marine drugs Article Antibacterial Activity of AI-Hemocidin 2, a Novel N-Terminal Peptide of Hemoglobin Purified from Arca inflata ChunleiLi1,†,JianhuaZhu1,†,YanqingWang2,†,YuyanChen1,LiyanSong3,WeimingZheng3, JingjingLi3andRongminYu1,3,* 1 BiotechnologicalInstituteofChineseMateriaMedica,JinanUniversity,Guangzhou510632,China; [email protected](C.L.);[email protected](J.Z.);[email protected](Y.C.) 2 NationalEngineeringResearchCenterofMicrosphereTechnologyforControlled-ReleaseDrugDelivery, Zhuhai519090,China;[email protected] 3 DepartmentofPharmacology,JinanUniversity,Guangzhou510632,China;[email protected](L.S.); [email protected](W.Z.);[email protected](J.L.) * Correspondence:[email protected];Tel.:+86-20-8522-0386;Fax:+86-20-8522-4766 † Theseauthorscontributedequallytothiswork. Received:23April2017;Accepted:27June2017;Published:29June2017 Abstract:Thecontinuedemergenceofantibioticresistantbacteriainrecentyearsisofgreatconcern. Thesearchfornewclassesofantibacterialagentshasexpandedtonon-traditionalsourcessuchas shellfish.Anantibacterialsubunitofhemoglobin(Hb-I)waspurifiedfromthemantleofArcainflataby phosphateextractionandionexchangechromatography.Anovelantibacterialpeptide,AI-hemocidin2, derivedfromHb-I,wasdiscoveredusingbioinformaticsanalysis. Itdisplayedantibacterialactivity acrossabroadspectrumofmicroorganisms,includingseveralGram-positiveandGram-negative bacteria,withminimalinhibitoryconcentration(MIC)valuesrangingfrom37.5to300µg/mL,and itexhibitedminimalhemolyticorcytotoxicactivities. TheantibacterialactivityofAI-hemocidin2 wasthermostable(25–100◦C)andpHresistant(pH3–10). Thecellularintegritywasdetermined byflowcytometry. AI-hemocidin2wascapableofpermeatingthecellularmembrane. Changesin the cell morphology were observed with a scanning electron microscope. Circular dichroism spectra suggested that AI-hemocidin 2 formed an α-helix structure in the membrane mimetic environment. Theresultsindicatedthattheanti-bacterialmechanismforAI-hemocidin2occurred throughdisruptingthecellmembrane. AI-hemocidin2mightbeapotentialcandidatefortackling antibioticresistantbacteria. Keywords:Arcainflata;peptide;hemoglobin;purification;structuralelucidation;antibacterialactivity 1. Introduction The emergence and rapid spread of bacterial infections caused by antibiotic resistant strains has led to a health crisis in recent years [1–6]. The threat of drug-resistant bacterial infections has been attributed to the abuse and misuse of antibiotics as well as a lack of development of new antibacterial agents [1,3,5,6]. A recent investigation demonstrated that premature deaths caused by antibiotic resistant bacteria will rise to 1,000,000 lives per year and cost the global economy $100trillionby2050[7]. Theurgentneedfornewtypesofantibacterialagentshasledtoinnovative multidisciplinaryresearch. Antimicrobialpeptides(AMPs)areproducedbyhostsaspartoftheinnateimmuneresponseand constitutethefirstlineofdefenseagainstinvadingpathogenicmicrobes[8]. AMPstypicallycomprise 10–50 amino acids, including basic residues such as arginine or lysine, that possess a positive net Mar.Drugs2017,15,205;doi:10.3390/md15070205 www.mdpi.com/journal/marinedrugs Mar.Drugs2017,15,205 2of17 charge and amphipathic secondary structure such as an α-helix or β-sheet [9–11]. Based on these properties, AMPs target and perturb the microbial cytoplasmic membranes that typically present anionicsurfacesviaanionicinteraction. SomeinvestigationshavedemonstratedthatmostAMPs permeabilizemicrobialcytoplasmicmembranes. AlthoughmostAMPsaffecttheintegrityofmicrobial membranes,itremainstobedeterminedwhetherthemicrobialmembraneistheonlysiteofactionor whethermembranepermeabilizationisalwaysfatal. SomeAMPsthatdonotextensivelypermeabilize microbialmembranesmightinteractwithintracellularcomponentsandthusaffectmicrobeviability. ThemechanismofactionofAMPsremainstobefullyelucidated[12]. Comparedwithantibiotics, AMPshavedrawnincreasingattentionasnovelantibacterialagentstocombatbacterialinvasiondueto theirspecialmechanismsofaction,non-induciblebacterialresistanceandlackofdetrimentaleffectson humans[13]. AMPsderivedfrommarineorganismsarepromisingcandidatesfordrugdevelopment andasnutritionalfoodadditives. Bycontrastwithon-landcompounds,marinepeptideshavediverse sequences,uniquestructuresandprominentbioactivitiesasaresultofparticularadaptationstooceanic environments[14]. Manypeptidesandderivatives(suchasmytilin,defensin,mytimycinandmyticins) derivedfromshellfishhavebeenreportedtoexhibitantimicrobialactivity[15]andhavepotential applicationsinthehealthcareandfisheryindustries[16,17]. Hemoglobin, which is widely distributed among organisms, has previously been regarded to function exclusively as an endogenous respiratory protein. However, studies have shown that hemoglobinexertsinhibitoryeffectsonbacteriaandisasourceofantibacterialpeptides,inadditionto itsroleasanoxygencarrier,anditsinvolvementintransportingsulfideandregulatingtheacid–base balance[18]. Antibacterialpeptidefragmentsderivedfromhemoglobinsubunits(hemocidins)have beenconsideredasimportanteffectorsoftheinnateimmuneresponseagainstpathogeninfections[19]. Hemocidins in humans, bovine and channel catfish were found to possess potent antimicrobial activities against pathogenic bacteria [20–24]. P3, a novel hemoglobin-related peptide derived from bovine erythrocytes, exhibited significant antimicrobial activity [25]. In addition, Hb137-141, a peptide isolated from the enzyme digestion of bovine hemoglobin alpha-chain showed potent antibacterialactivityagainstEscherichiacoli,Salmonellaenteritidis,Listeriainnocua,Micrococcusluteus andStaphylococcusaureus[26].Althoughstudiesonhemocidinshavebeenperformedinawiderangeof species,theyhavebeenlimitedtovertebrates. Insomeinvertebrates,suchasarthropodsandmollusks, hemolymph is analogous to the blood in vertebrates. There are three types of oxygen-transport proteins in the hemolymph of invertebrates: hemoglobin, hemocyanin and hemerythrin [27]. Among these, hemocyanins are regarded as the major, multifunctional proteins in invertebrate hemolymph, responsible for oxygen transport and contributing to innate immunity in resisting invasionbypathogenicmicrobes[27,28]. Recently,hemocyanin-derivedantimicrobialpeptideshave been identified from abalone, a marine mollusk [28]. However, few studies have focused on the hemoglobinsandhemocidinsofinvertebrates. A.inflataisaspecialtypeofbivalveshellfishthatcontainshemoglobin.A.inflata,whichbelongsto theArcidaefamilyunderthephylumMolluscaandtheclassLamellibranchiata,iswidelydistributed inthewesternPacificOcean. Ithasbeenusedasanutritiousfoodmaterialaroundtheworld,and a traditional medicine for treating blood deficiency, epigastric pain and indigestion for centuries in China. A polypeptide from A. inflata with impressive antitumor activity was reported by our researchgroup[29]. However,littleattentionhasbeendevotedtoantibacterialpeptidesinA.inflata. Asaresultoftheirlackofaspecificimmunesystem,invertebratessuchasA.inflatarelyontheinnate immuneresponsecomprisinghemocytesandhumoralfactorstoresistinvasionfrompathogensin theenvironment[30]. Therefore,itmaybepossibletodiscovernovelantibacterialagentsinmarine invertebratessuchasA.inflata. Enzymatichydrolysisisafeasiblemethodwithwhichtodiscoverpotentantibacterialpeptides. Peptideshydrolyzedbytrypsin,preferablycontainingarginineandlysine,usuallypossesspositive charges and exhibit antibacterial activity [31,32]. However, it is difficult to identify the bioactive peptides among the huge number of peptides produced by hydrolysis. In addition, the bioactive Mar.Drugs2017,15,205 3of17 Mpaerp. Dtirdugess 2m017a,y 15b, e20c5o me inactive during the enzymatic hydrolysis process. Since bioactive pep3 toidf 1e7s possessingsimilardomainandphysiochemicalparametersexhibitsimilarbioactivities,bioinformatic bioinformatic analysis is a rapid and convenient method for discovering novel bioactive peptide analysisisarapidandconvenientmethodfordiscoveringnovelbioactivepeptidesequences. Hence, sequences. Hence, enzymatic hydrolysis simulation combined with bioinformatic analysis is an enzymatichydrolysissimulationcombinedwithbioinformaticanalysisisanefficientandinnovative efficient and innovative approach to discover potential antibacterial agents. approachtodiscoverpotentialantibacterialagents. The aim of this study was to purify and characterize antibacterial agents from A. inflata. A novel TheaimofthisstudywastopurifyandcharacterizeantibacterialagentsfromA.inflata. Anovel antibacterial peptide, AI‐hemocidin 2, was discovered from A. inflata and the physicochemical and antibacterialpeptide,AI-hemocidin2,wasdiscoveredfromA.inflataandthephysicochemicaland structural properties were determined. Moreover, the preliminary mechanism of antibacterial action structuralpropertiesweredetermined. Moreover,thepreliminarymechanismofantibacterialactionof of AI‐hemocidin 2 was revealed. AI-hemocidin2wasrevealed. 2. Results and Discussion 2. ResultsandDiscussion 22.1.1. .PPuurrifiificcaattioionn ooff HHbb‐-II FFoolllloowwiinngg aann aannttiibbaacctteerriiaall aassssaayy,, HHbb‐-II wwaass ppuurriiffiieedd ffrroomm tthhee mmaannttlleess ooff AA.. iinnffllaattaa bbyy aammmmoonniiuumm ssuullffaattee pprreecciippiittaattiioonn aanndd ccoolluummnn cchhrroommaattooggrraapphhyy..T Thheer reessuultlstso offt htheep puurirfiifciactaitoinonp rporcoecsessas raerseh sohwonwinn iFni gFuigruer1e a1n adnTda Tbalebl1e. 1. FFiigguurree 11.. PPuurriiffiiccaattiioonn ooffh heemmoogglolobbininH Hb-bI:‐I(:A ()As)e psaerpaatrioatnioonf aocft iavcetfivraec tfiroancstiionntsh eins uthpee rsnuaptaenrntabtyaDntE bAyE DFEasAtEF lFoawsta nFiloown eaxnchioann geexcchharnomgea tcohgrroampahtyo;g(rBa)pphuyr; ifi(Bc)a tpiounriofifcaatcitoivne offr aacctitoivne J1frSa1ctwiohni cJh1Sco1 nwtahinicehd cHonbt-aIionbetda iHnebd‐If roobmta(iAne)db yfrSoPmF a(Ast) Fbloyw SPan Fioanste Fxclohwan agneicohnr oemxcahtaonggraep chhyr;o(mC)aEtoSgIr-MapShmy; a(sCs)s pEeScIt‐rMumS mofasHs bs-pI;eactnrdum(D o)ft hHebfi‐In; aalnpdu (rDifi)c tahteio fninoafl Hpubr-iIf.ication of Hb‐I. TTaabbllee 11. .AAnntitbibaaccteterriaial laaccttivivitityy ooff eeaacchh ppuurrififiieedd ffrraaccttiioonn aaggaaiinnsstt EE.. ccoollii AATTCCCC2255992222.. Fractions J1 J2 J3 J4 J1S1 J1S2 J1S3 Cipro Fractions J1 J2 J3 J4 J1S1 J1S2 J1S3 Cipro IZ (mm) 10.18 ± 0.24 9.22 ± 0.21 nd nd 16.19 ± 0.62 nd 6.74 ± 0.18 31.66 ± 0.22 IZ(mm) 10.18±0.24 9.22±0.21 nd nd 16.19±0.62 nd 6.74±0.18 31.66±0.22 IZ = Inhibition zone (mm). nd = not detected. Cipro = Ciprofloxacin. Sample amount: 20 μL. The IZ=Inhibitionzone(mm).nd=notdetected.Cipro=Ciprofloxacin.Sampleamount:20µL.Theconcentrationof csoanmcpelnetsrwataiso2n. 0o0f msagm/mpLle.sE wacahsa 2ss.0a0y wmags/mpeLrf.o Ermacehd ainsstraiyp lwicaatse ,paenrdfothrmereedsu ilnts tarriepplirceasteen,t aedndas tthhee rmeseuanlts± aSrDe . presented as the mean ± SD. Thehighestantimicrobialactivitypeak,J1S1,wasobtainedbyatwo-steppurificationprocedureof The highest antimicrobial activity peak, J1S1, was obtained by a two‐step purification ion-exchangechromatography(Figure1A,B).J1S1exhibitedthehighestantimicrobialactivityagainst procedure of ion‐exchange chromatography (Figure 1A,B). J1S1 exhibited the highest antimicrobial E.coliwithinhibitionzonediametersof16.19±0.62mm. ToevaluatethepurityoffractionJ1S1,tricine activity against E. coli with inhibition zone diameters of 16.19 ± 0.62 mm. To evaluate the purity of sodiumdodecylsulfatepolyacrylamidegelelectrophoresis(Tricine-SDS-PAGE),nativepolyacrylamide fraction J1S1, tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis gelelectrophoresis(Native-PAGE)andRP-HPLCwereapplied,asdescribedinapreviousstudy[33]. (Tricine‐SDS‐PAGE), native polyacrylamide gel electrophoresis (Native‐PAGE) and RP‐HPLC were applied, as described in a previous study [33]. A single band in both Tricine‐SDS‐PAGE and Native‐PAGE revealed that J1S1 was a pure polypeptide with an approximate molecular weight of 15 kDa (Figure S1A,B). Furthermore, J1S1 was loaded onto a reversed‐phase C18 column to confirm Mar.Drugs2017,15,205 4of17 AsinglebandinbothTricine-SDS-PAGEandNative-PAGErevealedthatJ1S1wasapurepolypeptide with an approximate molecular weight of 15 kDa (Figure S1A,B). Furthermore, J1S1 was loaded onto a reversed-phase C18 column to confirm the purity. A single peak was found at 10.43 min Mar. Drugs 2017, 15, 205 4 of 17 (Figure1D),highlightingthehighpurityofJ1S1. Electrospray-ionizationmassspectrometry(ESI-MS) analysis of purified J1S1 revealed that its accurate molecular weight was 15,859.0 Da (Figure 1C). the purity. A single peak was found at 10.43 min (Figure 1D), highlighting the high purity of J1S1. Comparedwithorganicsolventextraction, ammoniumsulfateprecipitationcanbeusedtoobtain Electrospray‐ionization mass spectrometry (ESI‐MS) analysis of purified J1S1 revealed that its moreapcrcoutreaitnes manoldecpuelaprt iwdeeisgwhti twhabs i1o5a,8ct5i9v.0it yD.aM (Faingyurset u1dCi)e. sChomavpeauresde dwaitmh moroganniuicm sosluvelfnatt eexptrraecctiipoint,a tion foranatimbmacotenriuiamlp seuplftaidtee pirseocliaptiitoanti,oinn cclaund bien gustehde tpou orbifitaciant mioonroe fpprolatenitnasr iacnidn p16ep3t[i3d4e]s, wpiltahn btaioriaccitnivAity-1. [35] andsaMkaancyin sLtuSdJ6ie1s8 h[3a6v]e. Eu.secdol iaismomnoenoiufmth esumlfoatset cpormecmipiotantipoant hfoorg eannitcibbaacctetreiraila paenpdtiadef reisqoulaetniotnc,a use ofnosinoccloumdiinagl tahned pucorimficmatiuonni toyf -palcaqnutairriecdin b1a6c3t [e3r4i]a, lpilnanfetacrtiicoinns A.‐I1n [3re5]c eanndt ysaekaarcsi,ni nLfSeJc6t1i8o n[3s6]w. Eit. hcoEli .coli is one of the most common pathogenic bacteria and a frequent cause of nosocomial and havebeenincreasinglyreported,andthenumberofE.coliisolatesfoundtoberesistanttoantibiotics, community‐acquired bacterial infections. In recent years, infections with E. coli have been especiallytocephalosporinsandfluoroquinolones, hasincreasedsignificantlyduringthelasttwo increasingly reported, and the number of E. coli isolates found to be resistant to antibiotics, especially decades[37]. ThepolypeptidefractionJ1S1,purifiedfromA.inflata,whichiscapableofinhibiting to cephalosporins and fluoroquinolones, has increased significantly during the last two decades [37]. E.coli,isapromisingcandidateforthedevelopmentofantibacterialagents. The polypeptide fraction J1S1, purified from A. inflata, which is capable of inhibiting E. coli, is a promising candidate for the development of antibacterial agents. 2.2. IdentificationofHb-I 2.2. Identification of Hb‐I J1S1 was subjected to amino acid sequence analysis by automated Edman degradation. The N-terJm1Si1n awlaas msuinbjoecatecdid tos eaqmuineno caeciwd asseqdueentecrem ainnaelydsitso byb eauPtSoVmQatGedA EAdQmQanL TdAegDraVdKatio(Fni.g Tuhree S2). ThereNsu‐tletrsmoifnBalL aAmSiTnos eaacricdh seesqsuheonwcee dwaosn ldyetoenrmemineadtc hto tobet hPeSVheQmGoAgAloQbQinLTsuAbDuVnKit (IF(iHgubr-eI )So2f).S Tcahpeh arca broughretosunlitis( BofA BMLA63S3T2 s3e.1ar)cwheisth shaohwigedh odnelgyr oeneeo mfsaitmchi ltaor itthye (h9e3m%o)g.lWobiitnh stuhbeupnoitl yI m(Hebr‐aI)s eofc hScaaipnhraercaac tion broughtonii (BAM63323.1) with a high degree of similarity (93%). With the polymerase chain reaction (PCR)technique,J1S1thatcontainedanopenreadingframeof441nucleotideswasfoundtobeidentical (PCR) technique, J1S1 that contained an open reading frame of 441 nucleotides was found to be toHb-IinA.inflata(GenBank: AB713934.1). ByBLASTsearch,Hb-IinA.inflatashowedhighsimilarity identical to Hb‐I in A. inflata (GenBank: AB713934.1). By BLAST search, Hb‐I in A. inflata showed withthehemoglobinsubunitIofScapharcainaequivalvis,ArcasubcrenataandTegillarcagranosa,butlittle high similarity with the hemoglobin subunit I of Scapharca inaequivalvis, Arca subcrenata and Tegillarca similaritywiththehemoglobin-relatedantibacterialpeptidesofvertebrates(Figure2). Somestudies granosa, but little similarity with the hemoglobin‐related antibacterial peptides of vertebrates (Figure havedemonstratedclearantibacterialactivityinthehemoglobinofvertebrates[19–27].However,there 2). Some studies have demonstrated clear antibacterial activity in the hemoglobin of vertebrates hasbe[1e9n–l2i7tt]l.e Hfoowcuesveorn, tthheerea nhtaisb abceteenr ilaitltleef ffeocctusso ofni nthvee ratnetbibraatcetehrieaml eofgfelcotbs ionf ainnvderhteembroatcei dhienms.oCgloombinp ared withtahnedh heemmoogcliodbinins. sCuobmupnaitr,ehd ewmiothc itdhien shehmavogelostbrionn sguebruannitt,i bhaecmteorciiadlinasc thivaivtey satnrodngstearb ailnittiyba[3ct8e,r3i9al] and therefaocrteivhitayv aentdh setapboiltietyn t[i3a8l,3t9o] baendp othteernetfoarnet hibaavcet tehreia ploatgenetniatsl .to be potent antibacterial agents. FigurFei2g.uSree q2u. eSnecqeuecnocme pcaormispoanriosofnH obf- IHwbi‐tIh wthiteh htehme ohgemloobginlofbrionm froomth eorthinevr eirntveebrrtaetbersa.teIsd. eIndteicnatilcaalm ino acidraemsiidnuoe ascaidr erehsiigdhuleisg ahrtee dhiignhlyigehlltoewd ,ina nydellsoiwm,i laanrda smiminiloara acmidinreos aidciude rsesairdeuhesig ahreli ghhigtheldigihntebdl uine and greenb,lruees paencdt igvreeleyn., respectively. Mar.Drugs2017,15,205 5of17 Mar. Drugs 2017, 15, 205 5 of 17 22..33.. BBiiooiinnffoorrmmaattiicc AAnnaallyyssiiss aanndd AAnnttiibbaacctteerriiaall FFuunnccttiioonn SSccrreeeenniinngg PPrrootteeiinn hhyyddrroollyyssiissb byye neznyzmymeseiss aisf eaa sfiebalesiwblaey wtoayd istcoo vdeisrcpoovteern tpaontetinbta catnertiibalapcteepritaidl epsehpidtiddeens hinidpdreonte iinns .pPreoptetiidness. hPyedprtoidlyezse dhybdyrtorlyypzseidn ,bpyre fterryapbsliyn,c opnrteafienrianbglya rgcoinnitnaeinainndg lyasrignien,iunesu aanlldy plyosssineses, upsousaitlilvye pcohsasregsess paonsditievxeh icbhiatragnetsib aancdte reixahliabcitti vanittyib[a3c1t,3er2i]a.lF aocrtievxiatym [p3l1e,,3i2n]d. Foolirc iedxianm,wphlei,c hincdoonlitcaiidniend, warhgiicnhin ceoonrtalyinsiende aartgitisniCn-et eormr linysuisn,ed iastp liatsy eCd‐tpeormtenintuasn, tidbiascptlearyiaelda cptoivteitnyt [4a0n]t.ibHayctderroialyl saisctsiivmituyl a[t4i0o]n. Hcoymdbroinlyesdisw siimthublaiotiionnfo crommabtiicneadn awlyitshis biisoainnfoerffimcaietinct aannadlyisnisn oisv aanti vefefiacpiepnrto aanchd tinondoivscaotivveer appoptreonatciahl taon dtiibsaccotveerria ploatgeenntitasl. aTnhtirboaucgtehritarly apgsiennthsy. Tdhrorloyusgish stirmypuslainti ohnydarnodlybsiiso isnimfourmlaatitoicn aannadl ybsiiosinufsoirnmgatthice aannatilmysiicsr oubsiinalg pthepe taidnetimdaictraobbaisael p(AepPtDid),e AdaI-thaebmasoec (iAdiPnDs,),i nAcIl‐uhdeimngocsidevinesr,a ilnpcelupdtiidneg fsreavgemraeln ptespwtiidthe fproatgemnteinaltsa nwtiitbha cptoetreianltifauln acntitoibna,cwteerrieali dfuennctitfiioend, (wFiegrue riede3nAt)i.fied (Figure 3A). FFiigguurree 33.. IInn ssiilliiccoo aannaallyyssiiss ooff HHbb‐-II:: ((AA)) TTrryyppssiinn hhyyddrroollyyttiicc ssiitteess aanndd ppeeppttiiddee ffrraaggmmeennttss aalliiggnneedd wwiitthh APD;and(B)SchifferandEdmundsonhelicalwheelprojectionofAI-hemocidins.Thehydrophobic APD; and (B) Schiffer and Edmundson helical wheel projection of AI‐hemocidins. The hydrophobic residuesareyellow,positivelychargedhydrophilicresiduesareblue,negativelychargedhydrophilic residues are yellow, positively charged hydrophilic residues are blue, negatively charged residuesarered,asparagineandglutamineareinpinkcolor,smallneutralresiduesaregray,andsmall hydrophilic residues are red, asparagine and glutamine are in pink color, small neutral residues are polarresiduesarepurple. gray, and small polar residues are purple. TThhee sseeqquueenncceessa nadndp hpyhsyicsoiccohcehmeimcailcpalr oppreorptieerstioefsA oI-fh AemI‐ohceimdioncsidariensli satreed ilnistTeadb lein2 .TAalbllpe e2p.t idAelsl pheapdtiadnese thpaods iati vneetc hpaorsgiteivaen dchwaregree panrodp woseerde tporobpeocsaetdio ntoic bpee pcatitdioensi.cT pheeprtaidtieoss. oTfhpeo rlaatrioress oidf upeoslator rneosnidpuoelasr troe sniodnupesolware rreesaipdpureosx iwmeartee layp5p0r%ox.iAmmatoenlyg 5th0e%m. ,AAmI-ohnemg othceidmin, A2Is‐hhoewmeodcitdhienh 2ig shheoswtreadti othoef hpioglharesrte sriadtuioe sotfo pnoolnapr orlaesrirdeusiedsu teos (n7o1n.4p3o%la),r wrehseirdeuaessA (I7-h1.e4m3%oc)i,d winh2erheaads tAheI‐lhoewmeostcihdyidn ro2p hhaodb icthitey loofw0e.0s4t 3h.yTdhroepphroebdiiccitteyd ohf e0l.i0x4s3t.r uTchteu rpersedoifctthede pheeplitxi dsetrsuacrteursehso owf nthine pFeigputirdee3sB a.rAe lslhpoewpnti dine sFcigouurlde 3foBr. mAlhl epliexpetsid,tehso cuoguhldo nfolyrmA hI-ehleixmeso,c tihdoinusg2h wonalsyc AapI‐ahbelmeoofcifdoirnms i2n gwaass tcaabpleabalme pofh ifporamthiincgs tar usctatubrlee athmapthcoipnatathinice dsatruhyctdurroep hthoabti ccsoidnetaainndeda pao shityivderolypchhoabrigc edsisduer faanced. Gae npeorsailtliyv,ealnyt ibchacatregreiadl pseuprtfiadcees. Gpoesnseersasllsye,v aenratilbfaecatteurriaels ipnedpitciadteivs epoofstsheessir saenvteibraalc tfeeraitaulraecst ivinitdyic[a4t1iv,4e2 ]o.fO tnheeifre aatnutriebaiscttehreiairl paoctsiivtiivtye [c4h1a,4rg2e]., Oannde afenaotuthreer isfe tahtueirre pisostihtievep rcehsaerngcee, oafndat alenaostthe5r0 %feaotfuhrey disr othpeh opbriecsernescied oufe sa.t Tlehaestp 5o0s%iti voef hchyadrrgoephisocboicn druesciidvueetso. aTnheel epctorsoistitvaeti cchinatregrea citsio cnowndituhctivhee btoa catenr iaellemctermosbtartainc ei,nwtehriacchtiiosnn ewgiathti vtehley bchacatregreiadl [m41e]m. Tbrhaenhe,i gwhhriacthio iso fnhegyadtriovpelhyo bchicarrgeseidd u[4e1s]i. sTthheo uhgighht troatcioon otrfi bhuytderotophdoisbriucp rteiosinduoefst hise tbhaocutegrhiatl tmo ecmonbtrraibnue.teH toow deivsreur,patimono roef ctrhuec ibaalcfeteartiuarle mofemthberpaenpet. idHeoswpeovsseer,s sai nmgoarnet icbraucctiearli afleaactutiroen oifs tthhee pfoerpmtiadteios npoofssaenssoirndge raendtiabnadctestraiabll eacatmiopnh iisp aththei cfosrtmruacttiuorne .oTf haen hoyrddreorpedh oabnidc ssitdaebloef athmepshtriupacttuhrice sistrtuhcotuurgeh. tTthoee hnytedrroinpthooabnicd sdidiser uopf tththee sbtrauccteturirae mise tmhoburagnhet ,two heenrteear sinthtoe ahnydd rdoipshruilpict rtehsei dbuaecstearirae mcoenmsibdrearneed, twohperroevaisd ethteh ehyodprpooprhtuilnicit ryetsoidcuoems bairnee coornasiddheerreedt otot hperomveidmeb trhaen oepspuorfratucen[it4y2 ]t.oA clotmhobuinghe oArI -ahdehmeroec itdoi nth2e cmonemtaibnreadnea shuirgfhacrea t[i4o2]o. fAplothlaorurgehs idAuI‐ehseamnodcildoiwn h2 ycdornotpaihnoebdi cait yh,igthhe raamtiop hofip paothlairc rsetrsuidcutuerse atnhda tlofwor mhyeddrobpehtwobeiecnityth, tehhe yadmropphhipoabtihcics isdtreuacntudrea thpaots iftoivrmeleydc bheatrwgeedens uthrefa hcyedcroonpfheorrbeidc saindteib aancdte ari paloascittiivveitlyy. charged surface conferred antibacterial activity. Mar.Drugs2017,15,205 6of17 Table2.SequencesandphysicochemicalpropertiesofAI-hemocidins. Peptide Sequence Length pI Mw NC H PR/n% 1 PSVQGAAAQLTADVKK 16 9.01 1583.81 1 0.196 8/50% 2 DLRDSWKVIGSDKK 14 8.50 1646.86 1 0.043 10/71.43% 3 ISAAEFGKINGPIKK 15 9.70 1572.87 2 0.285 8/53.33% 4 VLASKNFGDK 10 8.56 1078.23 1 0.163 6/60% pI:isoelectricpoint.Mw:molecularweight.NC:netcharge.H:hydrophobicity.PR/n%:polarresiduesandratio ofpolarresidues. TheantibacterialactivitiesofHb-IandAI-hemocidinsareshowninTable3. Hb-Idemonstrated adequateantibacterialactivityagainstE.coliandS.aureus. AmongtheAI-hemocidins,AI-hemocidin2 showedthehighactivityagainsttheteststrains,withtheexceptionofEnterococcusfaecalis. S.aureus exhibited the highest sensitivity to AI-hemocidin 2 with a MIC value of 37.5 µg/mL (22.77 µM). ComparedwithHb-I,theantibacterialeffectofAI-hemocidin2wasenhanced. AlthoughHb-Iwas initiallyscreenedwithE.coli,theantibacterialactivityofAI-hemocidin2againstseveralGram-positive bacteriawasobserved. TheresultssuggestedthatAI-hemocidin2wasanantibacterialpeptidewith abroadantimicrobialspectrum. Inaddition,AI-hemocidin1displayedantibacterialactivityselectively against Gram-negative bacteria Pseudomonas aeruginosa and E. coli with a MIC value of 75 µg/mL (47.35µM).Peptidesderivedfromtheerythrocytesofvariouslivingorganismshavealsobeenreported toexhibitantibacterialactivity. Recently,hydrolytefractionsofbovinehemoglobinwerereportedto haveantibacterialactivityagainstbacteriainvasion. Anovelhemoglobinpeptide,P3derivedfrom bovineerythrocytes,assumedanα-helicalconformationandexhibitedmodestantimicrobialactivity invitro. P3killedbacteriarapidlybydisruptingthebacterialcytoplasmicmembraneanddisturbing theintracellularcalciumbalance. Hemoglobin-relatedpeptidesaretherebybecominganewsourceof antibacterialagentsthatarecapableofinhibitingpathogenicbacteria. Table3.AntibacterialactivitiesofHb-IandAI-hemocidins. MICValue(µM) Bacteria 1 2 3 4 Hb-I Cipro E.coliATCC25922 47.35 45.54 >381.47 >556.47 75.66 24.14 P.aeruginosaATCC27853 47.35 91.08 95.37 >556.47 >100.88 48.28 P.aeruginosaclinicalisolate 47.35 91.08 >381.47 >556.47 >100.88 48.28 S.aureusATCC25923 >378.83 22.77 >381.47 >556.47 75.66 24.14 B.subtilisATCC6633 >378.83 182.16 >381.47 69.55 >100.88 12.07 B.subtilisATCC6633 >378.83 182.16 >381.47 >556.47 >100.88 12.07 E.faecalisATCC29212 >378.83 >364.33 >381.47 >556.47 >100.88 24.14 Eachassaywasperformedintriplicate.Cipro=Ciprofloxacin. 2.4. CircularDichroismSpectraand3DSecondaryStructurePrediction ThesecondarystructureofAI-hemocidin2wasinvestigatedindifferentenvironments,including 10mMPBSsolutionand50%trifluoroethanolsolutionbycirculardichroism(CD)spectroscopy[43]. As illustrated in Figure 4A, peptides displayed random coil conformations in PBS. However, the spectraofAI-hemocidin2featuredanα-helixconformationinthepresenceof50%TFE,whichwas indicatedbythepresenceoftwonegativedichroicbandsat208and222nm[44]. TheresultsoftheCD spectruminAI-hemocidin2wereaccordanttothesecondarystructurepredictedbythehelicalwheel projection(Figure3B).ThemodelingstructureofAI-hemocidin2wasproposedbyIterativeThreading ASSEmblyRefinement(ITASSER)(Figure4B).Thestructureoftheantibacterialpeptidesallowsfor theirinsertionintobacterialmembranesformingavoltage-dependentionchannel,thereafteraltering thepermeabilityofthebacterialcell,leadingtodisruptionofcytoplasmicprocessesandtargetcell lysis[11]. Thehighlevelofα-helixinAI-hemocidin2contributedtothesensitiveantibacterialactivity. Mar. Drugs 2017, 15, 205 7 of 17 2.5. Assays for Hemolysis and Cytotoxicity AI‐hemocidin 2 showed low hemolytic activity on murine red blood cells. The hemolysis of AI‐hemocidin 2 reached a maximum of 10.27%, even at a high concentration of 500 μg/mL, which was 13 times higher than its MIC for S. aureus (Table 3). The HEK293 cell viability was approximately 88% after treatment with AI‐hemocidin 2 at 250 μg/mL. The half maximal inhibitory concentration of cell viability was larger than 1000 μg/mL (Table 4). The cytotoxic concentrations for HEK cells were higher than the MIC values. These results indicated that AI‐hemocidin 2 displayed excellent bacteria selectivity (Table 4). Piscidin 1, a peptide purified from hybrid striped bass, possesses significant antibacterial action as well as cytotoxic activity [45]. The mechanism of action of its bactericidal and fungicidal effects was operated via targeting and disrupting the bacterial and fungal membranes [46,47]. However, the application of piscidin 1 has been limited on account of its cytotoxic effects. On the contrary, hemoglobin‐derived peptides exhibit antibacterial activity with low cytotoxicity. SHβAP and P3 were both hemoglobin‐related antibacterial peptides derived from the liver of skipjack tuna and bovine, respectively [25,45]. SHβAP and P3 both showed low hemolytic activity and cytotoxicity, although their mechanisms of antibacterial action were similar to Piscidin 1. The finding of low cytotoxicity and low hemolytic activity of AI‐hemocidin 2 is comparable to SHβAP and P3. The antimicrobial activity of AI‐hemocidin 2 was not greatly affected by pH or heat treatment (Figure 5). As shown in Figure 5, compared with 0.01% HAc (pH 3) and sterile water (pH 7), the antibacterial activity of AI‐hemocidin 2 was significantly decreased (p < 0.05) in 0.01% NaOH (pH 10), but still retained 60.76% antibacterial activity. The net charge of AI‐hemocidin 2 (p.I. 8.5) was negative in 0.01% NaOH (pH 10) and this negatively charged state was not optimal for the association of AI‐hemocidin 2 with the negatively charged bacterial membrane for antibacterial activity. The binding ability of AI‐hemocidin 2 would have been decreased in 0.01% NaOH (pH 10), thus reducing the antibacterial activity. However, various amino acids display different isoelectric points and different charges in different solutions. AI‐hemocidin 2 contained three aspartic acids at the hydrophilic side. The net charge of the hydrophilic portion with aspartic acids might be positive in 0.01% NaOH (pH 10), providing the possibility of an interaction between AI‐hemocidin 2 and the negatively charged bacterial membrane. Therefore, AI‐hemocidin 2 retained antibacterial activity Mar.Drugs2017,15,205 7of17 even in 0.01% NaOH (pH 10) showing its potential as a candidate antibacterial agent. FFiigguurree 44.. SSeeccoonnddaarryys tsrturcutcutruerech cahraacrtaecrtiezraitziaotnioonf AofI -hAeIm‐hoecmidoincid2:in(A 2): ci(rAcu) lacirrdcuiclharr odisimch(rCoiDsm)s p(eCcDtr)a sopfeActIr-ah eomf oAciId‐hinem2;oacniddi(nB )23; Danstdr u(cBtu) r3aDlp rsetrduiccttiuornalo fpAreI-dhiecmtioonc idoifn A2.I‐Thheemcoocloidrsina r2e. mTehaen icnoglloersss aanred monelayniunsgeldestso apnedrf oonrmly tuhseedse tcoo npderafroyrmstr tuhcet usreecoinndaanriyc es-tlrouocktuinrge iwn aay .nice‐looking way. 2.5. AssaysforHemolysisandCytotoxicity AI-hemocidin 2 showed low hemolytic activity on murine red blood cells. The hemolysis of AI-hemocidin2reachedamaximumof10.27%,evenatahighconcentrationof500µg/mL,which was13timeshigherthanitsMICforS.aureus(Table3). TheHEK293cellviabilitywasapproximately 88%aftertreatmentwithAI-hemocidin2at250µg/mL.Thehalfmaximalinhibitoryconcentration ofcell viabilitywas largerthan 1000 µg/mL(Table 4). The cytotoxicconcentrations forHEKcells werehigherthantheMICvalues. TheseresultsindicatedthatAI-hemocidin2displayedexcellent bacteria selectivity (Table 4). Piscidin 1, a peptide purified from hybrid striped bass, possesses significant antibacterial action as well as cytotoxic activity [45]. The mechanism of action of its bactericidal and fungicidal effects was operated via targeting and disrupting the bacterial and fungal membranes[46,47]. However, the application of piscidin 1 has been limited on account of itscytotoxiceffects. Onthecontrary,hemoglobin-derivedpeptidesexhibitantibacterialactivitywith lowcytotoxicity. SHβAPandP3werebothhemoglobin-relatedantibacterialpeptidesderivedfrom theliverofskipjacktunaandbovine,respectively[25,45]. SHβAPandP3bothshowedlowhemolytic activityandcytotoxicity,althoughtheirmechanismsofantibacterialactionweresimilartoPiscidin1. ThefindingoflowcytotoxicityandlowhemolyticactivityofAI-hemocidin2iscomparabletoSHβAP andP3. TheantimicrobialactivityofAI-hemocidin2wasnotgreatlyaffectedbypHorheattreatment (Figure 5). As shown in Figure 5, compared with 0.01% HAc (pH 3) and sterile water (pH 7), the antibacterialactivityofAI-hemocidin2wassignificantlydecreased(p<0.05)in0.01%NaOH(pH10), butstillretained60.76%antibacterialactivity. ThenetchargeofAI-hemocidin2(p.I.8.5)wasnegative in 0.01% NaOH (pH 10) and this negatively charged state was not optimal for the association of AI-hemocidin2withthenegativelychargedbacterialmembraneforantibacterialactivity. Thebinding ability of AI-hemocidin 2 would have been decreased in 0.01% NaOH (pH 10), thus reducing the antibacterialactivity. However,variousaminoacidsdisplaydifferentisoelectricpointsanddifferent chargesindifferentsolutions. AI-hemocidin2containedthreeasparticacidsatthehydrophilicside. Thenetchargeofthehydrophilicportionwithasparticacidsmightbepositivein0.01%NaOH(pH10), providingthepossibilityofaninteractionbetweenAI-hemocidin2andthenegativelychargedbacterial membrane. Therefore,AI-hemocidin2retainedantibacterialactivityevenin0.01%NaOH(pH10) showingitspotentialasacandidateantibacterialagent. Mar.Drugs2017,15,205 8of17 Mar. Drugs 2017, 15, 205 8 of 17 Table 4. Hemolysis activity and cytotoxicity of AI‐hemocidin 2. Table4.HemolysisactivityandcytotoxicityofAI-hemocidin2. Sample AI‐Hemocidin‐2 MIC a (μSga/mmpLl)e AI-H37em.5–o3c0id0i n-2 HC1M0 b I(Cμga/(mµgL/) mL) 37>.55–0300 0 HHCm10ax bc (µg/mL) 10.2>75 0±0 0.42 Cell viability (%H) amt a2x5c0 μg/mL 1808..2178 ±± 90..4428 Cellviability(%)at250µg/mL 88.18±9.48 IC50I dC(μgd/m(µLg/) mL) >>11000000 SI v5a0lue e 3.33–26.67 SIvaluee 3.33–26.67 Note: a Minimum inhibitory concentration of AI‐hemocidin 2 against E. coli, P. aeruginosa, P. Note: aMinimuminhibitoryconcentrationofAI-hemocidin2againstE.coli,P.aeruginosa,P.aeruginosaclinical isoaleartue,gSin.oasuar eculisn,iSc.aelp iisdoelramteid, iSs.a anudreBu.ss,u Sb.t ielpisi.debrmHiCd1i0s aisntdh eBc. osunbcteinlitsr.a bt iHonCo10f ips etphtei dceoncacuensitnrgat1io0n% ohfe pmeopltyidsies on hucmaaunsienrgyt 1h0ro%cy hteesm.coHlymsiasx iosnt hheupmeracnen etraygteh(r%o)chyetemso. lcy Hsismaaxt itsh ethheig pheersctetensttaegdep (e%pt)i dheemcoonlcyesnitsr aatti otnhe(5 h00igµhge/smt L). dItCe5s0teisdd pefienpetiddaes cthoenccoennctreanttiroanti o(n50a0t wμhgi/cmh5L0)%. do IfCg5r0o wist hdiesfiinnheidb itaesd .theeS ecloecntciveintytriantdioenx (aint vwithroic)h:I C5500%in oHf EK p29re3gsrceoenwltlestd/hM aissI Ctihn,ehICmib5ei0taetnadk±. ee nSSDeals.eactmiviintyim inudme,x1 (0i0n0 vµitgr/om): LIC.A50 sisna HysEwKe 2re93p ecreflolsr/mMeIdCi,n ICtr5i0p tlaickaeten, aasn da mthienriemsuulmts, are 1000 μg/mL. Assays were performed in triplicate, and the results are presented as the mean ± SD. FigFuigruer5e. 5S. tSatbaibliitliytyo offt htheea anntitbibaacctteerriiaall aaccttiivviittyy ooff AAII‐-hheemmooccididinin 22 aaggaianinsts Et.E c.oclio ldiudruinrgin cghcahnagnesg eins pinHp H and heat, ** p < 0.05. andheat,**p<0.05. 2.6. Effects of AI‐Hemocidin 2 on the Permeability of the Bacterial Membrane 2.6. EffectsofAI-Hemocidin2onthePermeabilityoftheBacterialMembrane Increasing the permeability of the bacterial membrane is a possible mechanism by which Increasing the permeability of the bacterial membrane is a possible mechanism by which peptides exert antibacterial function. Outer membrane permeabilization by AI‐hemocidin 2 was peptides exert antibacterial function. Outer membrane permeabilization by AI-hemocidin 2 was assessed by an NPN uptake assay. Upon destabilization of the cellular membrane by AMPs, NPN assessedbyanNPNuptakeassay. UpondestabilizationofthecellularmembranebyAMPs,NPN inserted into the damaged membrane and emitted a strong fluorescence signal in the hydrophobic insertedintothedamagedmembraneandemittedastrongfluorescencesignalinthehydrophobic interior of the cell membrane [48]. As illustrated in Figure 6A, 45.54 μM (MIC) of AI‐hemocidin 2 intcearuioserdo 5f7t.h2%e cNePllNm uepmtabkrea nbye E[4. 8c]o.li Aats 36il0lu ss atrftaetre dsaminpFlei gtrueraetm6Aen,t4, w5.5h4erµeaMs 1(3M6.I6C2 )μoMf A(3I ×-h MemICo) coifd in 2 AcaIu‐hseemdo5ci7d.2in% 2 NinPdNuceudp htaigkheerb yNPEN. cuoplitaakte 3(8610.6s6%a)f.t eTrhes armespullets tirnedaitcmateendt ,thwath AerI‐ehaesm1o3c6id.6in2 2µ M (3w×aMs ICca)poabfleA I-ohfe mpeorcmideianbi2liziinndgu ctehde hoiguhteerr NmPemNburapntea kein( 8a1 .6d6%os)e.‐dTepheendreesnut ltsmianndniecra. teTdhteh at AIp-heremmeoacbiidliiznat2iown aosf ctahpea ibnlneeor fcpyetorpmlaesambiilci zminegmtbhreanoeu twerasm memeabsurarnede ibny aa dβo‐sgea-ldacetpoesniddaesne tamssaanyn. er. ThOe‐npietrrompehaebniylilz‐βa‐tDio‐gnaloafctothpeyriannnoesridcey t(oOpNlaPsGm) icis mheymdrborlyazneed winatso moe‐naisturorpedhenboyl ainβ r-gesaplaocntsoes itdoa se assβa‐gy.alOac-tnoistirdoapshee rneylel-aβse-Dd -fgraolmac ttohpe ycryatnoposlaidsme (wOhNePnG th)eis chyytodprloalsymzeicd minetmobor-anniter oisp hpeernmoleainblree s[4p9o]n. se toTβh-egraelfaocrteo, siOdNasPeGr elweaass edchforsoemn tahse cay tporpolbaes mtow dheetnermthiencey tthoep lapsemrmiceambeilmityb roafn ethise pceyrtmopelaabslmei[c4 9]. Thmereemfobrrea,nOeN bPy Gspwecatsrocphhoosetonmaestrayp arto b4e05t ondme.t eβr‐mgailnaecttohseidpaeserm leeaakbaigliet ywoafst hoebsceyrtvoepdl afsrommic Sm. eaumrebursa ne by(Fspigeucrtreo 6pBh)o atnodm Eet. rcyolai t(F4i0g5unrem 6.Cβ) -igna tlahcet opsriedsaensecele oafk AagI‐ehwemasocoibdsiner 2v eind afr doomseS‐. aanudre tuims(eF‐idgeupreen6dBe)nat nd manner. There was no change over time in the control cell medium. As shown in Figure 6B,C, the E.coli(Figure6C)inthepresenceofAI-hemocidin2inadose-andtime-dependentmanner. Therewas absorbance values with 3 × MIC of AI‐hemocidin 2 were not much higher than the values with 1 × nochangeovertimeinthecontrolcellmedium. AsshowninFigure6B,C,theabsorbancevalueswith MIC of AI‐hemocidin 2. This may be because the 1 × MIC concentration permeabilized the bacterial 3×MICofAI-hemocidin2werenotmuchhigherthanthevalueswith1×MICofAI-hemocidin2. cytoplasmic membrane to a sufficient degree and that the 3 × MIC concentration just accelerated this Thismaybebecausethe1×MICconcentrationpermeabilizedthebacterialcytoplasmicmembraneto process. In addition, the absorbance values measured by a microplate reader (Figure 6B,C) showed asufficientdegreeandthatthe3×MICconcentrationjustacceleratedthisprocess. Inaddition,the little difference between the 1 × MIC and 3 × MIC treatments. As a result of its positive net charge and absorbancevaluesmeasuredbyamicroplatereader(Figure6B,C)showedlittledifferencebetween the 1 × MIC and 3 × MIC treatments. As a result of its positive net charge and α-helix structure, Mar. Drugs 2017, 15, 205 9 of 17 αM‐haer.lDixr usgtsru20c1t7u,r1e5,, A20I5‐hemocidin 2 possesses bacterial membrane permeability activity. AI‐hemocid9inof 21 7 Mar. Drugs 2017, 15, 205 9 of 17 functions in a similar manner to bactenecin, permeabilizing the bacterial membrane in a rapid, reliable way [49]. The results of our experiments suggested that AI‐hemocidin 2 could increase the AI-αh‐ehmeloixc isdtriunc2tupreo,s AseI‐shseemsboacicdtienr i2a lpmosesemssbersa bnaectpeeriraml meaebmilbitryanaec tpievrimtye.aAbiIl-ihtye macoticviidtyin. A2I‐fhuenmctoicoindsini n2 a permeability of the cytoplasmic membrane of pathogens, thereby exerting antibacterial activity. simfiulanrctmionans nine ra tsoimbialacrt emnaencnine,r ptoe brmaceteanbeicliizni,n pgertmheeabbailcitzeinriga lthme ebmacbterraianle minemabrraapnied i,nr ae lriaapbilde, wrealiyab[l4e9 ]. Thewraeys u[l4ts9]o. fTohuer erxepsuelrtism oefn tsousur gegxepsetreidmtehnatst AsIu-ghgeemstoecdi dtihna2t cAoIu‐hldeminoccriedainse 2th ecopuelrdm ienacbrielaitsye otfhteh e cytopperlamsemaibcilmitye mofb trhaen ceyotofpplaasthmoigc emnesm,tbhrearnebe yofe pxearthtionggenans,t itbhaercetebryi aelxaecrttiinvgit ya.ntibacterial activity. Figure 6. Membrane permeabilizing activity of AI‐hemocidin 2: (A) the outer membr ane permeabilization of E. coli by AI‐hemocidin 2, NPN uptake (%) is relative to polymyxin B, a positive Figure6.MembranepermeabilizingactivityofAI-hemocidin2:(A)theoutermembranepermeabilization Figure 6. Membrane permeabilizing activity of AI‐hemocidin 2: (A) the outer membrane control with a strong outer membrane permeabilizing property, ** p < 0.01; (B) cytoplasmic ofEp.ecromliebaybAiliIz-ahteiomno ocifd Ein. c2ol,iN bPy NAIu‐hpetamkoec(i%di)ni s2,r eNlaPtNiv euptotapkoel y(%m)y ixs irnelBa,tiavpe otosi tpivoleycmoynxtrinol Bw, iat hpoassittirvoen g membrane permeabilization of S. aureus by AI‐hemocidin 2; and (C) cytoplasmic membrane outceornmtreoml bwriatnhe ap esrtmroenagb ioliuzitnerg pmreompebrrtayn,e* *ppe<rm0e.0a1b;il(iBzi)ncgy tporpolpaesmrtyic, m** emp b<r a0n.0e1p; e(rBm) ecaybtiolipzlaatsimonico f permeabilization of E. coli by AI‐hemocidin 2. Each assay was performed in triplicate, and the results S.aumreeumsbbryanAeI -hpeemrmoceiadbiinliz2a;atinodn (Cof) cSy.t oapulraesums icbmy eAmIb‐hraemneopciedrmin ea2b; ilaiznadt io(nC)o fcEy.tcooplilabsymAicI -hmeemmobcriadnine 2. arEea cpphreearsmsesneatayebdwil iaazssa ttpihoeenr f moofre mEan.e c d±ol iiS nbDyt.r AipIl‐ihceamteo,cainddint h2.e Eraecshu latsssaarye wparse speenrtfeodrmaesdt hine tmriepalinca±te,S aDn.d the results are presented as the mean ± SD. 2.7. Propidium Iodide Uptake Experiment 2.7. PropidiumIodideUptakeExperiment 2.7. Propidium Iodide Uptake Experiment Propidium iodide (PI), a DNA dye that passes through damaged cell membranes rather than Propidiumiodide(PI),aDNAdyethatpassesthroughdamagedcellmembranesratherthan integratinPgro ipnitdoi uthme icoedlild me e(PmI)b, raa nDeN, wA adsy ue stehda ta ps aas sseesn tshitriovueg ihn ddaicmataogre dto c ienllv mesetmigbatrea nceesl lr matheemr btrhaanne integratingintothecellmembrane,wasusedasasensitiveindicatortoinvestigatecellmembrane integinritteyg raantdin gce ilnl tdoe tahteh cbeyll f lmowem cbyrtaonme,e wtrays [ 5u0s]e.d I na st hae s aebnsseitnivcee oinfd piceapttoidr eto, tihnev aesmtioguatnet coefl lP mI uemptbarkaen ien integrityandcelldeathbyflowcytometry[50]. Intheabsenceofpeptide,theamountofPIuptake E. coilni teagnrdit yS a. nadu rceeulsl dceealltsh wbya fsl olwow c,y tionmdiectaryti n[5g0 ]a. nIn itnhtea catb sceenllc em oef mpebprtaindee., tEh.e caomli oaunndt oSf .P aIu urpeutask cee ilnls in E. coli and S. aureus cells was low, indicating an intact cell membrane. E. coli and S. aureus treatEe.d c owlii tahn d1 ×S .M auICre uosr c3e l×ls M wIaCs AloIw‐h, eimndoicciadtiinng 2 adni sipnltaaycte dce dlli smtienmctblyra innec.r eEa. sceodli laenvde lSs . oafu PreIu us pcteallkse cells treated with 1 × MIC or 3 × MIC AI-hemocidin 2 displayed distinctly increased levels of relattirveea tteod c weliltsh i n1c ×u bMaItCed o irn 3 t h× eM aIbCs eAnIc‐eh eomf AocIi‐dhienm 2o dciisdpinla y2 e(dF idgiusrtien 7ct)l.y A i ndcoreseas‐dedep leevnedles notf iPnIc ruepatsaek ien PIuptakerelativetocellsincubatedintheabsenceofAI-hemocidin2(Figure7). Adose-dependent PI flrueolaretisvcee ntoc ec eilnlsd iinccautebda ttehda itn A thI‐eh aebmsoencicde ionf 2A wI‐haesm caopciadbilne 2o (fF digaumrea g7i)n. Ag tdhoes eE‐.d ceoplie nandden St .i naucrreeausse c ienl l increase in PI fluorescence indicated that AI-hemocidin 2 was capable of damaging the E. coli PI fluorescence indicated that AI‐hemocidin 2 was capable of damaging the E. coli and S. aureus cell membranes. Cell integrity damage assays were carried out concurrently with membrane and S. aureus cell membranes. Cell integrity damage assays were carried out concurrently with membranes. Cell integrity damage assays were carried out concurrently with membrane permeabilization tests of antibacterial agents to establish whether these two effects correlated. For membrane permeabilization tests of antibacterial agents to establish whether these two effects permeabilization tests of antibacterial agents to establish whether these two effects correlated. For example, the proline‐rich peptide Bac7(1‐35) rapidly killed E. coli at micromolar concentrations, correlated. For example, the proline-rich peptide Bac7(1-35) rapidly killed E. coli at micromolar example, the proline‐rich peptide Bac7(1‐35) rapidly killed E. coli at micromolar concentrations, while PI remained outside the cells [50]. These results indicated that AI‐hemocidin 2 was capable of conwcehnilter aPtiIo rnems,awinheidle oPuItsriedme athinee cdelolsu [t5si0d].e Tthheescee rlelssu[5lt0s] i.nTdhiceasteedre tshualtt sAiIn‐hdeicmaotecdidtihn a2t wAaI-sh ceampaobclied oinf 2 damaging cell integrity and improving the permeability of the cell membrane. wasdcaampaagbilnego cfedlla imntaeggrinitgy caenldl iinmtepgrorivtiynagn tdhei mpeprrmoevainbiglittyh eofp tehrem ceeallb milietmyobrfatnhee. cellmembrane. FFigiguFureirge 7u7.r .Ee Ef7ff.ef Ecetcfsfte socoft sfA oAIf‐ IhA-heIme‐hmoeomcicdoidciniidn 2in2 o 2on n otnhth eth emem emmeembmbrbarrananen eieni intnettgeegrgirrtiiytty yo oof ffd ddifiifffeffeerrereennntt tb bbaaacctcteteerririaaiall lsststrrtaaraiinninss..s T.ThThehe eddadatataat a show the MFI (mean fluorescence intensity). * p < 0.05 and ** p < 0.01 versus control, and each assay shshooww ththe eMMFFI I(m(meaeann flfluuoorerescsecenncec einintetennsistiyty).) .* *p p<< 0.00.50 5anandd *** *p p<< 0.00.10 1vveresrusus scocnontrtorlo, la,nandd eaecahch asassasyay was performed in triplicate. The results are presented as the mean ± SD. wwaas sppeerfroformrmeedd inin trtirpiplilcicaatete. .TThhee reresusultlst saarere ppreresseenntetedd aass ththee mmeeaann ±± SDSD. . Mar.Drugs2017,15,205 10of17 Mar. Drugs 2017, 15, 205 10 of 17 22..88.. EExxaammiinnaattiioonn ooff tthhee MMoorrpphhoollooggiicc CChhaannggeess iinn CCeellllss bbyy SSccaannnniinngg EElleeccttrroonn MMiiccrroossccooppyy DDiirreecctt vviissuuaalliizzaattioionno foAf IA-hIe‐hmeomciodciindi2n- in2d‐iuncdeudcEed.c oEli. acnodli Sa.nadu reSu.s acuerlleuulsa rcdelalmulaagr edwaamsaagses eswseads absysescssaendn inbgye lescctarnonnimngic roelseccotproyn( SEmMic).roAsIc-ohpemy o(cSidEiMn2). trAeaIt‐mheemntoicnidduinc ed2 cetlrlematomrpehnot loignidcaulccehda ncgeelsl . mCoomrpphaorleodgiwcaitlh cthhaencgoenst. roClo,m1×paMreIdC wAiIt-hh etmheo cciodnintr2olt,r e1a t×m MenItCf oArI1‐hheimndoucicdeidn p2a rttrieaaltdmaemnat gfeoor f1t hhe iSn.dauucreeuds pmaretmiabl rdaanme,agane dofs tehvee rSe. amueremubs rmanemewbrrainnke,l ianngda snedvetrhee mreelmeabsreaonfec welrliunlkalrincogn atnedn ttshoec rceuleraresde owf icthelilnu3lahr coofntrteenattms oecnctu(rFriegdu rwei8thAin–C 3) .h of treatment (Figure 8A–C). FFiigguurree 88.. SSccaannnniinngge elelectcrtoronnm micricorgorgarpahpshosf Sof. aSu.r eauusreaunsd aEn.dco lEi.t rceoalit etdrewatiethd AwI-ihthe mAoIc‐hideimno2:ci(dAi)nc o2:n t(rAo)l , cSo.nautrroelu, sSw. aiuthroeuust wthiethpoeuptt itdhee; p(Bep)tSi.daeu; r(eBu)s Str. eaautreedusw tirtehatAeId- hwemitho cAidI‐ihne2maotc1id×inM 2I aCt f1o ×r 1MhI;C( Cfo)rS 1. ahu; r(eCu)s Str. eaautreedusw tritehatAedI- hweimtho AciId‐ihnem2aotci1d×in M2 aICt 1f o×r M3IhC; (fDor) 3c ohn; t(rDo)l, cEo.nctorloilw, Eit.h coolui twpiethpotiudte p;(eEp)tiEd.ec;o (lEi)t rEe.a ctoeldi twreiathteAd Iw-hiethm AocIi‐dhienm2oactid1in× 2M aItC 1 f×o rM1IhC; faonrd 1( hF); aEn.dco (liFt)r Eea. tceodli wtrietahteAdI -wheitmh oAcIid‐hinemato1ci×dinM aItC 1f o×r M3IhC. for 3 h. TheeffectsofAI-hemocidin2onE.coliareshowninFigure8D–F.Asmoothandintactmembrane The effects of AI‐hemocidin 2 on E. coli are shown in Figure 8D–F. A smooth and intact wasexhibitedinuntreatedE.colicells. Bycontrast,membranesurfaceroughnessandcorrugationwas membrane was exhibited in untreated E. coli cells. By contrast, membrane surface roughness and observedafter1hoftreatmentwith1×MICAI-hemocidin2(Figure8E),andrupturedmembranes corrugation was observed after 1 h of treatment with 1 × MIC AI‐hemocidin 2 (Figure 8E), and andleakageofcellularcontentswereobservedfollowing3hoftreatmentwith1×MICAI-hemocidin2 ruptured membranes and leakage of cellular contents were observed following 3 h of treatment with (Figure8F).TheseresultssuggestedthatAI-hemocidin2iscapableofdestroyingcellularintegrity 1 × MIC AI‐hemocidin 2 (Figure 8F). These results suggested that AI‐hemocidin 2 is capable of and inducing significant deformation in cellular morphology. The cell surface changes induced destroying cellular integrity and inducing significant deformation in cellular morphology. The cell by AI-hemocidin 2 were similar to those previously reported [31,51]. Peptides interact with the surface changes induced by AI‐hemocidin 2 were similar to those previously reported [31,51]. cellularmembraneviabindingtonegativelychargedconstituentsontheoutermembrane,suchas Peptides interact with the cellular membrane via binding to negatively charged constituents on the lipopolysaccharide (LPS), which is followed by membrane destabilization [52]. In addition, it has outer membrane, such as lipopolysaccharide (LPS), which is followed by membrane destabilization previouslybeenproposedthattheα-helicalconformationcontributestotheantibacterialactivityby [52]. In addition, it has previously been proposed that the α‐helical conformation contributes to the disruptingmembraneintegrity[41]. antibacterial activity by disrupting membrane integrity [41]. 3. MaterialsandMethods 3. Materials and Methods 3.1. MaterialsandStrainCultureConditions 3.1. Materials and Strain Culture Conditions A.inflatamaterialswerepurchasedfromChengyangseafoodmarket,Qingdao,China,andwere identAifi. eindflbayta Rmoantgemriainls Ywue(rJein panurUchnaisveedrs iftryo,mG uCahnegnzghyoaun,gC sheianfao)o.dT hmeamrkaent,t lQeimngadssaow, aCshdiinsas,e catnedd, wweerigeh ieddeanntidfisetdo rebdy aRto−n2g0m◦Cin. DYEuA E(JiSneapnh aUronsieveFrassittyF,l oGwuaanndgzShPoSue,p hCahrionsae)F. aTshtFe lomwawntelere mpuarscsh awseads dfriossmecGteEd, Hweeailgthhecdar ea.ndT rsitso,reSdD Sa,t C−2o0o m°Ca.s sDieEAbrEi lSlieapnhtabrlousee RFa-2s5t 0F,lodwim aenthdy SlPs uSlefpoxhiadreos(eD FMasStO F)l,oPwI, wNePrNe ,ppuorlcyhmasyexdin frBo,mO NGPEG H,e3a-(l4th,5c-adriem. eTtrhiys,l -S2D-tSh,i aCzooolyml)a-2s,s5ie-d biprihlleinanytl- b2Hlu-et eRtr‐a2z5o0l,i udmimbertohmyli dsuel(fMoxTidTe), (sDtrMepStOom), yPciIn, ,NanPdNp, epnoiclyilmlinyxwiner eBo, bOtaNinPeGd, fr3o‐(m4,5S‐igdmimaeCthhyelm‐2i‐ctahliCazoo.l(ySlt).‐2L,o5u‐disip,MheOn,yUl‐S2AH)‐.teRtPraMzoI-l1iu64m0, bfertoamlbidove in(MesTeTru),m st(rFeBpSto)manydciLnB, barnodt hpweneirceilpliunr cwhaesreed ofbrotaminGedIB fCroOmIn Sviigtrmogae CnhCeomrpicoarla tCioon. ((SSatn. LDoiuegiso,, MO, USA). RPMI‐1640, fetal bovine serum (FBS) and LB broth were purchased from GIBCO Invitrogen Corporation (San Diego, CA, USA). Ciprofloxacin was purchased from Guangzhou
Description: