79 viii 3.2.4.1 Characterisation of Copper Nanoparticles . . . 79 3.2.4.2 Characterisation of Modified Polymer Samples 80 3.2.5 Antibacterial Activity . . . . . . . . . . . . . . . . . . . 80 3.2.5.1 Microbiology Assay . . . . . . . . . . . . . . . 80 3.2.5.2 Statistical Significance . . . . . . . . . . . . . . 81 3.2.5.3 Further Antimicrobial Testing for Mechanistic Evaluation . . . . . . . . . . . . . . . . . . . . . 8 2 3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3.1 Material Characterisation . . . . . . . . . . . . . . . . 82 3.3.1.1 Characterisation of Copper Nanoparticles . . 82 3.3.1.2 Characterisation of Modified Polymer Samples 84 3.3.2 Antibacterial Activity . . . . . . . . . . . . . . . . . . . 88 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 4. Glutaraldehyde-Encapsulated Polyurethane; Antimicrobial Polymer without White Light Activation 103 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2.1 Chemicals and Reagents . . . . . . . . . . . . . . . . . 107 4.2.2 Material Preparation . . . . . . . . . . . . . . . . . . . 107 4.2.3 Material Characterisation . . . . . . . . . . . . . . . . 108 4.2.4 Antibacterial Activity . . . . . . . . . . . . . . . . . . . 109 4.2.4.1 Statistical Significance . . . . . . . . . . . . . . 109 4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 110 4.3.1 Material Preparation . . . . . . . . . . . . . . . . . . . 110 4.3.2 Material Characterisation . . . . . . . . . . . . . . . . 111 4.3.3 Antibacterial Activity . . . . . . . . . . . . . . . . . . . 114 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 19 ix 5. Crystal Violet and 18 nm ZnO Nanoparticles Encapsulated into Polyurethane; White Light Activated Antimicrobial Polymers 125 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.2.1 ZnO Nanoparticles . . . . . . . . . . . . . . . . . . . . 129 5.2.1.1 Chemicals and Reagents . . . . . . . . . . . . . 129 5.2.1.2 Nanoparticle Synthesis . . . . . . . . . . . . . 129 5.2.1.3 Nanoparticle Characterisation . . . . . . . . . . 130 5.2.2 Polymer Samples . . . . . . . . . . . . . . . . . . . . . 130 5.2.2.1 Chemicals and Reagents . . . . . . . . . . . . . 130 5.2.2.2 Material Preparation . . . . . . . . . . . . . . . 131 5.2.2.3 Material Characterisation . . . . . . . . . . . . 132 5.2.3 Antibacterial Activity . . . . . . . . . . . . . . . . . . . 134 5.2.3.1 Microbiology Assay . . . . . . . . . . . . . . . . 1 34 5.2.3.2 Statistical Significance . . . . . . . . . . . . . . 135 5.2.3.3 Hydrogen Peroxide and Singlet Oxygen Detection . . . . . . . . . . . . . . . . . . . . . 135 5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 136 5.3.1 ZnO Nanoparticle Synthesis and Characterisation . . . 136 5.3.2 Preparation and Characterisation of Polymer Samples 137 5.3.3 Antibacterial Activity . . . . . . . . . . . . . . . . . . . 144 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6. Crystal Violet and 3 nm ZnO Nanoparticles Encapsulated into Polyurethane; Antimicrobial Polymers Activated by Low Intensity White light Source 165 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.2.1 ZnO Nanoparticles . . . . . . . . . . . . . . . . . . . . . 169 6.2.1.1 Nanoparticle Synthesis . . . . . . . . . . . . . 169 6.2.1.2 Nanoparticle Characterisation . . . . . . . . . 170 6.2.2 Polymer Samples . . . . . . . . . . . . . . . . . . . . . 171 x

Description:
oxide system are examined using specific inhibitors and singlet oxygen quenchers to determine .. 6.3.4 Mechanistic Evaluation of CVZnO_oleate .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.