ebook img

Antibacterial free fatty acids: activities, mechan PDF

50 Pages·2010·0.89 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Antibacterial free fatty acids: activities, mechan

1 2 3 ANTIBACTERIAL FREE FATTY ACIDS: ACTIVITIES, 4 MECHANISMS OF ACTION AND 5 BIOTECHNOLOGICAL POTENTIAL 6 7 8 Andrew P. Desbois1 and Valerie J. Smith2* 9 10 11 12 1Biomedical Sciences Research Complex,School of Biology,Universityof St 13 Andrews, Fife,KY169ST,UK 14 2Scottish Oceans Institute(formerlyGattyMarineLaboratory),Universityof St 15 Andrews, Fife,KY168LB,UK 16 17 18 *Authorforcorrespondence: email [email protected]; phone +44(1334) 19 463474; fax +44(1334) 463443. 20 21 Runningtitle:ANTIBACTERIALFREEFATTYACIDS 22 1 1 Abstract 2 3 Amongst thediverseand potent biological activities offreefattyacids (FFAs)is the 4 abilitytokill orinhibit thegrowthofbacteria. The antibacterial properties ofFFAs 5 areusedbymanyorganisms todefendagainst parasiticorpathogenicbacteria.Whilst 6 theirantibacterial mode ofactionis still poorlyunderstood,theprimetarget ofFFA 7 actionis thecell membrane.Here,FFAs disrupt theelectrontransport chain and 8 oxidativephosphorylation.Besides interferingwithcellularenergyproduction,FFA 9 actionmayalso result from theinhibitionofenzymeactivity,impairment ofnutrient 10 uptake, generationoftoxicperoxidationandauto-oxidationdegradationproducts or 11 direct lysis ofbacterial cells. Theirbroadspectrum ofactivity,non-specificmodeof 12 actionandsafetymakes them attractive as antibacterial agents forvarious applications 13 inmedicine,agriculture andfoodpreservation,especiallywheretheuseof 14 conventional antibiotics is undesirableorprohibited.Moreover,theevolutionof 15 inducibleFFA-resistant phenotypes is less problematicthanwithconventional 16 antibiotics. Thepotential forcommercial orbiomedical exploitationofantibacterial 17 FFAs, especiallyforthosefrom natural sources, is discussed. 18 19 Keywords:antibiotic; antimicrobial; drugresistance; lipid; natural products. 20 21 1.Introduction 22 23 Fattyacids (FAs) areubiquitous molecules typicallyfoundboundtoother compounds 24 such as glycerol,sugars orphosphateheadgroups toform lipids. Lipids are integral 25 components ofcell structures, e.g.membranes, whicharemadeupofphospholipids, 2 1 andenergystores that are oftencomposedoftriglycerides. FAs canbereleasedfrom 2 lipids, typicallybyenzymeaction,tobecome freefattyacids (FFAs),whichhave 3 diverseandpotent biological activities (Table1). 4 5 FFAs consist ofachainofcarbon atoms attachedtohydrogenatoms (Figure1).The 6 numberofcarbonatoms varies but thoseinbiological systems usuallyhave aneven 7 numberbetween10and 28andthis reviewmainlyconcentrates onthese. At oneend 8 ofthecarbonchainis a carboxyl group(–COOH) andat theother endis a methyl 9 group (–CH )(Figure1). Thecarboxyl groupis hydrophilicandionised when 3 10 solubilisedinwaterwhereas thecarbonchainis hydrophobic,makingtheentire 11 moleculeamphipathic.FAs with<8carbon atoms areconsideredshort-chainwhereas 12 thosewith>16carbon atoms areregardedas long-chain.Unsaturated FAs haveoneor 13 moreC=C doublebonds inthecarbonchainwhile thecarbon atoms insaturatedFAs 14 areall joinedbyC–C singlebonds (Figure1). Lipases (the groupoflipolyticenzymes 15 that cleave FAs from lipidheadgroups byhydrolysis togiveFFAs) canbe specificfor 16 certaintypes oflipidbut theymayalso discriminatetheFAs that theycleaveontheir 17 positiononthelipidheadgroup andthelengthand unsaturationoftheFA’s carbon 18 chain. 19 20 Thebiological activities ofFFAs have roles inhost defences against potential 21 pathogenicoropportunisticmicro-organisms. An important aspect ofthis is growth 22 inhibitionorthedirect killingofbacteria.Thereis nowanextensiveliterature 23 concerningthe antibacterial effects ofvarious FFAs from awide rangeof biological 24 sources, includingalgae, animals andplants (McGawet al.2002; Willeand 25 Kydonieus 2003; Desbois et al.2008,2009). Indeed,FFAs areoftenidentifiedas the 3 1 activeingredients inethnicandherbal medicines (Yffet al.2002; McGaw et al. 2 2002).This review aims tosummarisesomeofthis workandtodiscuss the various 3 mechanisms andstructural features of FFAs that causes them toprevent bacterial 4 growthorsurvival.Furthermore,thepotential for commercial orbiomedical 5 exploitationofantibacterial FFAs is discussed. 6 7 2.Freefattyacids in antibacterial defence 8 9 Theantibacterial effects ofFFAs arefrequentlyobservedduringbioassay-guided 10 fractionationof extracts from avarietyoforganisms (HemsworthandKochan1978; 11 McGaw et al.2002; WilleandKydonieus 2003; Desbois et al.2009).The 12 antibacterial actions ofFFAs aretypicallybroadspectrum andofpotencies 13 comparabletonatural antimicrobial peptides (AMPs)invitro (Georgel et al.2005). 14 FFAs functionintheantimicrobial defences ofmanymulticellularorganisms, 15 includingmammals (HemsworthandKochan1978; Georgel et al.2005), plants 16 (Weber2002),molluscs (Benkendorff et al.2005), seaweeds (Küpperet al. 2006)and 17 amphibians (Rickrode1986).Whilst FFAs arenot as structurallydiverseas themore 18 widelystudiedAMPs theirimportanceinthehumaninnateimmunesystem is well 19 established,particularlyinthedefenceofskinand mucosal surfaces (Thormarand 20 Hilmarsson2007; Drake et al.2008). Indeed,FFAs arethemost active antimicrobial 21 agents present inhuman skinlipidsamples (WilleandKydonieus 2003).Thereis 10- 22 15µgof FFAs persquarecentimetreonhumanskin,ofwhichlauric acid (C12:0), 23 myristicacid(C14:0),palmiticacid(C16:0),sapienicacid(C16:1n-10) and cis-8- 24 octadecenoicacid(C18:1n-10)arethemost abundant (WilleandKydonieus 2003; 25 Takigawa et al.2005). FFAs areproducedonthe skinbylipolyticcleavageoflipids 4 1 secretedfrom thesebaceous glands (Shalita1974; Fluhret al.2001; Drake et al.2008) 2 andtheirpresenceonthe skinis sufficient tocontrol thebacterial microbiota 3 (Takigawaet al.2005; Georgel et al.2005; Kennyet al.2009).Themost important 4 antibacterial FFAinhumanskinexudateis C16:1n-10,along-chainmonounsaturated 5 FFA, andskindeficient inthis andotherFFAs tends tobemoresusceptible to 6 colonisationbytheopportunisticpathogen, Staphylococcus aureus (Takigawaet al 7 2005; Georgel et al.2005).However,iftheskinis treatedwithC16:1n-10protection 8 against colonisationis bolstered(Takigawa et al 2005; Georgel et al.2005).Besides 9 inhibitingorkillingbacteriadirectly, FFAs also makeconditions unfavourableforthe 10 growthofcertainbacteriaontheskinsurfacebymaintainingan acidicpH (Fluhret al. 11 2001; Takigawaet al.2005). FFAs mayfurtheraffect the expressionofbacterial 12 virulencefactors (Table 1),whichareimportant oressential forthe establishment of 13 aninfection,probablybydisruptingcell-to-cell signalling.Thus, saturated and 14 unsaturated FFAs canprevent initial bacterial adhesionandsubsequent biofilm 15 formation(Kuriharaet al 1999; Osawaet al 2001; Kankaanpää et al.2004; Wonet al 16 2007; Stenz et al.2008;Davies andMarques 2009).Moreover,theswarming 17 behaviouroftheurinarytract pathogen, Proteus mirabilis,isinhibitedbymedium- 18 andlong-chainsaturated FFAs (Liaw et al.2004). Theexpressionofcertain toxins, 19 haemolysins and enzymes conferringdrugresistanceareall down-regulated inthe 20 presenceofvarious saturatedandunsaturated FFAs (RuzinandNovick2000; Liaw et 21 al.2004; Clarkeet al 2007)while genes responsibleforironuptakeandextracellular 22 proteases canbesimilarlyreduced (Kennyet al 2009).Theabilityofvarious species 23 ofbacteriatoresist theactionofFFAs andsubvert theseepithelial defences certainly 24 explains, at least inpart,thesuccess of certainskinandmucosal pathogens (Clarkeet 25 al.2007; Drake et al.2008). 5 1 2 Perhaps less well known is therolethat FFAs playinthedefenceofsingle-celled 3 eukaryoticorganisms against bacterial threats. In microbial eukaryotes, suchas 4 microalgae, FAs arefoundprimarilyinthelipids that constitutethecell membranes 5 andenergystoragestructures but duringcellulardisintegrationlargequantities of 6 FFAs are releasedfrom cellularlipids byhost lipolyticenzymes (Jüttner2001; 7 Wichardet al.2007).Ahighproportionofthe FFAs that arefreedfrom thecell 8 membranes, includingthosearoundthephotosyntheticplastid,aremono- and 9 polyunsaturatedvarieties (Cutignanoet al.2006). TheseFFAs aretoxicto 10 invertebrate grazers, whichmayhave causedthe microalgal cell toloseits integrityin 11 thefirst instance(Jüttner2001; Wichardet al.2007).Therefore,thetoxicFFAs act to 12 reduce grazernumbers andultimatelygrazingpressure(Jüttner2001).At first it might 13 seem counter-intuitivethat this defencestrategyrequires thehost cell toundergo 14 mechanical damage and deathbut inevolutionaryterms it has benefits because 15 neighbouringmicroalgal cells, particularlyinbiofilms, wouldbeexpectedtobe 16 clones orverycloselyrelated.That thesesameFFAs arepotentlyantimicrobial means 17 similarprotectionmaybeaffordedtomicroalgae underthreat from pathogenic 18 bacteriaorviruses. Whilst theinitial host will not survive,FFAs released from a 19 microalgal cell that has beendamagedbyapathogenwill act onpathogens inthelocal 20 vicinityreducingtheirnumbers, therefore conferringsomeprotectionofits 21 neighbouringrelatives from onwardtransmission.This ‘populationlevel’defence 22 maybeconsideredmetabolicallyinexpensiveas theFFAs form essential cellular 23 components withthelipases alreadysynthesisedandpresent withinthecell tocarry 24 out vital processes. 25 6 1 3.Antibacterial activity and FFAstructure 2 3 Theantibacterial activityofeach FFAis influencedbyits structure andshape.This, in 4 turn,is afunctionofthelengthofthecarbonchainandthepresence,number,position 5 andorientationofdouble bonds (Figure2).Theliteraturecontains contrastingreports 6 concerningthe relationshipbetweena FFA’s structureandits antibacterial activitybut 7 somegeneral trends doemerge.The–OH groupofthecarboxyl groupseems tobe 8 important fortheantibacterial activityof FFAs as methylated FFAs (Figure 1)often 9 havereducedornoactivity(KodicekandWorden 1945; Zhenget al.2005). 10 11 Medium-andlong-chain unsaturated FFAs tendtobemoreactiveagainst Gram- 12 positivebacteriathan Gram-negatives (Kodicek andWorden1945; Galbraithet al. 13 1971). In general,unsaturatedFFAs tendtohave greaterpotencythansaturatedFFAs 14 withthesamelengthcarbonchain(Kabaraet al. 1972; GreenwayandDyke1979; 15 Feldlauferet al.1993; Zhenget al.2005; Desbois et al.2008).Withinseries of 16 monounsaturatedFFAs, themost potent usuallyhave14or16carbonatoms (Kabara 17 et al.1972; Feldlaufer et al.1993).Often adirect correlationexists betweenthe 18 numberofdoublebonds inanunsaturated FFA’s carbonchainandits antibacterial 19 efficacy(Saitoet al.1984; KnappandMelly1986; Feldlauferet al.1993). Thedouble 20 bonds innaturallyoccurringFFAs typicallyhave cis orientationandthesetendto 21 have greater antibacterial activitythan FFAs withdoublebonds in trans orientation 22 (Galbraithet al.1971; Kabara et al.1972; Feldlauferet al.1993),probablybecause 23 thestructures oftrans-bondedunsaturated FFAs resemblesaturatedFFAs (Figure2). 24 Whilst onlyafewstudies haveinvestigatedthe effect ofbondpositioninthecarbon 25 chainof FFAs thereis someevidencethat thepositionofdoublebonds can affect 7 1 potencyandspectrum of antibacterial action(Kabaraet al.1977; Feldlauferet al. 2 1993; WilleandKydonieus 2003). 3 4 Forsaturated FFAs, the most activehave10or12carbons inthechainand 5 antibacterial efficacytends todecrease,as the chainlength gets longerorshorter 6 (Galbraithet al.1971; Kabara et al.1972; Bergssonet al.2001; Sunet al.2003; Wille 7 andKydonieus 2003).However,others workers havereportedthat FFAs with14,16 8 or18carbon atoms canbemorepotent than FFAs with10or12carbons against 9 certainspecies ofbacteria(Willett andMorse1966; GalbraithandMiller1973a; 10 Milleret al.1977).Comparisons betweenstudies arecomplicatedbecausedifferent 11 authors haveusedavarietyofmethodological approaches todetermineand measure 12 potencywithconsiderablevariationintheinoculum andincubationconditions. 13 Moreover,the relative activityof FFAs maydependonwhether acompletegrowth 14 inhibitionassayoran IC determinationis used(Willett andMorse1966).Toenable 50 15 simplecomparison, ideallyall determinations ofminimum inhibitoryconcentration 16 (MIC)andminimum bactericidal concentration(MBC)for FFAs needto adhereto 17 standardiseddefinitions andprotocols suchas thosepublishedbytheClinical and 18 LaboratoryStandards Institute(CLSI)(CLSI,2000). 19 20 4.Mechanisms of antibacterial activity 21 22 It remains unclearexactlyhow FFAs exert theirantibacterial activities but theprime 23 target seems tobethebacterial cell membrane andthevarious essential processes that 24 occurwithinandat themembrane (Figure3).Someofthedetrimental effects on 25 bacterial cells canbeattributedtothedetergent properties of FFAs on account oftheir 8 1 amphipathicstructures. This allows them tointeract withthecell membranetocreate 2 transient orpermanent pores ofvariablesize.At higher concentrations detergents, 3 such as FFAs, cansolubilisethemembranetosuchanextent that various membrane 4 proteins orlargersections ofthelipidbilayer arereleased.Thekeymembrane-located 5 process affectedbyFFAs is theproductionofenergycausedbyinterferencewiththe 6 electrontransport chain andthedisruptionofoxidativephosphorylation(Sheuand 7 Freese1972; GalbraithandMiller1973b; Milleret al.1977; Boyaval et al.1995; 8 WojtczakandWięckowski 1999).Otherprocesses that maycontributetobacterial 9 growthinhibitionordeathinclude: cell lysis, inhibitionofenzymeactivity, 10 impairment ofnutrient uptakeandthe generationoftoxicperoxidationandauto- 11 oxidationproducts (Figure3).FFAs cankill abacterium outright (bactericidal action) 12 orinhibit its growth(bacteriostaticaction),whichis reversible andmeans that the 13 bacterium remains viable but cannot undergocell divisioninthepresenceoftheFFA 14 (KodicekandWorden1945; SheuandFreese1972).Assays usedtoinvestigatethe 15 antibacterial activities of FFAs donot always discriminatebetweenbactericidal and 16 bacteriostaticactions but it is reasonabletoassume that growthinhibitioncannot 17 continueindefinitelyand eventuallya growth-inhibitedbacterium will die. In 18 describingtheprocesses ofantibacterial activitybelow,littledistinctionismadeas to 19 whethertheoutcomeis bactericidal orbacteriostatic. 20 21 4.1Disruptionof electron transport chain 22 Theinnermembraneof Gram-positiveandGram-negativebacteriais animportant 23 siteforenergyproductionandit is wherethe electrontransport chainis located.The 24 various carriers inthe electrontransport chain,whichare embeddedwithin the 25 membrane,pass electrons from onecarriertoanotheruntil twoelectrons combine 9 1 withthefinal acceptor,usuallyoxygen, andtwoprotons toform water (Mitchell 2 1961).Duringthis process protons areexportedfrom theinsideofthecell whilst the 3 concentrationofelectrons inthecytosol increases. This generates aproton gradient 4 andmembranepotential whichare crucial forthe productionofATP bytheenzyme, 5 ATP synthase (Mitchell 1961).Medium-andlong-chainsaturatedandunsaturated 6 FFAs that gainaccess throughthe cell wall oroutermembraneofabacterium,can 7 perhaps bindtothecarriers oftheelectrontransport chaindirectlyorinsert intothe 8 innermembranecausingtheelectron carriers tomoveapart orbedisplaced from the 9 membraneentirely(GalbraithandMiller1973b; Peters andChin2003). In each case 10 theabilityofthe electron transport chaintotransferelectrons is impairedso that the 11 protongradient andmembranepotential arereduced.This results inareductionin 12 ATP productionandthe bacterium becomes deprivedofanessential sourceofenergy. 13 Bothunsaturated andsaturatedFFAs couldtranslocateorbindthe electron carriers 14 directlybut completedisplacement from themembraneis likelyachievedby 15 unsaturated FFAs only,probablybecausetheyincreasemembrane fluidity(Greenway 16 andDyke1979; Chamberlainet al.1991; Stulniget al.2001).This is becausethecis- 17 bonds inunsaturatedFAs causeakinkinthe carbonchain(Figure2)that prevents 18 theseFAs from packingtightlyinthemembrane. Thus, whenmedium-and long- 19 chainunsaturatedFFAs areincorporatedintothe membranethereis anincreasein 20 fluiditythat candevelop intomembraneinstability(Chamberlainet al.1991; Stulnig 21 et al.2001).Conversely, medium-andlong-chain saturated FFAs (and trans-bonded 22 unsaturated FFAs)that lackakinkedstructurecan bepackedmoretightly(Figure2). 23 Hence,medium-andlong-chainsaturatedFFAs canreducemembranefluidityand 24 disrupt electrontransport perhaps byrestrictingthemovement ofcarriers withinthe 25 membrane(Sheu andFreese1972).Moreover, as explainedabove,solubilisationof 10

Description:
direct lysis of bacterial cells. Their broad spectrum of activity, non-specific mode of. 11 action and safety makes them attractive as antibacterial agents for various
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.