ebook img

Antibacterial Efficacy of Silver Nanoparticles on Endometritis Caused by Prevotella ... PDF

20 Pages·2017·7.78 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Antibacterial Efficacy of Silver Nanoparticles on Endometritis Caused by Prevotella ...

International Journal o f Molecular Sciences Article Antibacterial Efficacy of Silver Nanoparticles on Endometritis Caused by Prevotella melaninogenica and Arcanobacterum pyogenes in Dairy Cattle SangiliyandiGurunathan*,Yun-JungChoiandJin-HoiKim* ID DepartmentofStemCellandRegenerativeBiotechnology,KonkukUniversity,Seoul05029,Korea; [email protected] * Correspondence:[email protected](S.G.);[email protected](J.-H.K.); Tel.:+82-02-450-0581(S.G.);+82-02-450-3687(J.-H.K.) (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:15March2018;Accepted:11April2018;Published:16April2018 Abstract: Bovine postpartum diseases remain one of the most significant and highly prevalent illnesseswithnegativeeffectsontheproductivity,survival,andwelfareofdairycows. Antibiotics are generally considered beneficial in the treatment of endometritis; however, frequent usage of eachantibioticdrugisreasonfortheemergenceofmultidrugresistance(MDR)ofthepathogenic microorganisms,representingamajorimpedimentforthesuccessfuldiagnosisandmanagementof infectiousdiseasesinbothhumansandanimals. Wesynthesizedsilvernanoparticles(AgNPs)with anaveragesizeof10nmusingthenovelbiomoleculeapigeninasareducingandstabilizingagent, andevaluatedtheefficacyoftheAgNPsontheMDRpathogenicbacteriaPrevotellamelaninogenica andArcanobacteriumpyogenesisolatedfromuterinesecretionsamples. AgNPsinhibitedcellviability andbiofilmformationinadose-andtime-dependentmanner. Moreover,themetabolictoxicityof theAgNPswasassessedthroughvariouscellularassays. Themajortoxiceffectofcelldeathwas causedbyanincreaseinoxidativestress,asevidencedbytheincreasedgenerationofreactiveoxygen species(ROS),malondialdehyde,proteincarbonylcontent,andnitricoxide. TheformationofROSis consideredtobetheprimarymechanismofbacterialdeath. Therefore,thebiomolecule-mediated synthesis of AgNPs shows potential as an alternative antimicrobial therapy for bovine metritis andendometritis. Keywords: antimicrobialtherapy;endometritis;multipledrug-resistantbacteria;silvernanoparticles; oxidativestress 1. Introduction Metritisandendometritishaveasubstantialinfluenceonbovinehealthandproductivity,with significant economic impacts to the dairy industry. Several studies have provided evidence that uterineinfectionsareduetobacterialpathogenesisintheuterus[1–7]. Theuterineinfectionscaused by pathogenic bacteria lead to inflammation and infertility [3]. Uterine disease has unique and characteristicfeatures,includingalowerconceptionrate,alongwithincreasedintervalsfromcalving tothefirstserviceorconception[8]. Endometritisisaninflammatorydisease, whichisassociated withdelayeduterineinvolutionandpoorreproductiveperformance[9]. Endometritisisfrequently treatedbyintrauterineinfusionofantibiotics[10]. However,theoverloadingandindiscriminateuseof antibioticsforthetreatmentofuterineinfectionsoranyothermicrobial-relatedinfectionshasledto theemergenceofantibiotic-resistantstrains. Indeed,theoverwhelmingusageofantibioticshasled tomultidrugresistance(MDR),prolongedinfectiontreatment,andincreasedmortalityrisk[11,12]. Furthermore,thisincreasedriskofmicrobialresistanceresultsinlesseffectiveconventionaltreatments. Int.J.Mol.Sci.2018,19,1210;doi:10.3390/ijms19041210 www.mdpi.com/journal/ijms Int.J.Mol.Sci.2018,19,1210 2of20 Therefore,itisnecessarytoovercomethelimitationsoftheconventionalcontinuoususageofantibiotics inthedairyindustryandagriculture. The application of nanoparticles has attracted huge interest in several fields, including biotechnology, biomedical sciences, and veterinary medicine. Several studies have explored the possibility of high-level nanotherapy in humans; however, the applications of nanotechnology in veterinary medicine have not reached the same level, and remain in a relatively innovative stage. Veryrecently,nanoparticleshavebeenusedasnutraceuticals,biocides,diagnostictools,reproductive aids,andindrugandnutrientdeliveryinveterinarymedicine[13],andshowpotentialtoserveas alternativestoconventionalantimicrobialagents[11]. Thus,itisnecessarytousenanotechnologyto increasethesafetyofdomesticanimals,growth,production,andeliminatevariousdiseases,soasto raisetheincomeoffarmers. Recently,theproductionoffoodsinthelivestockindustryusingdomestic animalshasheavilyreliedontheuseofantibioticsasgrowthpromoters,leadingtogrowingconcern overthespreadofmicrobialantibioticresistance. Theantibioticresistanceinbacterialeads,notonly toaburdenonpublichealth,butalsoextendstotheriskoftherapyfailure,alongwithsubsequent economicimpacts. Furthermore,themostsevereconsequenceofantibioticresistanceisthethreatof importantendemicdiseasesinanimalskeptforfoodproduction[14]. Therefore,thedevelopmentof innovativeandcost-effectivetherapeuticstrategiesisingreatdemandforthetreatmentofveterinary animals. Inthisregard,nanoparticlesappeartobesuitableandalternativeantimicrobialagentsto overcomethealarmingrateofthespreadofantibioticsresistance,towardimproveddetectionand killingofpathogenicbacteria.Recently,severalstudieshavedemonstratedplantandmicrobialextracts, essentialoils,puresecondarymetabolites,andnewlysynthesizedmoleculesaspotentialantimicrobial agents[15–17]. Nanoparticle-basedtherapyisapromisingapproachtoimprovethebalancebetweentheefficacy andtoxicityofsystemictherapeuticintervention. Amongthevariousmetalnanoparticlesavailable, silvernanoparticles(AgNPs)haveattractedtremendousinterestinbiomedicalapplications,including forantimicrobialtherapy,wounddressings,diagnosisandtreatment,andcontraceptivedevices[18]. Moreover,AgNPshavebeenusedassensors,imaging,drugdelivery,andfortissueengineeringin veterinarymedicineandanimalproduction[19]. Thus,AgNPsrepresentaverypromisingtherapeutic agentwithuniquepotentialagainstvariousmicrobialpathogens,withaparticularlyhighcapacityto effectivelyactonantibiotic-resistantbacteria[11,20].Todate,AgNPshavebeenwidelyusedaseffective antimicrobial agents against various bacteria, fungi, and viruses [21,22]. AgNPs can potentially inhibitmultipledrug-resistantstrainsofStaphylococcusaureusandPseudomonasaeruginosathatcause mastitis[20],andhaveproventobeeffectiveagainstvariousantibiotic-resistantbacteria[12,21,22].The mechanismsofinhibitoryactionofAgNPsareattributedtotheirhighreactivitywithbacterialproteins, sugars,andDNA,resultinginstructuralalterationstothecellwallandthemembrane,ultimately leadingtoinhibitionandcelldeath[23]. Therefore,developingatherapeuticstrategybasedonAgNPstoenhancetheantibacterialeffect representsanovelandpromisingapproach[24],particularlyintheeraofmultidrugresistance. Hence, in the present study, we synthesized and characterized AgNPs using the biomolecule apigenin as a reducing and stabilizing agent. Moreover, we isolated and characterized predominant isolates fromclinicalendometritissamples,andevaluatedtheeffectofourdevelopedbiomolecule-assisted AgNPs against multiple drug-resistant Gram-negative and Gram-positive bacteria, including PrevotellamelaninogenicaandArcanobacteriumpyogenes. Finally,weevaluatedthemechanismoftoxicity ofAgNPsinP.melaninogenicaandA.pyogenes. 2. ResultsandDiscussion 2.1. SynthesisandCharacterizationofAgNPsUsingApigenin ApigeninwasreactedwithAgNO atpH8.0and40◦Cfor6h,andayellowbrownproductwas 3 observed,indicatingthatapigenincouldeffectivelyreduceAgNO intoAgNPs(Figure1). 3 Int.J.Mol.Sci.2018,19,1210 3of20 Figure1.Schematicdiagramofasimpleandenvironmentallyfriendlyapproachforthesynthesisof silvernanoparticles(AgNPs)bythereductionofsilvernitratetoelementalsilverusingapigeninasa reducingagent. Theultraviolet–visiblespectrawereusedtodeterminethestructureoftheAgNPsbasedontheir freesurfaceelectronplasmonoscillations. Theshiftingwavelength,likeblueandred,reflectthesize and shape of the AgNPs [25,26]. The absorption of AgNPs strongly depends on the particle size, dielectricmedium,andchemicalsurroundings. Smallsphericalnanoparticles(<20nm)exhibitasingle surfaceplasmonband[25,26]. Thesynthesizedparticlesexhibitedmaximumabsorptionat407nm, whichrepresentsthecharacteristicpeakforAgNPs(Figure2A).Inlinewiththesefindings,several studieshavedemonstratedthatflavonoidsandphenoliccompounds,suchasquercetinandcaffeic acid,canreduceAg+quickly,andcanacteffectivelyasbothreducingandstabilizingagents[23,27,28]. TheX-raydiffractionpatternoftheAgNPssynthesizedbyapigeninisshowninFigure2B.Several strongBraggreflectionswereobserved,correspondingtothe(111),(200),and(220)reflectionsofface centredcubic(fcc)silver[29]. Thehigh-intensitypeakofAg(111)wasobservedinthesample,which indicatedthecrystallinenatureoftheparticles. ThediffractionpeaksofthesynthesizedAgNPspeaks wereverysharp,andclearlysuggestedthattheAgNPssynthesizedusingapigeninarecrystallinein nature[30]. Thesynthesizedparticleswerecrystalline,andthesizewasdeterminedtobe10nmusing theDebye–Scherrerformula. AccordingtotheDebye–Scherrerformula,thepeakposition(111)reflects thatthedimensionsoftheparticlesare10nm[31]. Fourier-transforminfrared(FTIR)measurementwascarriedouttoconfirmtheinvolvementof variousfunctionalgroupsforreductionofAg+inapigenin,resultinginthecapping/stabilizationof AgNPs. TheFTIRspectrumshowedabsorptionbandsat3422,2922,1742,and1042cm−1,indicating the presence of a capping agent within the nanoparticles (Figure 2C). The band at 3422 cm−1 in the spectrum corresponds to the O–H stretching vibration indicating the presence of alcohol and phenol[28]. Bandsatthe2922cm−1regionwereobserved,arisingfromC–Hstretchingofaromatic compound. Thebandat1743cm−1 wasassignedtoC–Cstretching. Severalstudieshavereported that functional groups such as alcohol, phenol, and amines play a role in the stability/capping of AgNPs [32]. The bands at 1042 cm−1 were assigned to N–H and C–N stretching vibrations of the proteins,respectively[33]. Collectively,theFTIRdataconfirmedthatvariousfunctionalgroupsfound inapigeninfacilitatethecappingandstabilizationofAgNPs. Next,dynamiclightscattering(DLS)wasperformedtodeterminethesizedistributionofcolloidal AgNPsintherangeof1–100nm. TheDLSmethodiswidelyusedinstudiesdealingwiththesynthesis, functionalization,andbiomedicaluseofnanoparticlesthatexhibitplasmonresonance,primarilywith regardtogoldandsilvernanoparticles[34].Thesynthesizedparticlesshowedanaveragesizeof20nm, whichisthehydrodynamicsizeofanentirecomplex,ratherthanthegeometricalsizeofaparticle itself(Figure2D).Ingeneral,thedispersionoftheDLSparticlenumbersizedistributionsnoticeably exceedthesizedispersionobtainedfromtransmissionelectronmicroscopy(TEM)images[34]. We further confirmed the particle size by TEM, which is a more reliable method for determining the size and shape of particles. The TEM images revealed that most of the particles are significantly Int.J.Mol.Sci.2018,19,1210 4of20 sphericalinshapewithasizeof10nm(Figure2E).ThehistogramofTEMimagesdeterminedfrom thecalculationofseveralparticlesdemonstratedthattheTEMdataontheparticlenumberandsize wereapparentlyaccurate,exhibitingthepresenceofanoticeablenumberofparticleswithdiameters of10nm(Figure2F).Thus,thedataderivedfromDLSandTEMrevealedthatthemostpredominant sizeoftheparticleswas10nm. Figure 2. Synthesis and characterization of silver nanoparticles (AgNPs) using apigenin. (A) Absorption spectrum of AgNPs synthesized using apigenin. (B) X-ray diffraction spectra of AgNPs. (C)Fourier-transforminfraredspectraofAgNPs. (D)SizedistributionofAgNPsbasedon dynamiclightscattering.(E)Transmissionelectronmicroscopy(TEM)imagesofAgNPs.(F)Histogram displayingpredominantsizeofAgNPs. 2.2. Isolation,Identification,andCharacterizationofBacteriafromEndometritisSamples Bacterialisolatesobtainedfromendometritissampleswerecultured,identified,andcharacterized asdescribedintheMaterialandMethods. Among40swabs,20werefoundtobebacteriologically positive by characterization of bacteria both phenotypically and biochemically [35,36]. The most frequentlyisolatedbacteriumwasPrevotellamelaninogenica(30%),followedbyArcanobacteriumpyogenes (25%),Escherichiacoli(20%),Streptococcusspp. (15%),Staphylococcusspp. (10%),Campylobacterfetus (8%),Klebsiellaspp. (5%),P.aeruginosa(3%),andClostridiumspp. (1%). Similarly,Udhayaveletal.[37] reportedthatoutof30samplesevaluated,25exhibiteddifferentstrainsofbacteria,includingE.coli (36.66%),Klebsiellaspp. (30%),Proteusspp. (13.33%),P.aeruginosa(6.66%),andClostridiumspp. (3.33%). Int.J.Mol.Sci.2018,19,1210 5of20 Sharmaetal.[36]reportedthatthemostfrequentlyidentifiedbacteriaisolatesfromuterinedischarge samplesincludedE.coli(32.26%),Bacilluscereus(22.58%),S.aureus(16.13%),andmixedculturesof B.cereusandS.aureus(9.68%),andE.coliandProteusvulgaris(3.23%). Altogether,ourdataagreewith previousfindingsandindicatethatP.melaninogenicaandA.pyogenesrepresentthemostdominant bacterialisolatesfoundinendometritisclinicalsamplesfromthedistrictofCoimbatore,TamilNadu. 2.3. IsolationofMDR TheantibioticsusceptibilitytestwasperformedaccordingtoClinicalandLaboratoryStandards Institute(CLSI)procedures. Weselectedmoreprofoundisolatesforfurtherantibioticsusceptibility testing. Amongtheseveralisolatestested,MDRisolatesweredefinedasthoseshowingresistance or intermediate susceptibility to more than three antimicrobials. The result of antimicrobial tests showedthatalloftheisolatesofP.melaninogenicawereresistanttoampicillin(90.0%),cefalotin(79.0%), sulfamethoxazole/trimethoprim (65.2%), ciprofloxacin (54.6%), oxolinic acid (45.4%), gentamicin (43.8%), chloramphenicol(40.0%), cefotaxime(23.8%), ceftazidime(18.8%), amoxicillin/clavulanic acid (10.0%), and aztreonam (5.0%). The A. pyogenes isolates exhibited resistance to all of the antimicrobial agents tested, with particularly high levels of resistance found to chloramphenicol (100%),amoxicillin(86.9%),ampicillin(76.1%),florfenicol(69.7%),penicillin(66.1%),oxytetracycline (64.2%), and tetracycline (50%). Thus, the results from antibiotic susceptibility tests showed that P. melaninogenica and A. pyogenes were resistant to at least three of the antimicrobial agents tested, indicatingthattheseareMDRisolates. FurtherexperimentswerecarriedoutinP.melaninogenicaand A.pyogenestoevaluatetheimpactofAgNPsonMDRbacteriainendometritis. 2.4. MinimumInhibitoryConcentration(MIC)andMinimumBactericidalConcentration(MBC)ofAgNPs The MIC is the lowest concentration of AgNPs that will inhibit the visible growth of a microorganismafterovernightincubation. TheMICwasdeterminedinbrainheartinfusion(BHI) brothusingserialtwo-folddilutionsofAgNPsinconcentrationsrangingfrom0.1µg/mLto1.0µg/mL, withanadjustedbacterialconcentrationof1×108 colonyformingunits(cfu)/mL(0.5McFarland’s standard). MediumwithoutAgNPswasusedasacontrol. Theresultsfromthecellviabilityassay suggestedthatAgNPsinhibitbacteriainadose-dependentmanner,andtheMICvaluesofAgNPs against P. melaninogenica and A. pyogenes were found to be 0.8 and 1.0 µg/mL, respectively. The MBC is the lowest concentration of AgNPs required to kill a particular bacterial strain. The MBC values of AgNPs against P. melaninogenica and A. pyogenes were found to be 1.0 and 1.5 µg/mL, respectively. AstheconcentrationofAgNPsincreasedtotheleveloftheMICoftherespectivestrains, no growth was observed. The bactericidal effect of the AgNPs was dependent on several factors, suchastheconcentrationofAgNPs,size,shape,physicochemicalproperties,andtheinitialbacterial concentration. In general, AgNPs showed better antimicrobial activity against the Gram-negative bacteriumP.melaninogenicawhencomparedtothatagainsttheGram-positivebacteriumA.pyogenes. Our findings are consistent with previous reports suggesting that Gram-positive bacteria are less susceptibletotheantimicrobialactivityofsilver[24,38,39]. 2.5. Dose-andTime-DependentEffectofAgNPsonCellViabilityofP.melaninogenicaandA.pyogenes To further promote the use of AgNPs in nanomedicine to overcome MDR in Gram-positive andGram-negativebacteria,thedose-dependenteffectofAgNPswasassessedinP.melaninogenica andA.pyogenestodeterminetheirrelativesusceptibilitiestoAgNPs,andtheextentofbactericidal activity. Figure3Ashowsthepotentialtoxiceffectofapigenin-assistedAgNPsonP.melaninogenica andA.pyogenes. Thebacterialstrainsweretreatedwithvariousconcentrations(0.2–1µg/mL)ofthe 10nmAgNPs. Theresultsshowedadosedependenteffectoncellviabilitycomparedtothenegative control. Furthermore, cell viability decreased with increasing AgNPs concentrations. No visible growth was observed at their respective MIC values (0.8 and 1.0 µg/mL) in P. melaninogenica and A.pyogenes. InthecaseofP.melaninogenica,theintroductionof0.8µg/mLofAgNPsreducedbacterial Int.J.Mol.Sci.2018,19,1210 6of20 viabilitybyapproximately95%,ascomparedtothatofthecontrolsample. Furthermore,increasingthe concentrationofAgNPsto1µg/mLinhibitedbacterialgrowthdramaticallywithnovisiblegrowth observed,whereasintroductionofasimilarconcentrationofAgNPs(i.e.,0.75µg/mL)reducedcell viabilitybyapproximately75%ascomparedtothecontrolsample.However,thehigherconcentrations of0.75and1.0µg/mLrapidlyinhibitedthegrowthofbacteria(Figure3A,B). Figure3. AntibacterialactivityofAgNPsonP.melaninogenicaandA.pyogenes. (A)P.melaninogenica andA.pyogeneswereincubatedwithvariousconcentrationsofAgNPs. Bacterialcellsurvivalwas determined at 24 h based on a CFU count assay. (B) P. melaninogenica and A. pyogenes cells were incubatedwith0.8and1.0µg/mLofAgNPs,respectively,for24h. WepreviouslyreportedthattheantibacterialactivityofAgNPswithanaveragesizeof10nm producedfromthecellularextractofBacilluscereusrequireda10-foldhigherconcentrationtoexhibit asimilarantibacterialeffectagainstEscherichiafergusoniiandStreptococcusmutans, whichisdueto thetypeofreducingagentsandtypeofbacteria[40]. Forinstance, AgNPscoatedwithlipoicacid andpolyethyleneglycolexhibitedlowercytotoxicityascomparedwithAgNPscoatedwithtannicin agingivalfibroblastmodel[41]. Strydometal.[42]suggestthatmodificationofsilversulfadiazine usingdendrimersdisplayedpotentialantibacterialactivity. TheantimicrobialactivityofAgNPsalso dependsonthesurfacearea,whicheffectivelyinteractswithacertainmicroorganism. Severalstudies havesubstantiatedthatauniquefeatureoflargesurfaceareaofnanoparticleshavethesignificant possibilityinteractwithmicrobes[21,43]. 2.6. Dose-andTime-DependentEffectofAgNPsontheBiofilmActivityofP.melaninogenicaandA.pyogenes Toexaminetheanti-biofilmactivityofAgNPsonP.melaninogenicaandA.pyogenes,thebacteria weregrownintissuecultureplatesinthepresenceandabsenceofAgNPsfor24h. Bothbacterial strainsweregrownfor24hinmicrotiterplatewellsandthentreatedwith0.1–1.0µg/mLAgNPs (Figure 4A). AgNPs decreased the biofilm activity of P. melaninogenica and A. pyogenes by more than 95% and 90%, respectively. Our findings are consistent with previous reports in various Gram-negativeandGram-positivebacteria. Interestingly,AgNPsinhibitedbiofilmformationfaster within 20 h in P. melaninogenica than in A. pyogenes, which is likely due to the structural nature of thecellwallandmembrane(Figure4B).Bacteriabiofilmsareresistanttoantibiotics,disinfectants, and components of the innate and adaptive inflammatory responses [26,44]. AgNPs potentially inhibit cell viability and biofilm formation against P. aeruginosa and Staphylococcus epidermidis by inhibitingproductionofexopolysaccharides,whichareessentialforbiofilmformation[25,45]. Plant extract-mediatedsynthesisofAgNPsefficientlyinhibitedbiofilmformationinHelicobacterpyloriand Helicobacter felis [38]. Martinez-Gutierrez et al. [46] demonstrated the quorum-quenching activity of AgNPs against various Gram-negative and Gram-positive bacteria. Taken together, our results Int.J.Mol.Sci.2018,19,1210 7of20 suggestthattheapigenin-mediatedsynthesisofAgNPscouldbeapotentialandviablealternative anti-biofilmagent. Figure4.Anti-biofilmactivityofAgNPsonP.melaninogenicaandA.pyogenes.(A)P.melaninogenicaand A.pyogeneswereincubatedwithvariousconcentrationsofAgNPs.Anti-biofilmactivitywasmeasured using96-wellflat-bottompolystyrenetissuecultureplates.(B)P.melaninogenicaandA.pyogenescells wereincubatedwith0.8and1.0µg/mLofAgNPsrespectivelyfor24h. 2.7. AgNPsInduceMetabolicToxicityinP.melaninogenicaandA.pyogenes Perturbationsofmetabolicactivityareapossiblestrategytoimpacttheefficacyofantimicrobial therapy. Lactateisaveryimportantendproductofcarbohydratessynthesisinbacteria. Toevaluate theeffectofAgNPsonoxidativestress-inducedmetabolicchanges,alactatedehydrogenase(LDH) assaywasperformedincellsexposedtoAgNPsfor12h[47]. AsshowninFigure5A,thelevelofLDH inP.melaninogenicaandA.pyogeneswasfour-foldhigherthanthatofthecontrolgroup. Althoughboth bacteriaexhibitedsimilarlevelsofLDH,thatoftheGram-positivebacteriumA.pyogeneswasslightly lowerthanthatoftheGram-negativebacteriumP.melaninogenica,whichisduetothearchitectureof thecellwallandmembrane. Ourresultsclearlydemonstratedthattheactivitiesofrespiratorychain dehydrogenases(RCD)inbothP.melaninogenicaandA.pyogeneswereinhibitedbyAgNPs,whichis inlinewithpreviousstudiesdemonstratingthemechanismofantimicrobialaction[23,48–51]. One possiblemechanismunderlyingthismetabolicdisturbanceistheentryofAgNPsintothecellstoRCD andalterdissolvedoxygenlevelsinculture[45]. AnotherpotentialmechanismisthattheAg+ofthe AgNPsinteractwiththethiol(–SH)groupofcysteine[51]. Usinginsilicogenome-scalemetabolicmodels,Brynildsenetal.[52]clearlydemonstratedthatan increaseintheintracellularproductionofendogenousreactiveoxygenspecies(ROS)couldagitatethe productionandusageofATP.ATPisanenergy-richmoleculethatgovernsvariouscellularfunctions suchassurvival,growth,andreplication,andactsasamajorsignalingmolecule[53]. Inlinewith that prediction, we sought to determine the level of ATP in AgNPs-treated P. melaninogenica and A.pyogenes. ThelevelofATPinAgNPs-treatedsampleswassignificantlylowerbyuptofive-fold compared to that of the control samples (Figure 5B), indicating that AgNP-induced cellular stress significantlyaffectsATPsynthesisinP.melaninogenicaandA.pyogenes,whichisacriticalfactorfor bacterialgrowthandreproduction[25]. AgNPsdirectlyaffectFOF1-ATPaseactivityandH+-coupled transport[54]. FOF1-ATPaseplaysacrucialroleincellmetabolicprocesses,includingbacterialgrowth, metabolicregulation,andcellsurvival. Therefore,thedatafromthepresentstudyandtotalbodyof previousworksuggestthatmetabolicactivitycontributingtoATPproductionisanintegralpartofthe bactericidaltoxicityofAgNPs. Int.J.Mol.Sci.2018,19,1210 8of20 Figure5.MetaboliccytotoxicityofAgNPsonP.melaninogenicaandA.pyogenes.P.melaninogenicaand A.pyogenescellswereincubatedwith0.8and1.0µg/mLofAgNPsrespectivelyfor12h, andthe (A)LDHactivity,(B)ATPlevels,(C)proteinlevels,and(D)sugarlevelsweredetermined. To validate the effect of AgNPs on the weakening of metabolic activity, we further explored thelevelsofproteinsandsugars. WepreviouslydemonstratedthatAgNPsarepotentialagentsto increaseproteinleakagebyalteringthemembranepermeabilityinbacteria[40]. P.melaninogenicaand A.pyogenesweretreatedwith0.8and1.0µg/mLofAgNPs,respectively,andtheamountofprotein releasedinthesuspensionwasestimatedusingtheBradfordassay. TheresultsshowedthatAgNPs remarkablyincreasedtheleakageofproteinscomparedtothecontrolgroup(Figure5C).However,the leakagefromP.melaninogenicacellstreatedwithAgNPswassignificantlyhigher(60µg/mg)thanthatof A.pyogenes(40µg/mg),suggestingthattheantibacterialsensitivityofGram-negativebacteriaismuch strongerthanthatofGram-positivebacteria. Similarly,Kimetal.[51]andGurunathanetal.[24]found thattheleakageofproteinswassignificantlyhigherinGram-negativebacteriathaninGram-positive bacteria with 60 and 50 µg of reducing sugars leaking from P. melaninogenica and A. pyogenes treatedwithAgNPs,respectively(Figure5D).ApreviousstudyshowedthatafterE.colicellswere exposedtoAgNPs(10µg/mL)for2h,upto102.5µgperbacterialdryweightof1mgofreducing sugarsleakedoutofthecells[49]. Thisdifferentialleakageamountcouldbeduetothestructural features of the cell wall of A. pyogenes, which is essential for protecting the bacteria various toxic agents[23,24,51]. TheimpairmentofthefunctionofLDHcouldleadtoincreasedleakageofproteins and other macromolecules. Altogether, all of the available evidence from various bacteria clearly indicate that AgNPs could alter membrane permeability and eventually damage the structure of thebacteriacellmembranebyosmoticimbalance,resultingintheleakageofmacromoleculessuch as proteins and reducing sugars, leading to the death of bacteria. This mechanism highlights the significantpotentialoftheantibacterialactivityofAgNPs. 2.8. AgNPsInduceCellularToxicityandOxidativeStressinP.melaninogenicaandA.pyogenes TounderstandtheeffectsofAgNPsoncellviabilityandmetabolictoxicity,wefurtherexamined how the influence of AgNPs onbacterial metabolism could offerinsight into theirmechanisms of action,leadingtoenhancedtherapeuticapproachesforbothhumansandanimals. Majorclassesof bactericidalantibioticsinducecelldeathinbacteriabystimulatingtheproductionofhighlydeleterious hydroxylradicals[55]. AsimilarmechanismhasbeendemonstratedforAgNP-inducedcelldeathin Int.J.Mol.Sci.2018,19,1210 9of20 avarietyofbacteria,includingthemostrepresentativeGram-negativeandGram-positivebacteria, such as P. aeruginosa, Shigella flexneri, S. aureus, and Streptococcus pneumonia [24]. However, to our knowledge, nostudyhasdemonstratedthemechanismofAgNPsontheoxidativestress-induced celldeathinP.melaninogenicaandA.pyogenes. ThebacteriaweretreatedwiththerespectiveMICof theAgNP,andROSgenerationwasmeasuredusingthe2(cid:48),7(cid:48)-dichlorofluorescindiacetate(DCFDA) assay. TheresultsindicatedthatAgNPsinducedtwo-foldhigherlevelsofROSinP.melaninogenica andA.pyogenescomparedtothecontrol(Figure6A).AnincreasedlevelofROSleadstoanimbalance betweenpro-oxidantsandantioxidants,whichcausesfailureinnormalphysiologicalredox-regulated functions[55]. Indeed,ROScanbeinducedbyvariousexternalsources,suchaschemicals,antibiotics, nanoparticles,andcoldandheatstress,consequentlyleadingtolossofcellviability[33,40,55–57]. Figure6.EffectofAgNPsoncellulartoxicityinP.melaninogenicaandA.pyogenes.(A)P.melaninogenica and A. pyogenes cells were treated with 0.8 and 1.0 µg/mL of AgNPs respectively for 12 h. ROS generationwasmeasuredusingDCFDA.(B)MDAlevelsweremeasuredusingaTBARSassay.(C)The relativeproteincarbonylcontentwasevaluatedcomparedtothetotalproteincontent.(D)Thequantity ofNOwasquantifiedspectrophotometricallyusingtheGriessreagent. Next, we examined the level of malondialdehyde (MDA), which is a well-known marker in eukaryoticcellsforoxidativestress,asitisgeneratedfromlipidsbystimulationofoxidativestress. ToascertaintheMDAlevelsinAgNP-treatedbacteria,weusedthiobarbituricacid. Treatmentwith AgNPsledtoincreasedlevelsofMDAbyseveralfoldinP.melaninogenica,comparedtothecontrol group(Figure6B);similarincreaseswerealsoobservedinA.pyogenes. Thesefindingssuggestthat lipidoxidationinducedMDAproductioninbacteria. Belenkyetal.[58]foundthatantibiotic-treated E.colicellsexhibitedcytotoxicchangesthatwereindicativeofoxidativestress,includinghigherlevels of protein carbonylation. The carbonylation of proteins could lead to protein dysfunction [55–57]. Therefore,wehypothesizedthatAgNPscouldtargetthewell-knownoxidativestressbiomarkerof carbonylation. Tomeasurethecarbonylcontent,P.melaninogenicaandA.pyogenesweretreatedwith AgNPs for 12 h, which led to significant increases in protein carbonylation, up to 12 times above thatofthecontrol(Figure6C).Thesefindingsareconsistentwiththeeffectsofbacteriatreatedwith Ampicillin(Amp),kanamycin(Kan),orNor[58]. Nitricoxide(NO)producedbybacterialnitricoxide synthase(NOS)actsasacytoprotectiveagentagainstoxidativestressinS.aureus,Bacillusanthracis,and Bacillussubtilis[58]. ToexplorewhetherAgNPsinducetheproductionofNOorinhibit,weexamined Int.J.Mol.Sci.2018,19,1210 10of20 theeffectofNOproductioninAgNP-treatedP.melaninogenicaandA.pyogenes. AgNPsinducedthe productionofNOinbothP.melaninogenicaandA.pyogenes(Figure6D).Interestingly,NOproduction wassignificantlyhigherintheGram-negativebacteriumthanintheGram-positivebacterium,which indicatesthatP.melaninogenicamaybemoreimmunetothestresscreatedbyAgNPs. Previousstudies demonstrated that the oxidative stress generated by AgNPs was associated with reduction in the levelsofreactivenitrogenintermediatesinbacteriatreatedwithdifferentantibiotics[59]. Collectively, thepresentstudysuggeststhatAgNPsinteractwithbacterialcellsviathecellwallandmembrane, resulting in the production of free radicals to, in turn, induce oxidative stress and cause various dysfunctionstomacromolecules,includinglipids,proteins,andnucleicacids[22,60–63]. 2.9. EffectofAgNPsontheExpressionofAntioxidativeMarkersinP.melaninogenicaandA.pyogenes The antioxidative stress response counteracts the effect of pro-oxidants to maintain normal physiological redox-regulated functions. Masip et al. [64] demonstrated that a depressed ratio of reducedglutathione(GSH)tooxidizedglutathione(GSSG)isconsideredanindicatorofoxidative stress. Thus,thelevelsofGSHandGSSGweredeterminedinP.melaninogenicaandA.pyogenestreated withAgNPsfor12h,demonstratingdecreasedlevelsofGSHcoupledwithhighlysignificantdecreases inGSSG(Figure7A,B).ThisdecreasedlevelofGSHintheAgNP-treatedcellssuggestsaninabilityto protectthecellsfromoxidativestress,sothatthecellsweresubjectedtocelldeathduetooverwhelming oxidativestress.Banerjeeetal.[65]observedincreasedlevelsofoxidativestressanddecreasedlevelsof antioxidantsinE.colicellstreatedwithaniodinatedchitosan–silvernanoparticlecomposite. Similarly, E.coliandP.aeruginosatreatedwithAgNPsexhibitedasimilartrend[20,63]. Together,thesechanges inmetabolitelevelssuggestthatdecreasedGSHisunabletocompensatefortheongoingturnoverand consumptionbypro-oxidantactivities. Collectively,thesedatasuggestthatthecomplexmetabolic changesofAgNPsareinducedbyoxidativestress. Figure7.EffectofAgNPsonantioxidants.P.melaninogenicaandA.pyogenescellsweretreatedwith0.8 and1.0µg/mLofAgNPsrespectivelyfor12h,andthe(A)GSHlevels,(B)GSSGlevels,(C)superoxide dismutase(SOD)activity,and(D)catalase(CAT)activityweremeasuredasdescribedintheMaterials andMethods. Silverionsareresponsiblefortheformationoffreeradicals.Therefore,wenextexaminedenzymes withantioxidanteffectssuchassuperoxidedismutase(SOD)andcatalaseinP.melaninogenicaand A.pyogenestreatedwith0.8and1.0µg/mLofAgNPsfor12h.AgNPsdecreasedthelevelofSODbyup

Description:
and evaluated the efficacy of the AgNPs on the MDR pathogenic bacteria Prevotella by pathogenic bacteria lead to inflammation and infertility [3].
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.