ebook img

Antibacterial Free Fatty Acids and Monoglycerides PDF

40 Pages·2017·27.63 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Antibacterial Free Fatty Acids and Monoglycerides

International Journal o f Molecular Sciences Review Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications BoKyeongYoon1,JoshuaA.Jackman1,2,ElbaR.Valle-González1andNam-JoonCho1,* ID 1 SchoolofMaterialsScienceandEngineeringandCentreforBiomimeticSensorScience, NanyangTechnologicalUniversity,50NanyangDrive,Singapore637553,Singapore; [email protected](B.K.Y.);[email protected]@stanford.edu(J.A.J.); [email protected](E.R.V.-G.) 2 DivisionofGastroenterologyandHepatology,DepartmentofMedicine,StanfordUniversitySchoolof Medicine,Stanford,CA94305,USA * Correspondence:[email protected];Tel.:+65-6790-4925;Fax:+65-6790-9081 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:26February2018;Accepted:5April2018;Published:8April2018 Abstract: Antimicrobial lipids such as fatty acids and monoglycerides are promising antibacterial agentsthatdestabilizebacterialcellmembranes,causingawiderangeofdirectandindirectinhibitory effects.Thegoalofthisreviewistointroducethelatestexperimentalapproachesforcharacterizinghow antimicrobiallipidsdestabilizephospholipidmembraneswithinthebroaderscopeofintroducingcurrent knowledgeaboutthebiologicalactivitiesofantimicrobiallipids,testingstrategies,andapplications fortreatingbacterialinfections. Tothisend,ageneralbackgroundonantimicrobiallipids,including structuralclassification,isprovidedalongwithadetaileddescriptionoftheirtargetingspectrumand currentlyunderstoodantibacterialmechanisms. Buildingonthisknowledge,differentexperimental approachestocharacterizeantimicrobiallipidsarepresented,includingcell-basedbiologicalandmodel membrane-basedbiophysicalmeasurementtechniques.Particularemphasisisplacedondrawingout howbiologicalandbiophysicalapproachescomplementoneanotherandcanyieldmechanisticinsights intohowthephysicochemicalpropertiesofantimicrobiallipidsinfluencemolecularself-assemblyand concentration-dependentinteractionswithmodelphospholipidandbacterialcellmembranes.Examples of possible therapeutic applications are briefly introduced to highlight the potential significance of antimicrobiallipidsforhumanhealthandmedicine, andtomotivatetheimportanceofemploying orthogonalmeasurementstrategiestocharacterizetheactivityprofileofantimicrobiallipids. Keywords:antimicrobiallipid;fattyacid;monoglyceride;antibacterial;therapy;phospholipidmembrane 1. Introduction Molecular design principles underpin the structure and function of biological assemblies such as cells,andamphiphilicmoleculesdrivethespontaneousself-assemblyofkeyarchitecturalelementslike phospholipidmembranes[1–3].Understandingtheroleofmolecularself-assemblyindirectingtheformation ofbiologicalmacromolecularstructures,includinglipidbilayers,proteins,andassembliesthereof,ispart ofthenanoarchitectonicsfield[4,5],andsuchinsightscanhelpsolveoutstandingbiomedicalproblems. Within this scope, one of the greatest public health problems in the world today is the growing rise ofantibiotic-resistantbacteriaandtheassociatedchallengestotreatandpreventbacterialinfections[6]. Less than a century ago, the world’s first antibiotic, penicillin, was discovered, and the specificity of antibioticstoinhibitbacterialenzymesandotherproteinsnecessaryforbacterialcellfunctionprovedhighly effectiveandaremarkableexampleofmolecularpharmaceutics,asevidencedbymarkedimprovementsin Int.J.Mol.Sci.2018,19,1114;doi:10.3390/ijms19041114 www.mdpi.com/journal/ijms Int.J.Mol.Sci.2018,19,1114 2of40 healthcarecapabilitiestotreatbacterialinfections.Asaresult,manyformerlyfatalordebilitatingdiseases causedbybacterialpathogensweresuddenlycurablewithantibiotictreatment[7]. Withhighpotencyandworkingagainstabroadspectrumofbacterialtargets,antibioticsbecame the standard drug option to treat bacterial infections, and are also widely used as precautionary measures to treat suspected infections, even when the microbial origin is unknown and could be bacterial,fungal,orviralamongotherpossibilities. Antibioticsarealsoadministeredprophylactically incaseswherebacterialinfectionsmightarise,suchasaftersurgicaloperations. Inaddition,antibiotics arecommonlyusedintheagriculturalsectortonotonlytreatandpreventbacterialinfectionsamong livestock,butalsoserveasgrowthpromoterstoacceleratethetimetoreachmaturityaswellasincrease thebodymassofanimals. Forallthesereasons,antibioticshavebecomeubiquitousinsocietyand haveplayedanoutsizedroleinshapingmodernlife. However,despitenumerousbenefits,thedrawbacksofantibioticsbeingsowidelyprevalentare nowbecomingapparentaswell. Withincreasingexposuretoantibioticsandcorrespondingselective pressure,bacteriahaveevolvedtobecomeresistanttomanyantibiotics,andantibiotic-resistantbacteria arewidespread.Asaresult,existingantibioticsarelosingtheireffectivenesstotreatbacterialinfections, andtheproblemisfurthercompoundedbythedearthofnewantibioticsthathavebeendiscovered inrecentyears. Inpart,theproblemiseconomicbecausepharmaceuticalcompanieshavehadweak interestindevelopingnewantibioticsduetolowpricepoints,however,themorepressingscientific issueisthatthechemicalspaceavailableforidentifyingandrefiningantibioticsislimited. Thereis growingrecognitionthatsocietyfacesanimpendingpost-antibioticera[8], andhence, thereisan urgentneedtodevelopnewclassesofantibacterialagentsthatworkagainstnovelmoleculartargets. Toaddressthisproblem,antimicrobiallipids—single-chainlipidamphiphilesthatdestabilize bacterialcellmembranes—areattractivecandidatestobecomenext-generationantibacterialagentsfor treatingbacterialinfections. Curiously,theantibacterialpropertiesofantimicrobiallipidshavebeen knownsinceearlyreportsbyDr. RobertKochandcolleaguesinthelate1880s,whenitwasshownthat fattyacids,aprominentclassofantimicrobiallipid,inhibitedgrowthoftheBacillusanthracispathogen thatcausesanthrax[9]. Afewdecadeslater,Burtenshawandcolleaguesshowedthatantimicrobial lipidsareanimportantcomponentofhumanskin’sinnateimmunesystem[10,11],lendingcredenceto thepossibilitythatexogenousadditionofantimicrobiallipidswouldbemedicallyopportune. Despite strongpromiseanddemonstratedresults,theprospectsforantimicrobiallipidsfadedawaybythelate 1940sduetotheemergenceofantibiotics,buthavereceivedrenewedattentionamidstthegrowing impact of antibiotic-resistant bacteria. Indeed, one attractive feature of antimicrobial lipids is that itisdifficultforbacteriatomutatetobecomeresistanttothem. Assuch,bacterialcellculturescan begrowninthepresenceofantimicrobiallipids(atsub-lethalconcentrations)foratleastoneyear, withoutsignsofdrug-resistantstrainsemerging[12]. Particularattentionisdrawntotwoclassesofantimicrobiallipid,namelyfattyacids(hydrocarbon chains with a carboxylic acid functional group [13]) and monoglycerides (esterified adducts of a fatty acid and glycerol molecule). The motivation for studying these two classes of antimicrobial lipid arose from pioneering studies by Kabara and colleagues in the 1970s, which systematically investigated the antibacterial potency of medium-chain saturated fatty acids and monoglycerides with different chain lengths [14–17]. It was discovered that lauric acid (LA),which possesses a 12 carbon-longchain,hadthemostpotentactivitytoinhibitgrowthofGram-positivebacteria,andits monoglyceridederivative,glycerolmonolaurate(GML),exhibitedevenstrongerinhibitoryactivity thanLA.Importantly,bothLAandGMLareGenerallyRecognizedAsSafe(GRAS)bytheUnited StatesFoodandDrugAdministration[18]andabundantinnature. Thesefactorshaveledtowide explorationofLAandGMLforanti-infectiveapplications[19–21],includingapplicationtopicssuch as agriculture [22] and cosmetics [13,23,24]. Other antimicrobial lipids such as capric acid, which possessesa10carbon-longchain,anditsmonoglyceridederivative,monocaprin,havealsoreceived attention. While numerous studies have been conducted to empirically investigate the inhibitory Int.J.Mol.Sci.2018,19,1114 3of40 propertiesofantimicrobiallipids,clarifyinghowthephysicochemicalpropertiesofantimicrobiallipids influencebiologicalactivitiesremainsanoutstandinggoalinmanyrespects. Todate,theprimarymeansofassessingtheactivityprofileofanantimicrobiallipidhasbeento evaluatehowtreatmentaffectsbacterialcellgrowth,withtheminimuminhibitoryconcentration(MIC)of atestcompoundbeingdefinedasthedrugconcentrationatwhichnovisiblegrowthofbacteriaoccurs. Whilesuchinformationprovidesinsightintothescopeandpotencyofanantimicrobiallipid,itdoes notrevealmechanisticinformationandthereisgrowinginteresttounderstandhowantimicrobiallipids destabilizebacterialcellmembranes. Biologicalassayshaveidentifiedthatantimicrobiallipidsactas bacteriostatic(growth-inhibiting)orbactericidal(killing)agentsdependingonthedrugconcentration, targetbacteriumandotherenvironmentalfactors[13,25].Todirectlyobservemorphologicaleffectson bacterialcellmembranes,electronmicroscopytechniqueshavebeenutilizedtoimagebacterialspecimens aftertreatmentwithantimicrobiallipids[26–32].Whilethisapproachprovidesvisualizationofmembrane damage,veryhighconcentrationsofantimicrobiallipidaretypicallyused(5–10mM)andthebacterial cellscanonlybeexaminedaftertreatmentandsamplefixation. Similarissuesexistwithatomicforce microscopyexperimentsforexaminingthemorphologyoftreatedbacterialcells.Ingeneral,itisdifficult toresolvemolecular-levelinteractionkineticswhenworkingwithcomplexbiologicalsamplessuchas wholebacterialcells,therebymotivatingthedevelopmentofmodelsystems. To obtain insights into real-time interaction kinetics with a more focused approach, a variety ofsolution-phasemodelmembraneplatformsbasedonsmallunilamellarvesicles(SUVs)andlarge unilamellar vesicles (LUVs) have been employed in combination with measurement techniques such as dynamic light scattering in order to detect how antimicrobial lipids cause membrane destabilizationviapartialsolubilizationaswellasmembranefission[33–40]. Thesemodelsystems allow detailed characterization of membrane morphological changes by using well-controlled, simplifiedphospholipidcompositionsthatmimicmorecomplexbiologicalmembranes. Time-lapsed opticalmicroscopyimagingofgiantunilamellarvesicles(GUVs)hasalsoenableddirectvisualization of membrane morphological responses, including swelling, fusion, and fission behaviors [41,42]. Asanotheroption,supportedlipidbilayers(SLBs)aretwo-dimensionalphospholipidbilayersthat haveemergedasaparticularlyusefulmodelmembraneplatformbecausetheycanbestudiedwitha widerangeofsurface-sensitivemeasurementtechniques,revealinginsightsintothemass,viscoelastic, fluidic, and morphological properties of SLB platforms. Indeed, one particular advantage of SLB platformsisthatthetwo-dimensionalphospholipidbilayercanremodelinresponsetoanapplied membranestrain,givingrisetothree-dimensionalmorphologicalresponses. Untilrecently,therewas onlyscantattentiontoemploySLBplatformsforinvestigatingantimicrobiallipids, withonlyone studyreportingtheinteractionsbetweenalong-chainfattyacidandsingle-component,zwitterionic phospholipidSLBplatformandanotherstudyinvestigatingtheinteractionbetweenashort-chain monoglyceride and SLBs derived from bacterial cell membrane extracts [43–45]. Extending such approachestoinvestigatemedium-chainsaturatedfattyacidsandmonoglycerides—representingthe subsetofantimicrobiallipidswiththehighestactivity—iswarrantedinordertodevelopmodelsystems forprofilingthescopeandpotencyoftheseantimicrobiallipidsandasubjectofactiveinvestigation. Movingbeyond particularexperimentalapproaches, thereisactive progress towardsestablishing comprehensiveframeworksforcorrelatingthephysicochemicalpropertiesofantimicrobiallipidswith theircorrespondingbiophysicalandbiologicalactivities. Recognizingthesepossibilities,thegoalofthisreviewistointroducethelatestexperimentalapproaches forcharacterizinghowantimicrobiallipidsdestabilizephospholipidmembraneswithinthebroaderscope ofintroducingcurrentknowledgeaboutthebiologicalactivitiesofantimicrobiallipids,testingstrategies, andapplicationsfortreatingbacterialinfections.Thecontentsofthereviewareorganizedintothreemajor sections. First, a general background on antimicrobial lipids is provided that describes the structural classification,spectrumofantibacterialactivity,andcurrentlyunderstoodantibacterialmechanismslinked tomembranedestabilization.Then,differentexperimentalapproachestocharacterizeantimicrobiallipids, including cell-based biological and model membrane-based biophysical measurement techniques, are Int.J.Mol.Sci.2018,19,1114 4of40 presented. Themajorfindingsobtainedbyeachexperimentalapproacharecriticallysummarized,and supplementedbydiscussionabouthowbiologicalandbiophysicalapproachescanbeintegratedtobetter understandhowthephysicochemicalpropertiesofantimicrobiallipidsinfluencemolecularself-assembly andconcentration-dependentinteractionswithmodelphospholipidandbacterialcellmembranes.Finally, itisdescribedhowantimicrobiallipidsinfreeformandnanostructuredassembliescanbeemployedfor therapeuticapplications,includingwhenadministeredviasystemicandtopicaladministrationroutes.Taken together,theinsightspresentedinthisreviewunderscoretheutilityofemployingorthogonalmeasurement strategiestocharacterizetheactivityprofileofantimicrobiallipids. 2. AntimicrobialLipids 2.1. Classifications Antimicrobial lipids are defined as single-chain lipid amphiphiles that interact with bacterial cell membranesandexhibitantibacterialactivity.Fattyacidsareawidelystudiedtypeofantimicrobiallipid, andarecomposedofasinglesaturatedorunsaturatedhydrocarbonchainandacarboxylicacidgroup ononeend. Assuch, fattyacidsareamphipathicmolecules, withthehydrocarbonchainconstituting thehydrophobicpartwhilethecarboxylicacidgroupishydrophilic(eitherpolaroranionicinaqueous solutions,dependingonpHconditions).Forexample,thecarboxylicacidgroupsofmedium-chainfatty suchascapricacidandLA,havepK valuesaroundpH5[46],andthereforethefattyacidsareanionic a (deprotonatedcarboxylicacidgroups)aroundthephysiological(blood)pHconditionof7.4.Inadditionto fattyacids,otherderivativeshavebeenreportedtohaveantibacterialactivity,withoneprominentclass beingmonoglyceridesthatarecomposedofafattyacidconnectedwithaglycerolmoleculeviaanester bond.Othersyntheticversionsarealsopossiblesuchasrelatedcompoundswithetherbonds,rendering suchmoleculesimpervioustobacteriallipases.Comparedtofattyacids,monoglyceridesbearthedistinction ofnothavingionizablefunctionalgroupsacrossrelevantpHconditions,andhence,arenonionicmolecules withneutralelectricalchargepropertiesandsomedegreeofpolarity. Antimicrobial lipids are classified based on their chain lengths and degrees of unsaturation. RepresentativecompoundswithdifferentmolecularstructuresarepresentedinFigure1. Inbiological systems,fattyacidstypicallypossessanevennumberofcarbonatomsbetween4and28,althoughother odd-numberedversionsarepossibleinselectsystemsorsyntheticallyproduced. Fattyacidsthatare lessthan8carbonatomslongaredefinedasshort-chain,whilethosewithgreaterthan12carbonatoms arelong-chainfattyacidsandmedium-chainfattyacidshavebetween8and12carbonatoms[13,47,48]. Anotherimportantparameteristhenumberofdegreesofunsaturation. Insaturatedfattyacids,all the carbon atoms are linked by single covalent bonds, while unsaturated fatty acids have one or moredoublebonds(degreesofunsaturation)inthecarbonbackbone. Specifically,unsaturatedfatty acidshavingmorethanonedoublebondareidentifiedaspolyunsaturatedfattyacids. Thepresence of double bonds, including the number of them and their orientation (cis- or trans-) can lead to significantlydifferentphysicochemicalpropertiesoffattyacids,evenamongcompoundshavingthe samehydrocarbonchainlength. Thus,classifyingfattyacidsandtheirderivativesisanimportantpart ofinvestigatingtrendsinantibacterialactivitywithrespecttomolecularstructureandshape. Tothis end,extensivemicrobiologicalstudieshavebeenconductedandunsaturatedfattyacidswithmedium andlongerchainstypicallyshowgreaterefficacyagainstGram-positivebacteriathanGram-negative bacteria[49,50]. Somestudieshavealsobeenreportedthatfocusonassessingantibacterialpotencyin thepresenceofcompoundswithdoublebondsandrelatedproperties[27,50–53]. In past works, the potency of saturated fatty acids has also been examined as a function of hydrocarbonchainlength[14,30,50,53–55]. Bysystematicallyinvestigatingsaturatedfattyacidswith hydrocarbon chains ranging between 6 and 18 carbons long, it was identified that LA, which has a 12-carbon long chain, exhibits the most potent activity to inhibit growth of Gram-positive bacteria, includingStaphylococcusaureus,amajorcausativeagentofbacterialskininfectionsaswellassystemic ones.Its1-monoglyceridederivative,GML,showedevengreaterpotencyagainstS.aureus,asindicated Int.J.Mol.Sci.2018,19,1114 5of40 byalowervalueoftheminimuminhibitoryconcentration(MIC)incomparisontoLA[14].Inaddition, capricacidanditsmonoglyceridederivative,monocaprin,havesaturatedhydrocarbonchainsthatare10 carbonslong,andalsohavehighantibacterialactivity,especiallyagainstGram-negativebacteriathatare commonlyassociatedwithfoodborneinfectionssuchasCampylobacterjejuni[56].Theconnectionbetween antimicrobiallipidandantibacterialspectrumandpotencyisfurtherdiscussedinthenextsection. Figure1. Chemicalstructuresoffattyacidsandmonoglycerides. Saturatedfattyacids;Capricacid (C10:0),LA(C12:0). Monoglycerides; Monocaprin(MGC10:0),Glycerolmonolaurate(MGC12:0). Unsaturatedfattyacids; Oleicacid(C18:1),Elaidicacid(trans-C18:1). Polyunsaturatedfattyacids; Linoleicacid(C18:2),Linolenicacid(C18:3).Cx:yisdefinedsuchthatxisthenumberofcarbonsinthe primaryalkylchainandyisthenumberofdegreesofunsaturation. 2.2. SpectrumofAntibacterialActivity Broad-spectruminhibitoryactivityofantimicrobiallipidsagainstalgae,bacteria,fungi,protozoa, and virus has been reported for several decades [13–15,23,57–59]. The antibacterial potency of fatty acidsandmonoglyceridederivativeshasbeeninvestigatedextensivelyagainstawiderangeofbacteria, includingpathogenicstrainssuchasmethicillin-resistantStaphylococcusaureus(MRSA),aspresented inTable1. ExtensivescreeningoftheantibacterialactivitiesoffattyacidswasconductedbyKabara andcolleaguesinthe1970s,andhelpedtoestablishthemodern-dayfieldofantimicrobiallipidsfroma chemicalperspective.Fattyacidswithhydrocarbonchainsrangingfrom6to18carbonslongandselected derivativeswithdifferentfunctionalizedheadgroupswereevaluated,resultinginthecomprehensive identificationofLA(C12:0)asthemostpotentantimicrobiallipidtoinhibitgrowthofGram-positive bacteria,asmentionedabove.Asageneralprinciple,theesterificationofafattyacidtoitscorresponding monoglyceridederivativeincreasesantibacterialactivity[14,15,17].Anothersupportivestudyforthehigh antibacterialpotencyofLAwasconductedwithdifferenttypesofGram-positivebacteria,andfurther demonstratedthatunsaturatedfattyacidswith18carbonlongchains—oleicacid(C18:1),linoleic(C18:2), andlinolenicacid(C18:3)—havepotentantibacterialactivitiesaswell[50]. Basedonthefindingsfromthesepioneeringstudies,moreselectiveanddetailedstudiesfocused on either specific bacterial type or particular antimicrobial lipids have been performed[27,52,60,61]. Specifically, interest on fatty acids and monoglycerides as potential therapeutic agents and/or preservatives against medically important pathogens led to the following studies of biomedical and foodsciencerelevance.Wangetal.investigatedtheefficacyoffattyacidsandmonoglyceridesagainst Listeriamonocytogenes,whichisaGram-positivebacteriumthatcausesaseriesoffood-borneinfections. Ofthetestedfattyacidsandmonoglycerides,LA,linolenicacid,andGMLhadthestrongestbactericidal activityat10–20µg/mLinbrainheartinfusionbrothatpH5.Interestingly,thebactericidalactivityofthe fattyacidsdependedonsolutionpH,showingincreasedactivityatpH5ascomparedtopH6,whilethe activityofthemonoglyceridewasnotinfluencedbysolutionpHacrossthisrange[28].Thisisconsistent withtheionizableheadgroupoffattyacidswhilemonoglyceridesarenonionicmolecules. Int.J.Mol.Sci.2018,19,1114 6of40 Table1.Antibacterialactivityoffattyacidsandmonoglyceridesagainstdifferentbacteria. Bacteria(*) FattyAcid[FAs]/Monoglycerides[MGs]† KeyFindings Ref. B.megaterium(+) B.mycoides(+) B.subtilis(+) Bacillussp.(+) Strep.faecium(+) • Amongsaturatedfattyacids,LA(C12:0)wasthemostpotentagainst Strep.lactis(+) [FAs‡]: Gram-positivebacteria. Staphylococcussp.(+) C8:0,C10:0,C12:0,C14:0,C16:0,C18:0,C18:1, • Unsaturatedfattyacids,linoleic(C18:2)andlinolenicacid(C18:3),weremore [50] Micrococcussp.(+) trans-C18:1,C18:2,C18:3 potentthanLA. M.lysodeikticus(+) Cl.butyricum(+) Cl.sporogenes(+) Cl.welchii(+) Pneumococci(+) StreptococcusgroupA(+) [FAs]: • LAwasthemostpotentsaturatedfattyacidsagainstGram-positivebacteria. Streptococcusbeta-hemolyticnon-A(+) Corynebacteriumsp.(+) C6:0,C8:0,C10:0,C12:0,C14:0,C16:0,C18:0, • Monocaprin(MGC10:0)andGML(MGC12:0)hadgreaterantibacterial N.asteroides(+) C14:1,C16:1,C18:1,trans-C18:1,C18:2, activitythanfattyacidequivalents. [14] Micrococcussp.(+) trans-C18:2,C18:3,C20:4 • GMLhadmorepotentactivitywithalowerMICvaluethanLAagainstmost [MGs§]: S.aureus(+) Gram-positivebacteria. C10:0,C12:0 S.epidermidis(+) StreptococcusgroupD(+) Strep.faecalis(+) [FAs]: • LAandGMLwerethemostpotentantibacterialcompoundsamongthose Strep.pyogenes(+) C11:0,C12:0,C13:0 testedagainstGram-positivebacteria. S.aureus(+) [MGs]: • Esterificationoffattyacidstomonoglycerideformgenerallyincreased [15] Corynebacteriumsp.(+) C11:0,C12:0,C13:0 antibacterialactivity. N.asteroides(+) • Mosttestedunsaturatedfattyacidsshowedpotentbactericidaleffectagainst [FAs]: M.smegmatis. M.smegmatis(+) C10:0,C12:0,C14:0,C16:0,C18:0,C20:0, • Amongsaturatedfattyacids,onlyLAandmyristicacid(C14:0)showedsome [60] C16:1,C18:1,C18:2,C20:4 degreeofantibacterialactivityat0.2mMconcentration,whichismuchweaker thanthatofunsaturatedfattyacids. Int.J.Mol.Sci.2018,19,1114 7of40 Table1.Cont. Bacteria(*) FattyAcid[FAs]/Monoglycerides[MGs]† KeyFindings Ref. S.aureus(+) • AlltestedGram-positivespeciesweresusceptibletotreatmentwith0.01mM L.acidophilus(+) arachidonicacid(C20:4). B.megaterium(+) [FA]: • L.acidophiluswasmostsusceptibleamongGram-positivebacteria. [27] H.influenzae(−) C20:4 • BactericidaleffectofarachidonicacidtreatmentonS.aureusdependedon N.gonorrhoeae(−) treatmenttimeanddrugconcentration. E.coli(−) [FAs]: • LA,linolenicacid,andGMLexhibitedstrongantibacterialactivityagainstL. C12:0,C14:0,C16:0,C18:0,C18:1,C18:2, monocytogenesat10–20µg/mL. L.monocytogenes(+) C18:3 • BactericidalactivityofLAandlinolenicacidinbrainheartinfusionbrothwas [28] [MGs] higheratpH5thanpH6. C12:0,C14:0,C16:0 [FAs]: • LAandmyristoleicacid(C14:1)showedmostpotentactivityagainstB.larvae. B.larvae(+) C10:0,C11:0,C12:0,C13:0,C14:1,C16:1, • Saturatedfattyacidswithgreaterthan14-carbonlongchainsdidnotinhibit [52] C18:2,etc. bacterialgrowth. [FAs]: • Saturatedmonoglycerideswith10–14carbonlongchainsshowedbactericidal C4:0,C5:0,C6:0,C7:0,C8:0,C9:0,C10:0, activityagainstH.pyloriwithmorethan99.99%reductionupontreatment C11:0,C12:0,C13:0,C14:0,C15:0,C16:0, with1mMcompound. H.pylori(−) C17:0,C12:1 • LAwasuniqueamongtestedsaturatedmedium-chainfattyacids,tohave [62] [MGs]: antibacterialactivity. C4:0,C5:0,C6:0,C7:0,C8:0,C9:0,C10:0, • Medium-chainmonoglyceridesinactivatedH.pylorieffectivelyandtherewas C11:0,C12:0,C13:0,C14:0,C15:0,C16:0, lessspontaneousresistancedevelopment. C17:0,C12:1 [FAs]: • LA,capricacid(C10:0),andmonocaprinhadpotentantibacterialactivity C8:0,C10:0,C12:0,C14:0,C16:1,C18:1 againstC.trachomatisupontreatmentwith10mMcompound. C.trachomatis(−) [MGs]: • MonocaprinwasmostpotenttokillC.trachomatis,assuggestedby [29] C8:0,C10:0,C12:0,C16:1,C18:1 destabilizationofthebacterialmembraneofelementarybodies. [FAs]: • MonocaprinwasthemostpotenttoeffectivelykillN.gonorrhoeae. N.gonorrhoeae(−) C8:0,C10:0,C12:0,C14:0,C16:1,C18:1 • LAandpalmitoleicacid(C16:1)hadbactericidalactivityagainstN. [63] [MGs]: gonorrhoeae,asdeterminedbytreatmentwith2.5mMtestcompound. C8:0,C10:0,C12:0,C14:0,C16:1,C18:1 [FAs]: • LA,palmitoleicacidandmonocaprinshowedstrongantibacterialactivity StreptococcusgroupA(+) C8:0,C10:0,C12:0,C14:0,C16:1,C18:1 againsttestedStreptococcusspp.with5mMcompoundtreatment. StreptococcusgroupB(+) [MGs]: • MonocaprinhadsignificantantibacterialactivityagainstS.aureusaswellas [30] S.aureus(+) C8:0,C10:0,C12:0,C14:0,C16:1,C18:1 theStreptococcusspp. Int.J.Mol.Sci.2018,19,1114 8of40 Table1.Cont. Bacteria(*) FattyAcid[FAs]/Monoglycerides[MGs]† KeyFindings Ref. • Testedcompoundswith10–16carbonlongchainswereactiveagainstH.pylori H.pylori(−) [FAs]: upontreatmentwith10mMcompound,whilelargelyinactiveagainst E.coli(−) C8:0,C10:0,C12:0,C14:0,C16:1,C18:1 Salmonellaspp.andE.coli. [64] Salmonellaspp.(−) [MGs]: • MonocaprinandGMLshowedhighestlevelsofinhibitoryactivityagainst C8:0,C10:0,C12:0,C14:0,C16:1,C18:1 H.pylori. • Amongsaturatedfattyacids,LAwasthemostpotentbactericidalcompound [FAs]: againstH.pylori,withanMBCvalueof1mM. C4:0,C6:0,C8:0,C10:0,C12:0,C14:0,C16:0, • GMLwasthemostpotentmonoglycerideandhadalowerMBCvalue H.pylori(−) C14:1,C16:1,C18:1,C18:2,C18:3 thanLA. [54] [MGs]: • Amongunsaturatedfattyacids,myristoleicandlinolenicacidhadthemost C12:0,C14:0,C16:0 potentantibacterialactivity. [FAs]: • Caprylic(C8:0)andcapricacidshowedantibacterialactivityagainstE.coli; E.coli(−) C2:0,C3:0,C4:0,C5:0,C6:0,C8:0,C10:0, caprylicacidhadhighestactivity. [65] C12:0,C14:0,C16:0,C18:0,C18:1,C18:2 • BactericidaleffectofthetwofattyacidswashigheratpH5.2. S.enteritidis(−) [FAs]: • CaprylicacidaloneshowedantibacterialactivityagainstSalmonellaspecies S.infantis(−) C2:0,C3:0,C4:0,C5:0,C6:0,C8:0,C10:0, underlowerpHconditionsaround5.2–5.3. [66] S.typhimurium(−) C12:0,C14:0,C16:0,C18:0,C18:1,C18:2 S.aureus(+) Methicillin-SusceptibleStaphylococcusaureus [FAs]: • LAwasmostpotentsaturatedfattyacidsagainstMSSAandMRSAstrains (MSSA)(+) C8:0,C10:0,C12:0,C14:0,C16:0,C18:0 andinhibitedtheirgrowthat400µg/mLtestconcentration. [19] Methicillin-ResistantStaphylococcusaureus (MRSA)(+) [FAs]: • LAwasthemostpotentfattyacidagainstC.perfringensandmaintainedits C.perfringens(+) C2:0,C3:0,C4:0,C5:0,C6:0,C8:0,C10:0, activityatpH>6,whilecapricacidwasonlyactiveatpH5.0–5.3. [31] C12:0,C14:0,C16:0,C18:0,C18:1,C18:2 L.garvieae(+) V.harveyi(−) [FAs]: • Unsaturatedfattyacidsshowedgreaterbactericidaleffectontestedbacteria, V.anguillarium(−) C15:0,C16:0,C17:0,C18:0,C22:0,C18:1, especiallyGram-negativeVibriospp.,thansaturatedfattyacids. [67] C18:4,C20:4,C20:5,C22:4,C22:5 V.alginocolyticus(−) Int.J.Mol.Sci.2018,19,1114 9of40 Table1.Cont. Bacteria(*) FattyAcid[FAs]/Monoglycerides[MGs]† KeyFindings Ref. B.cereus(+) S.aureus(+) [FA]: • LinolenicacidhadthepotentantibacterialactivityagainstB.cereusand E.coli(−) C18:3 S.aureus. V.parahaemolyticus(−) [MGs]: • Combinationoflinolenicacidandmonoglyceridesshowedsynergistic [68] S.typhimurium(−) C12:0,C14:0 antibacterialeffectcomparedtotreatmentwithlinolenicacidalone. S.enteritidis(−) Strep.iniae(+) [FA]: • Antibacterialacitityofcaprylicacidanditsmonoglyceride,monocaprylatews E.ictaluri(−) C8:0 investgatedagainstbacterialfishpathogensandshowedpotentefficacy. E.tarda(−) [MG]: • Monocaprylateshowedgreaterantibacterialacitivtyinthe2.5–5mMrange [69] Y.ruckeri(−) C8:0 thanthatofcaprylicacid. P.acnes(+) • LAhadgreaterantibacterialactivityagainstP.acnesthanbenzoyl S.aureus(+) [FA]: peroxide(BPO). [20] S.epidermidis(+) C12:0 • LAwasnotcytotoxicagainsthumansebocytes. S.aureus(+) • GMLwasinvestigatedasapreservativeagainstfood-relatedpathogens. B.subtilis(+) [MG]: • AntibacterialactivityofGMLwassynergisticwiththeadditionofnisinagainst [70] C12:0 E.coli(−) testedbacteria. [FA]: • GMLhad200-foldgreaterbactericidalpotencythanLAagainstS.aureus. S.aureus(+) C12:0 • Strep.pyogeneswasmoresusceptibletoGMLtreatment,ascomparedto [21] Strep.pyogenes(+) [MG]: S.aureus. C12:0 S.aureus(+) B.cereus(+) [MGs]: • MGC11:0andMGC11:1effectivelyinhibitedgrowthofS.aureusandB.cereus, E.coli(−) C11:0,C11:1 butwereineffectiveagainsttestedGram-negativebacteria. [71] P.aeruginosa(−) [FAs]: • Caprylicacidandmonocaprylatehadsignificantantibacterialacitivtyagainst C.sakazakii(−) C6:2,C8:0,C10:0,C12:0 Cronobacterstrains. C.malonaticus(−) [MGs]: • Bactericidalactivitiesofmonocaprylatearedependentoncompoound [72] C6:2,C8:0,C10:0,C12:0 concentrationandtemperature. *(+)indicates“Gram-positivebacteria”and(−)indicates“Gram-negativebacteria”;†[numberofcarbonatomsinalkylchain:numberofdoublebonds];‡FAindicates“fattyacid”;§MG indicates“monoglyceride”. Int.J.Mol.Sci.2018,19,1114 10of40 Another target bacterium that is susceptible to fatty acids is Helicobacter pylori, which is a Gram-negativebacteriumthatcanbepathogenicinthestomachorduodenumleadingtodiseases such as chronic gastritis, gastric ulcers, and stomach cancer. Petschow et al. tested a wide range ofsaturatedfattyacidsandcorrespondingmonoglycerideswithchainlengthsfrom4to17carbons against H. pylori and observed the following trend in bactericidal activities. Monoglycerides with 10–14carbonlongchainsshowedappreciablebactericidalefficacyat1mMconcentrationandhad a lower tendency of spontaneous resistance development, while LA was the only saturated fatty acid that had bactericidal potency under the tested conditions [62]. Similarly, the anti-H. pylori activity of LA and GML was demonstrated by Sun et al., in which case selected unsaturated fatty acids were evaluated along with a range of saturated fatty acids (4–16 carbon chains) and monoglycerides(12–16carbonchains)[54]. LAcompletelykilledH.pyloriatminimumbactericidal concentration(MBC)of1mM,andGMLshowedevenmorepotentactivitythanLAwithalower MBC value around 0.5 mM. Additionally, it was identified that, among unsaturated fatty acids, myristoleic (C14:1) and linolenic acid have the most potent activity against this bacterium [54]. BergssonandcolleaguesalsoassessedinhibitoryactivityagainstGram-negativebacteria,including H.pylori,forawiderangeoffattyacidsandcorrespondingmonoglycerides[64]. Interestingly,the testedcompoundsthathadhydrocarbonchainsbetween10–16carbonslongexhibitedinactivation of H. pylori at 10 mM concentration, however, there was no significant activity observed against Salmonella species and Escherichia coli. Bergssonetal. conducted additional studies in order to characterizetheantibacterialpotencyofselectedantimicrobiallipidsagainstdifferentbacteria,andit wasdemonstratedthatmonocaprin(MGC10:0)isthemostpotentbactericidalagentagainstChlamydia trachomatis and Neisseria gonorrhoeae [29,63]. Additional studies have been reported investigating theeffectsoffattyacids(withchainsof2to18carbonlength)onGram-negativebacteria,including E.coli[65]andSalmonellaspecies[66],anddemonstratedthatcaprylicacid(C8:0)hasparticularlyhigh antibacterialactivityagainstthesebacteria.Antibacterialactivityofcaprylicacidanditsmonoglyceride, monocaprylate,werealsoidentifiedagainstfishpathogensincludingEdwardsiellaspeciesbyKollanoor and colleagues [69]. Of particular note, caprylic acid and monocaprylate have showed potent inhibitoryactivityagainstimportantfoodbornepathogens,includingE.coliO157:H7[73–77],along withSalmonellaspecies[78,79],L.monocytogenes[80,81],andmastitispathogens[82]. Ofrelevancetoskininfection, S.aureusandMRSAarealeadingcauseofskinandsoft-tissue infections,includingacutebacterialskinandskinstructureinfections. Withinthisscope,Kitaharaetal. investigatedarangeofsaturatedfattyacidsagainstconventionalS.aureus,methicillin-susceptible Staphylococcusaureus(MSSA)andMRSA,anditwasidentifiedthatLAisthemostpotentsaturated fattyacidagainstMSSAandMRSA[19]. PotentinhibitoryactivityofGMLhasalsobeenreported against S. aureus in the following studies. Lin et al. demonstrated that GML killed the bacteria effectivelybothinvitroandinvivoandreducedtoxicshocksyndrome[83]. Anotherinvivostudy performedbyPreussetal. confirmedtheantibacterialactivityofGMLagainstS.aureusinfection[84]. Inaddition,Nakatsujietal. exploredthefeasibilityofemployingLAtotreatamousemodelinfection causedbyanotherGram-positivebacterium,specificallyPropionibacteriumacnes[20]. Hence,multiple antimicrobiallipidshaveshowninvivotherapeuticpotential,andthereisalsogrowinginterestto investigatecombinationsofseveralantimicrobiallipidsthathaveantibacterialpotencyagainstspecific bacteriainordertoachievesynergisticandbroad-spectrumeffects[85–89]. 2.3. MechanismsofAntibacterialActivity Themechanism(s)ofantibacterialactivityoffattyacidsandmonoglycerideshavebeenexplored usingdiverseexperimentalmethodstoidentifythattheymainlytargetbacterialcellmembranesand interruptcrucialprocessesinvolvedincellularprotectionandfunction. Themembrane-lyticbehavior offattyacidsandmonoglyceridesstemfromtheiramphipathicproperties,leadingtooverlapping setsofbiophysicalphenomenaincludingmembranedestabilizationandporeformation. Inparticular,

Description:
Of the tested fatty acids and monoglycerides, LA, linolenic acid, and GML had the strongest bactericidal activity at 10–20 µg/mL in brain heart infusion
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.