International Journal o f Molecular Sciences Article Antibacterial Efficacy of Silver Nanoparticles on Endometritis Caused by Prevotella melaninogenica and Arcanobacterum pyogenes in Dairy Cattle SangiliyandiGurunathan*,Yun-JungChoiandJin-HoiKim* ID DepartmentofStemCellandRegenerativeBiotechnology,KonkukUniversity,Seoul05029,Korea; [email protected] * Correspondence:[email protected](S.G.);[email protected](J.-H.K.); Tel.:+82-02-450-0581(S.G.);+82-02-450-3687(J.-H.K.) (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:15March2018;Accepted:11April2018;Published:16April2018 Abstract: Bovine postpartum diseases remain one of the most significant and highly prevalent illnesseswithnegativeeffectsontheproductivity,survival,andwelfareofdairycows. Antibiotics are generally considered beneficial in the treatment of endometritis; however, frequent usage of eachantibioticdrugisreasonfortheemergenceofmultidrugresistance(MDR)ofthepathogenic microorganisms,representingamajorimpedimentforthesuccessfuldiagnosisandmanagementof infectiousdiseasesinbothhumansandanimals. Wesynthesizedsilvernanoparticles(AgNPs)with anaveragesizeof10nmusingthenovelbiomoleculeapigeninasareducingandstabilizingagent, andevaluatedtheefficacyoftheAgNPsontheMDRpathogenicbacteriaPrevotellamelaninogenica andArcanobacteriumpyogenesisolatedfromuterinesecretionsamples. AgNPsinhibitedcellviability andbiofilmformationinadose-andtime-dependentmanner. Moreover,themetabolictoxicityof theAgNPswasassessedthroughvariouscellularassays. Themajortoxiceffectofcelldeathwas causedbyanincreaseinoxidativestress,asevidencedbytheincreasedgenerationofreactiveoxygen species(ROS),malondialdehyde,proteincarbonylcontent,andnitricoxide. TheformationofROSis consideredtobetheprimarymechanismofbacterialdeath. Therefore,thebiomolecule-mediated synthesis of AgNPs shows potential as an alternative antimicrobial therapy for bovine metritis andendometritis. Keywords: antimicrobialtherapy;endometritis;multipledrug-resistantbacteria;silvernanoparticles; oxidativestress 1. Introduction Metritisandendometritishaveasubstantialinfluenceonbovinehealthandproductivity,with significant economic impacts to the dairy industry. Several studies have provided evidence that uterineinfectionsareduetobacterialpathogenesisintheuterus[1–7]. Theuterineinfectionscaused by pathogenic bacteria lead to inflammation and infertility [3]. Uterine disease has unique and characteristicfeatures,includingalowerconceptionrate,alongwithincreasedintervalsfromcalving tothefirstserviceorconception[8]. Endometritisisaninflammatorydisease, whichisassociated withdelayeduterineinvolutionandpoorreproductiveperformance[9]. Endometritisisfrequently treatedbyintrauterineinfusionofantibiotics[10]. However,theoverloadingandindiscriminateuseof antibioticsforthetreatmentofuterineinfectionsoranyothermicrobial-relatedinfectionshasledto theemergenceofantibiotic-resistantstrains. Indeed,theoverwhelmingusageofantibioticshasled tomultidrugresistance(MDR),prolongedinfectiontreatment,andincreasedmortalityrisk[11,12]. Furthermore,thisincreasedriskofmicrobialresistanceresultsinlesseffectiveconventionaltreatments. Int.J.Mol.Sci.2018,19,1210;doi:10.3390/ijms19041210 www.mdpi.com/journal/ijms Int.J.Mol.Sci.2018,19,1210 2of20 Therefore,itisnecessarytoovercomethelimitationsoftheconventionalcontinuoususageofantibiotics inthedairyindustryandagriculture. The application of nanoparticles has attracted huge interest in several fields, including biotechnology, biomedical sciences, and veterinary medicine. Several studies have explored the possibility of high-level nanotherapy in humans; however, the applications of nanotechnology in veterinary medicine have not reached the same level, and remain in a relatively innovative stage. Veryrecently,nanoparticleshavebeenusedasnutraceuticals,biocides,diagnostictools,reproductive aids,andindrugandnutrientdeliveryinveterinarymedicine[13],andshowpotentialtoserveas alternativestoconventionalantimicrobialagents[11]. Thus,itisnecessarytousenanotechnologyto increasethesafetyofdomesticanimals,growth,production,andeliminatevariousdiseases,soasto raisetheincomeoffarmers. Recently,theproductionoffoodsinthelivestockindustryusingdomestic animalshasheavilyreliedontheuseofantibioticsasgrowthpromoters,leadingtogrowingconcern overthespreadofmicrobialantibioticresistance. Theantibioticresistanceinbacterialeads,notonly toaburdenonpublichealth,butalsoextendstotheriskoftherapyfailure,alongwithsubsequent economicimpacts. Furthermore,themostsevereconsequenceofantibioticresistanceisthethreatof importantendemicdiseasesinanimalskeptforfoodproduction[14]. Therefore,thedevelopmentof innovativeandcost-effectivetherapeuticstrategiesisingreatdemandforthetreatmentofveterinary animals. Inthisregard,nanoparticlesappeartobesuitableandalternativeantimicrobialagentsto overcomethealarmingrateofthespreadofantibioticsresistance,towardimproveddetectionand killingofpathogenicbacteria.Recently,severalstudieshavedemonstratedplantandmicrobialextracts, essentialoils,puresecondarymetabolites,andnewlysynthesizedmoleculesaspotentialantimicrobial agents[15–17]. Nanoparticle-basedtherapyisapromisingapproachtoimprovethebalancebetweentheefficacy andtoxicityofsystemictherapeuticintervention. Amongthevariousmetalnanoparticlesavailable, silvernanoparticles(AgNPs)haveattractedtremendousinterestinbiomedicalapplications,including forantimicrobialtherapy,wounddressings,diagnosisandtreatment,andcontraceptivedevices[18]. Moreover,AgNPshavebeenusedassensors,imaging,drugdelivery,andfortissueengineeringin veterinarymedicineandanimalproduction[19]. Thus,AgNPsrepresentaverypromisingtherapeutic agentwithuniquepotentialagainstvariousmicrobialpathogens,withaparticularlyhighcapacityto effectivelyactonantibiotic-resistantbacteria[11,20].Todate,AgNPshavebeenwidelyusedaseffective antimicrobial agents against various bacteria, fungi, and viruses [21,22]. AgNPs can potentially inhibitmultipledrug-resistantstrainsofStaphylococcusaureusandPseudomonasaeruginosathatcause mastitis[20],andhaveproventobeeffectiveagainstvariousantibiotic-resistantbacteria[12,21,22].The mechanismsofinhibitoryactionofAgNPsareattributedtotheirhighreactivitywithbacterialproteins, sugars,andDNA,resultinginstructuralalterationstothecellwallandthemembrane,ultimately leadingtoinhibitionandcelldeath[23]. Therefore,developingatherapeuticstrategybasedonAgNPstoenhancetheantibacterialeffect representsanovelandpromisingapproach[24],particularlyintheeraofmultidrugresistance. Hence, in the present study, we synthesized and characterized AgNPs using the biomolecule apigenin as a reducing and stabilizing agent. Moreover, we isolated and characterized predominant isolates fromclinicalendometritissamples,andevaluatedtheeffectofourdevelopedbiomolecule-assisted AgNPs against multiple drug-resistant Gram-negative and Gram-positive bacteria, including PrevotellamelaninogenicaandArcanobacteriumpyogenes. Finally,weevaluatedthemechanismoftoxicity ofAgNPsinP.melaninogenicaandA.pyogenes. 2. ResultsandDiscussion 2.1. SynthesisandCharacterizationofAgNPsUsingApigenin ApigeninwasreactedwithAgNO atpH8.0and40◦Cfor6h,andayellowbrownproductwas 3 observed,indicatingthatapigenincouldeffectivelyreduceAgNO intoAgNPs(Figure1). 3 Int.J.Mol.Sci.2018,19,1210 3of20 Figure1.Schematicdiagramofasimpleandenvironmentallyfriendlyapproachforthesynthesisof silvernanoparticles(AgNPs)bythereductionofsilvernitratetoelementalsilverusingapigeninasa reducingagent. Theultraviolet–visiblespectrawereusedtodeterminethestructureoftheAgNPsbasedontheir freesurfaceelectronplasmonoscillations. Theshiftingwavelength,likeblueandred,reflectthesize and shape of the AgNPs [25,26]. The absorption of AgNPs strongly depends on the particle size, dielectricmedium,andchemicalsurroundings. Smallsphericalnanoparticles(<20nm)exhibitasingle surfaceplasmonband[25,26]. Thesynthesizedparticlesexhibitedmaximumabsorptionat407nm, whichrepresentsthecharacteristicpeakforAgNPs(Figure2A).Inlinewiththesefindings,several studieshavedemonstratedthatflavonoidsandphenoliccompounds,suchasquercetinandcaffeic acid,canreduceAg+quickly,andcanacteffectivelyasbothreducingandstabilizingagents[23,27,28]. TheX-raydiffractionpatternoftheAgNPssynthesizedbyapigeninisshowninFigure2B.Several strongBraggreflectionswereobserved,correspondingtothe(111),(200),and(220)reflectionsofface centredcubic(fcc)silver[29]. Thehigh-intensitypeakofAg(111)wasobservedinthesample,which indicatedthecrystallinenatureoftheparticles. ThediffractionpeaksofthesynthesizedAgNPspeaks wereverysharp,andclearlysuggestedthattheAgNPssynthesizedusingapigeninarecrystallinein nature[30]. Thesynthesizedparticleswerecrystalline,andthesizewasdeterminedtobe10nmusing theDebye–Scherrerformula. AccordingtotheDebye–Scherrerformula,thepeakposition(111)reflects thatthedimensionsoftheparticlesare10nm[31]. Fourier-transforminfrared(FTIR)measurementwascarriedouttoconfirmtheinvolvementof variousfunctionalgroupsforreductionofAg+inapigenin,resultinginthecapping/stabilizationof AgNPs. TheFTIRspectrumshowedabsorptionbandsat3422,2922,1742,and1042cm−1,indicating the presence of a capping agent within the nanoparticles (Figure 2C). The band at 3422 cm−1 in the spectrum corresponds to the O–H stretching vibration indicating the presence of alcohol and phenol[28]. Bandsatthe2922cm−1regionwereobserved,arisingfromC–Hstretchingofaromatic compound. Thebandat1743cm−1 wasassignedtoC–Cstretching. Severalstudieshavereported that functional groups such as alcohol, phenol, and amines play a role in the stability/capping of AgNPs [32]. The bands at 1042 cm−1 were assigned to N–H and C–N stretching vibrations of the proteins,respectively[33]. Collectively,theFTIRdataconfirmedthatvariousfunctionalgroupsfound inapigeninfacilitatethecappingandstabilizationofAgNPs. Next,dynamiclightscattering(DLS)wasperformedtodeterminethesizedistributionofcolloidal AgNPsintherangeof1–100nm. TheDLSmethodiswidelyusedinstudiesdealingwiththesynthesis, functionalization,andbiomedicaluseofnanoparticlesthatexhibitplasmonresonance,primarilywith regardtogoldandsilvernanoparticles[34].Thesynthesizedparticlesshowedanaveragesizeof20nm, whichisthehydrodynamicsizeofanentirecomplex,ratherthanthegeometricalsizeofaparticle itself(Figure2D).Ingeneral,thedispersionoftheDLSparticlenumbersizedistributionsnoticeably exceedthesizedispersionobtainedfromtransmissionelectronmicroscopy(TEM)images[34]. We further confirmed the particle size by TEM, which is a more reliable method for determining the size and shape of particles. The TEM images revealed that most of the particles are significantly Int.J.Mol.Sci.2018,19,1210 4of20 sphericalinshapewithasizeof10nm(Figure2E).ThehistogramofTEMimagesdeterminedfrom thecalculationofseveralparticlesdemonstratedthattheTEMdataontheparticlenumberandsize wereapparentlyaccurate,exhibitingthepresenceofanoticeablenumberofparticleswithdiameters of10nm(Figure2F).Thus,thedataderivedfromDLSandTEMrevealedthatthemostpredominant sizeoftheparticleswas10nm. Figure 2. Synthesis and characterization of silver nanoparticles (AgNPs) using apigenin. (A) Absorption spectrum of AgNPs synthesized using apigenin. (B) X-ray diffraction spectra of AgNPs. (C)Fourier-transforminfraredspectraofAgNPs. (D)SizedistributionofAgNPsbasedon dynamiclightscattering.(E)Transmissionelectronmicroscopy(TEM)imagesofAgNPs.(F)Histogram displayingpredominantsizeofAgNPs. 2.2. Isolation,Identification,andCharacterizationofBacteriafromEndometritisSamples Bacterialisolatesobtainedfromendometritissampleswerecultured,identified,andcharacterized asdescribedintheMaterialandMethods. Among40swabs,20werefoundtobebacteriologically positive by characterization of bacteria both phenotypically and biochemically [35,36]. The most frequentlyisolatedbacteriumwasPrevotellamelaninogenica(30%),followedbyArcanobacteriumpyogenes (25%),Escherichiacoli(20%),Streptococcusspp. (15%),Staphylococcusspp. (10%),Campylobacterfetus (8%),Klebsiellaspp. (5%),P.aeruginosa(3%),andClostridiumspp. (1%). Similarly,Udhayaveletal.[37] reportedthatoutof30samplesevaluated,25exhibiteddifferentstrainsofbacteria,includingE.coli (36.66%),Klebsiellaspp. (30%),Proteusspp. (13.33%),P.aeruginosa(6.66%),andClostridiumspp. (3.33%). Int.J.Mol.Sci.2018,19,1210 5of20 Sharmaetal.[36]reportedthatthemostfrequentlyidentifiedbacteriaisolatesfromuterinedischarge samplesincludedE.coli(32.26%),Bacilluscereus(22.58%),S.aureus(16.13%),andmixedculturesof B.cereusandS.aureus(9.68%),andE.coliandProteusvulgaris(3.23%). Altogether,ourdataagreewith previousfindingsandindicatethatP.melaninogenicaandA.pyogenesrepresentthemostdominant bacterialisolatesfoundinendometritisclinicalsamplesfromthedistrictofCoimbatore,TamilNadu. 2.3. IsolationofMDR TheantibioticsusceptibilitytestwasperformedaccordingtoClinicalandLaboratoryStandards Institute(CLSI)procedures. Weselectedmoreprofoundisolatesforfurtherantibioticsusceptibility testing. Amongtheseveralisolatestested,MDRisolatesweredefinedasthoseshowingresistance or intermediate susceptibility to more than three antimicrobials. The result of antimicrobial tests showedthatalloftheisolatesofP.melaninogenicawereresistanttoampicillin(90.0%),cefalotin(79.0%), sulfamethoxazole/trimethoprim (65.2%), ciprofloxacin (54.6%), oxolinic acid (45.4%), gentamicin (43.8%), chloramphenicol(40.0%), cefotaxime(23.8%), ceftazidime(18.8%), amoxicillin/clavulanic acid (10.0%), and aztreonam (5.0%). The A. pyogenes isolates exhibited resistance to all of the antimicrobial agents tested, with particularly high levels of resistance found to chloramphenicol (100%),amoxicillin(86.9%),ampicillin(76.1%),florfenicol(69.7%),penicillin(66.1%),oxytetracycline (64.2%), and tetracycline (50%). Thus, the results from antibiotic susceptibility tests showed that P. melaninogenica and A. pyogenes were resistant to at least three of the antimicrobial agents tested, indicatingthattheseareMDRisolates. FurtherexperimentswerecarriedoutinP.melaninogenicaand A.pyogenestoevaluatetheimpactofAgNPsonMDRbacteriainendometritis. 2.4. MinimumInhibitoryConcentration(MIC)andMinimumBactericidalConcentration(MBC)ofAgNPs The MIC is the lowest concentration of AgNPs that will inhibit the visible growth of a microorganismafterovernightincubation. TheMICwasdeterminedinbrainheartinfusion(BHI) brothusingserialtwo-folddilutionsofAgNPsinconcentrationsrangingfrom0.1µg/mLto1.0µg/mL, withanadjustedbacterialconcentrationof1×108 colonyformingunits(cfu)/mL(0.5McFarland’s standard). MediumwithoutAgNPswasusedasacontrol. Theresultsfromthecellviabilityassay suggestedthatAgNPsinhibitbacteriainadose-dependentmanner,andtheMICvaluesofAgNPs against P. melaninogenica and A. pyogenes were found to be 0.8 and 1.0 µg/mL, respectively. The MBC is the lowest concentration of AgNPs required to kill a particular bacterial strain. The MBC values of AgNPs against P. melaninogenica and A. pyogenes were found to be 1.0 and 1.5 µg/mL, respectively. AstheconcentrationofAgNPsincreasedtotheleveloftheMICoftherespectivestrains, no growth was observed. The bactericidal effect of the AgNPs was dependent on several factors, suchastheconcentrationofAgNPs,size,shape,physicochemicalproperties,andtheinitialbacterial concentration. In general, AgNPs showed better antimicrobial activity against the Gram-negative bacteriumP.melaninogenicawhencomparedtothatagainsttheGram-positivebacteriumA.pyogenes. Our findings are consistent with previous reports suggesting that Gram-positive bacteria are less susceptibletotheantimicrobialactivityofsilver[24,38,39]. 2.5. Dose-andTime-DependentEffectofAgNPsonCellViabilityofP.melaninogenicaandA.pyogenes To further promote the use of AgNPs in nanomedicine to overcome MDR in Gram-positive andGram-negativebacteria,thedose-dependenteffectofAgNPswasassessedinP.melaninogenica andA.pyogenestodeterminetheirrelativesusceptibilitiestoAgNPs,andtheextentofbactericidal activity. Figure3Ashowsthepotentialtoxiceffectofapigenin-assistedAgNPsonP.melaninogenica andA.pyogenes. Thebacterialstrainsweretreatedwithvariousconcentrations(0.2–1µg/mL)ofthe 10nmAgNPs. Theresultsshowedadosedependenteffectoncellviabilitycomparedtothenegative control. Furthermore, cell viability decreased with increasing AgNPs concentrations. No visible growth was observed at their respective MIC values (0.8 and 1.0 µg/mL) in P. melaninogenica and A.pyogenes. InthecaseofP.melaninogenica,theintroductionof0.8µg/mLofAgNPsreducedbacterial Int.J.Mol.Sci.2018,19,1210 6of20 viabilitybyapproximately95%,ascomparedtothatofthecontrolsample. Furthermore,increasingthe concentrationofAgNPsto1µg/mLinhibitedbacterialgrowthdramaticallywithnovisiblegrowth observed,whereasintroductionofasimilarconcentrationofAgNPs(i.e.,0.75µg/mL)reducedcell viabilitybyapproximately75%ascomparedtothecontrolsample.However,thehigherconcentrations of0.75and1.0µg/mLrapidlyinhibitedthegrowthofbacteria(Figure3A,B). Figure3. AntibacterialactivityofAgNPsonP.melaninogenicaandA.pyogenes. (A)P.melaninogenica andA.pyogeneswereincubatedwithvariousconcentrationsofAgNPs. Bacterialcellsurvivalwas determined at 24 h based on a CFU count assay. (B) P. melaninogenica and A. pyogenes cells were incubatedwith0.8and1.0µg/mLofAgNPs,respectively,for24h. WepreviouslyreportedthattheantibacterialactivityofAgNPswithanaveragesizeof10nm producedfromthecellularextractofBacilluscereusrequireda10-foldhigherconcentrationtoexhibit asimilarantibacterialeffectagainstEscherichiafergusoniiandStreptococcusmutans, whichisdueto thetypeofreducingagentsandtypeofbacteria[40]. Forinstance, AgNPscoatedwithlipoicacid andpolyethyleneglycolexhibitedlowercytotoxicityascomparedwithAgNPscoatedwithtannicin agingivalfibroblastmodel[41]. Strydometal.[42]suggestthatmodificationofsilversulfadiazine usingdendrimersdisplayedpotentialantibacterialactivity. TheantimicrobialactivityofAgNPsalso dependsonthesurfacearea,whicheffectivelyinteractswithacertainmicroorganism. Severalstudies havesubstantiatedthatauniquefeatureoflargesurfaceareaofnanoparticleshavethesignificant possibilityinteractwithmicrobes[21,43]. 2.6. Dose-andTime-DependentEffectofAgNPsontheBiofilmActivityofP.melaninogenicaandA.pyogenes Toexaminetheanti-biofilmactivityofAgNPsonP.melaninogenicaandA.pyogenes,thebacteria weregrownintissuecultureplatesinthepresenceandabsenceofAgNPsfor24h. Bothbacterial strainsweregrownfor24hinmicrotiterplatewellsandthentreatedwith0.1–1.0µg/mLAgNPs (Figure 4A). AgNPs decreased the biofilm activity of P. melaninogenica and A. pyogenes by more than 95% and 90%, respectively. Our findings are consistent with previous reports in various Gram-negativeandGram-positivebacteria. Interestingly,AgNPsinhibitedbiofilmformationfaster within 20 h in P. melaninogenica than in A. pyogenes, which is likely due to the structural nature of thecellwallandmembrane(Figure4B).Bacteriabiofilmsareresistanttoantibiotics,disinfectants, and components of the innate and adaptive inflammatory responses [26,44]. AgNPs potentially inhibit cell viability and biofilm formation against P. aeruginosa and Staphylococcus epidermidis by inhibitingproductionofexopolysaccharides,whichareessentialforbiofilmformation[25,45]. Plant extract-mediatedsynthesisofAgNPsefficientlyinhibitedbiofilmformationinHelicobacterpyloriand Helicobacter felis [38]. Martinez-Gutierrez et al. [46] demonstrated the quorum-quenching activity of AgNPs against various Gram-negative and Gram-positive bacteria. Taken together, our results Int.J.Mol.Sci.2018,19,1210 7of20 suggestthattheapigenin-mediatedsynthesisofAgNPscouldbeapotentialandviablealternative anti-biofilmagent. Figure4.Anti-biofilmactivityofAgNPsonP.melaninogenicaandA.pyogenes.(A)P.melaninogenicaand A.pyogeneswereincubatedwithvariousconcentrationsofAgNPs.Anti-biofilmactivitywasmeasured using96-wellflat-bottompolystyrenetissuecultureplates.(B)P.melaninogenicaandA.pyogenescells wereincubatedwith0.8and1.0µg/mLofAgNPsrespectivelyfor24h. 2.7. AgNPsInduceMetabolicToxicityinP.melaninogenicaandA.pyogenes Perturbationsofmetabolicactivityareapossiblestrategytoimpacttheefficacyofantimicrobial therapy. Lactateisaveryimportantendproductofcarbohydratessynthesisinbacteria. Toevaluate theeffectofAgNPsonoxidativestress-inducedmetabolicchanges,alactatedehydrogenase(LDH) assaywasperformedincellsexposedtoAgNPsfor12h[47]. AsshowninFigure5A,thelevelofLDH inP.melaninogenicaandA.pyogeneswasfour-foldhigherthanthatofthecontrolgroup. Althoughboth bacteriaexhibitedsimilarlevelsofLDH,thatoftheGram-positivebacteriumA.pyogeneswasslightly lowerthanthatoftheGram-negativebacteriumP.melaninogenica,whichisduetothearchitectureof thecellwallandmembrane. Ourresultsclearlydemonstratedthattheactivitiesofrespiratorychain dehydrogenases(RCD)inbothP.melaninogenicaandA.pyogeneswereinhibitedbyAgNPs,whichis inlinewithpreviousstudiesdemonstratingthemechanismofantimicrobialaction[23,48–51]. One possiblemechanismunderlyingthismetabolicdisturbanceistheentryofAgNPsintothecellstoRCD andalterdissolvedoxygenlevelsinculture[45]. AnotherpotentialmechanismisthattheAg+ofthe AgNPsinteractwiththethiol(–SH)groupofcysteine[51]. Usinginsilicogenome-scalemetabolicmodels,Brynildsenetal.[52]clearlydemonstratedthatan increaseintheintracellularproductionofendogenousreactiveoxygenspecies(ROS)couldagitatethe productionandusageofATP.ATPisanenergy-richmoleculethatgovernsvariouscellularfunctions suchassurvival,growth,andreplication,andactsasamajorsignalingmolecule[53]. Inlinewith that prediction, we sought to determine the level of ATP in AgNPs-treated P. melaninogenica and A.pyogenes. ThelevelofATPinAgNPs-treatedsampleswassignificantlylowerbyuptofive-fold compared to that of the control samples (Figure 5B), indicating that AgNP-induced cellular stress significantlyaffectsATPsynthesisinP.melaninogenicaandA.pyogenes,whichisacriticalfactorfor bacterialgrowthandreproduction[25]. AgNPsdirectlyaffectFOF1-ATPaseactivityandH+-coupled transport[54]. FOF1-ATPaseplaysacrucialroleincellmetabolicprocesses,includingbacterialgrowth, metabolicregulation,andcellsurvival. Therefore,thedatafromthepresentstudyandtotalbodyof previousworksuggestthatmetabolicactivitycontributingtoATPproductionisanintegralpartofthe bactericidaltoxicityofAgNPs. Int.J.Mol.Sci.2018,19,1210 8of20 Figure5.MetaboliccytotoxicityofAgNPsonP.melaninogenicaandA.pyogenes.P.melaninogenicaand A.pyogenescellswereincubatedwith0.8and1.0µg/mLofAgNPsrespectivelyfor12h, andthe (A)LDHactivity,(B)ATPlevels,(C)proteinlevels,and(D)sugarlevelsweredetermined. To validate the effect of AgNPs on the weakening of metabolic activity, we further explored thelevelsofproteinsandsugars. WepreviouslydemonstratedthatAgNPsarepotentialagentsto increaseproteinleakagebyalteringthemembranepermeabilityinbacteria[40]. P.melaninogenicaand A.pyogenesweretreatedwith0.8and1.0µg/mLofAgNPs,respectively,andtheamountofprotein releasedinthesuspensionwasestimatedusingtheBradfordassay. TheresultsshowedthatAgNPs remarkablyincreasedtheleakageofproteinscomparedtothecontrolgroup(Figure5C).However,the leakagefromP.melaninogenicacellstreatedwithAgNPswassignificantlyhigher(60µg/mg)thanthatof A.pyogenes(40µg/mg),suggestingthattheantibacterialsensitivityofGram-negativebacteriaismuch strongerthanthatofGram-positivebacteria. Similarly,Kimetal.[51]andGurunathanetal.[24]found thattheleakageofproteinswassignificantlyhigherinGram-negativebacteriathaninGram-positive bacteria with 60 and 50 µg of reducing sugars leaking from P. melaninogenica and A. pyogenes treatedwithAgNPs,respectively(Figure5D).ApreviousstudyshowedthatafterE.colicellswere exposedtoAgNPs(10µg/mL)for2h,upto102.5µgperbacterialdryweightof1mgofreducing sugarsleakedoutofthecells[49]. Thisdifferentialleakageamountcouldbeduetothestructural features of the cell wall of A. pyogenes, which is essential for protecting the bacteria various toxic agents[23,24,51]. TheimpairmentofthefunctionofLDHcouldleadtoincreasedleakageofproteins and other macromolecules. Altogether, all of the available evidence from various bacteria clearly indicate that AgNPs could alter membrane permeability and eventually damage the structure of thebacteriacellmembranebyosmoticimbalance,resultingintheleakageofmacromoleculessuch as proteins and reducing sugars, leading to the death of bacteria. This mechanism highlights the significantpotentialoftheantibacterialactivityofAgNPs. 2.8. AgNPsInduceCellularToxicityandOxidativeStressinP.melaninogenicaandA.pyogenes TounderstandtheeffectsofAgNPsoncellviabilityandmetabolictoxicity,wefurtherexamined how the influence of AgNPs onbacterial metabolism could offerinsight into theirmechanisms of action,leadingtoenhancedtherapeuticapproachesforbothhumansandanimals. Majorclassesof bactericidalantibioticsinducecelldeathinbacteriabystimulatingtheproductionofhighlydeleterious hydroxylradicals[55]. AsimilarmechanismhasbeendemonstratedforAgNP-inducedcelldeathin Int.J.Mol.Sci.2018,19,1210 9of20 avarietyofbacteria,includingthemostrepresentativeGram-negativeandGram-positivebacteria, such as P. aeruginosa, Shigella flexneri, S. aureus, and Streptococcus pneumonia [24]. However, to our knowledge, nostudyhasdemonstratedthemechanismofAgNPsontheoxidativestress-induced celldeathinP.melaninogenicaandA.pyogenes. ThebacteriaweretreatedwiththerespectiveMICof theAgNP,andROSgenerationwasmeasuredusingthe2(cid:48),7(cid:48)-dichlorofluorescindiacetate(DCFDA) assay. TheresultsindicatedthatAgNPsinducedtwo-foldhigherlevelsofROSinP.melaninogenica andA.pyogenescomparedtothecontrol(Figure6A).AnincreasedlevelofROSleadstoanimbalance betweenpro-oxidantsandantioxidants,whichcausesfailureinnormalphysiologicalredox-regulated functions[55]. Indeed,ROScanbeinducedbyvariousexternalsources,suchaschemicals,antibiotics, nanoparticles,andcoldandheatstress,consequentlyleadingtolossofcellviability[33,40,55–57]. Figure6.EffectofAgNPsoncellulartoxicityinP.melaninogenicaandA.pyogenes.(A)P.melaninogenica and A. pyogenes cells were treated with 0.8 and 1.0 µg/mL of AgNPs respectively for 12 h. ROS generationwasmeasuredusingDCFDA.(B)MDAlevelsweremeasuredusingaTBARSassay.(C)The relativeproteincarbonylcontentwasevaluatedcomparedtothetotalproteincontent.(D)Thequantity ofNOwasquantifiedspectrophotometricallyusingtheGriessreagent. Next, we examined the level of malondialdehyde (MDA), which is a well-known marker in eukaryoticcellsforoxidativestress,asitisgeneratedfromlipidsbystimulationofoxidativestress. ToascertaintheMDAlevelsinAgNP-treatedbacteria,weusedthiobarbituricacid. Treatmentwith AgNPsledtoincreasedlevelsofMDAbyseveralfoldinP.melaninogenica,comparedtothecontrol group(Figure6B);similarincreaseswerealsoobservedinA.pyogenes. Thesefindingssuggestthat lipidoxidationinducedMDAproductioninbacteria. Belenkyetal.[58]foundthatantibiotic-treated E.colicellsexhibitedcytotoxicchangesthatwereindicativeofoxidativestress,includinghigherlevels of protein carbonylation. The carbonylation of proteins could lead to protein dysfunction [55–57]. Therefore,wehypothesizedthatAgNPscouldtargetthewell-knownoxidativestressbiomarkerof carbonylation. Tomeasurethecarbonylcontent,P.melaninogenicaandA.pyogenesweretreatedwith AgNPs for 12 h, which led to significant increases in protein carbonylation, up to 12 times above thatofthecontrol(Figure6C).Thesefindingsareconsistentwiththeeffectsofbacteriatreatedwith Ampicillin(Amp),kanamycin(Kan),orNor[58]. Nitricoxide(NO)producedbybacterialnitricoxide synthase(NOS)actsasacytoprotectiveagentagainstoxidativestressinS.aureus,Bacillusanthracis,and Bacillussubtilis[58]. ToexplorewhetherAgNPsinducetheproductionofNOorinhibit,weexamined Int.J.Mol.Sci.2018,19,1210 10of20 theeffectofNOproductioninAgNP-treatedP.melaninogenicaandA.pyogenes. AgNPsinducedthe productionofNOinbothP.melaninogenicaandA.pyogenes(Figure6D).Interestingly,NOproduction wassignificantlyhigherintheGram-negativebacteriumthanintheGram-positivebacterium,which indicatesthatP.melaninogenicamaybemoreimmunetothestresscreatedbyAgNPs. Previousstudies demonstrated that the oxidative stress generated by AgNPs was associated with reduction in the levelsofreactivenitrogenintermediatesinbacteriatreatedwithdifferentantibiotics[59]. Collectively, thepresentstudysuggeststhatAgNPsinteractwithbacterialcellsviathecellwallandmembrane, resulting in the production of free radicals to, in turn, induce oxidative stress and cause various dysfunctionstomacromolecules,includinglipids,proteins,andnucleicacids[22,60–63]. 2.9. EffectofAgNPsontheExpressionofAntioxidativeMarkersinP.melaninogenicaandA.pyogenes The antioxidative stress response counteracts the effect of pro-oxidants to maintain normal physiological redox-regulated functions. Masip et al. [64] demonstrated that a depressed ratio of reducedglutathione(GSH)tooxidizedglutathione(GSSG)isconsideredanindicatorofoxidative stress. Thus,thelevelsofGSHandGSSGweredeterminedinP.melaninogenicaandA.pyogenestreated withAgNPsfor12h,demonstratingdecreasedlevelsofGSHcoupledwithhighlysignificantdecreases inGSSG(Figure7A,B).ThisdecreasedlevelofGSHintheAgNP-treatedcellssuggestsaninabilityto protectthecellsfromoxidativestress,sothatthecellsweresubjectedtocelldeathduetooverwhelming oxidativestress.Banerjeeetal.[65]observedincreasedlevelsofoxidativestressanddecreasedlevelsof antioxidantsinE.colicellstreatedwithaniodinatedchitosan–silvernanoparticlecomposite. Similarly, E.coliandP.aeruginosatreatedwithAgNPsexhibitedasimilartrend[20,63]. Together,thesechanges inmetabolitelevelssuggestthatdecreasedGSHisunabletocompensatefortheongoingturnoverand consumptionbypro-oxidantactivities. Collectively,thesedatasuggestthatthecomplexmetabolic changesofAgNPsareinducedbyoxidativestress. Figure7.EffectofAgNPsonantioxidants.P.melaninogenicaandA.pyogenescellsweretreatedwith0.8 and1.0µg/mLofAgNPsrespectivelyfor12h,andthe(A)GSHlevels,(B)GSSGlevels,(C)superoxide dismutase(SOD)activity,and(D)catalase(CAT)activityweremeasuredasdescribedintheMaterials andMethods. Silverionsareresponsiblefortheformationoffreeradicals.Therefore,wenextexaminedenzymes withantioxidanteffectssuchassuperoxidedismutase(SOD)andcatalaseinP.melaninogenicaand A.pyogenestreatedwith0.8and1.0µg/mLofAgNPsfor12h.AgNPsdecreasedthelevelofSODbyup
Description: