molecules Article Antibacterial Activities and Possible Modes of Action of Acacia nilotica (L.) Del. against Multidrug-Resistant Escherichia coli and Salmonella MuhammadBilalSadiq1,JoelTarning2,3,TayZarAyeCho1andAnilKumarAnal1,* 1 FoodEngineeringandBioprocessTechnology,AsianInstituteofTechnology,Bangkok12120,Thailand; [email protected](M.B.S.);[email protected](T.Z.A.C.) 2 Mahidol-OxfordTropicalMedicineResearchUnit,FacultyofTropicalMedicine,MahidolUniversity, Bangkok10400,Thailand;[email protected] 3 CentreforTropicalMedicineandGlobalHealth,NuffieldDepartmentofClinicalMedicine, UniversityofOxford,OxfordOX37FZ,UK * Correspondence:[email protected]@gmail.com;Tel.:+66-25-246-110;Fax:+66-25-246-200 AcademicEditor:PeterJ.Rutledge Received:18November2016;Accepted:21December2016;Published:14January2017 Abstract: Medicinal plants are frequently used for the treatment of various infectious diseases. The objective of this study was to evaluate the antibacterial activity and mode of action of AcacianiloticaandtheantibiogrampatternsoffoodborneandclinicalstrainsofEscherichiacoliand Salmonella. ThemechanismofactionofacaciaextractsagainstE.coliandSalmonellawaselucidated byobservingmorphologicaldamagesincludingcellintegrityandcellmembranepermeability,as wellaschangesincellstructuresandgrowthpatternsinkill-timeexperiments. Theclinicalisolates of E. coli and Salmonella were found resistant to more of the tested antibiotics, compared to food isolates. Minimum inhibitory concentration and minimum bactericidal concentration of acacia leafextractswereintherangesof1.56–3.12mg/mLand3.12–6.25mg/mL,respectively,whereas podsandbarkextractsshowedsomewhathighervaluesof3.12–6.25mg/mLand6.25–12.5mg/mL, respectively,againstalltestedpathogens.Thereleaseofelectrolytesandessentialcellularconstituents (proteinsandnucleicacids)indicatedthatacaciaextractsdamagedthecellularmembraneofthe pathogens. Thesechangescorrespondedtosimultaneousreductioninthegrowthofviablebacteria. ThisstudyindicatesthatA.niloticacanbeapotentialsourceofnewantimicrobials,effectiveagainst antibiotic-resistantstrainsofpathogens. Keywords:antibacterialactivity;antibiogram;kill-timeanalysis;SEM;bacterialmembranepermeability 1. Introduction Thoughantibioticsprovidethemainbasisfortreatmentofbacterialinfections,emergingbacterial resistance to commonly used antibiotics is a global concern. Repeated exposure and overuse of antibiotics have led to an increasing rate of antibacterial resistance and the development of multidrug-resistantstrainsofmicroorganisms[1]. Antimicrobialresistancemonitoringisessential forprovidinginformationonthemagnitudeandtrendsofmicrobialresistanceinordertoplanand monitortheeffectoftargetedinterventions[2]. SalmonellaandEscherichiacoliareincludedinthemainfood-bornepathogensresponsibleforfood poisoningandsubsequententericinfections[3,4]. InSouthEastAsia,thereisanabsenceofofficial Salmonellasurveillance,butitisestimatedthatupto22.8millioncasesofsalmonellosisoccurannually with37,600deaths[5]. SalmonellaandE.coliisolatedfrompoultrymeatwerefoundresistanttovarious commerciallyavailableantibiotics[6,7]. Foodcontaminatedwithdrug-resistantbacteriaisamajor threattopublichealth[8]. Molecules2017,22,47;doi:10.3390/molecules22010047 www.mdpi.com/journal/molecules Molecules2017,22,47 2of16 Thus, there is an urgent need of new antimicrobial agents to combat the rapid emergence of bacterialresistance. However,therapidwidespreadresistancedevelopmentindicatesthatevennew antimicrobialagentswillhavearelativelyshorttherapeuticlifespan[9]. Anunderappreciatedsource of novel antimicrobial agents with potentially new mechanism of actions might be natural plant sourcesandherbalproducts[10]. Plantscontainsecondarymetabolitesinadditiontomineralsand primarymetabolitesthatareresponsibleforantioxidantandantibacterialeffects[11]. Theuseofmedicinalplantsasanalternativetherapyagainstvariousinfectiousdiseasesisage-long practice. Thismightbebestexemplifiedinthefieldofantimalarialtherapy,wheretherecommended first-line active drug compound (i.e., artemisinins) was originally derived from Artemisia annua. Acacianilotica(L.)Del. isamedicinalplantbelongingtothefamilyMimosaceae. Theplantiswidely distributedintropicalandsubtropicalregions. Ayurvedicmedicinepracticessuggesttheuseofleaves, bark and pods of A. nilotica against cancer, cough, diarrhea, fever, small pox, piles and menstrual problems[12]. Theplantisreportedtohaveantibacterialeffectsagainstpathogenicmicroorganisms suchasMycobacteriumtuberculosis,Pseudomonasaeruginosa,EscherichiacoliandStaphylococcusaureus[13]. A.niloticashowedhighantimicrobialpotentialagainstStaphylococcusaureus,E.coliandSalmonellatyphi inacomparativeantimicrobialstudyamongacaciaspecies[14]. Ethanolandpetroleumetherextracts ofA.niloticadisplayedantibacterialeffectsagainstS.aureus,E.coli,Proteusvulgaris,Proteusmirabilis, Salmonella paratyphi and Klebsiella pneumoniae [15]. A number of researchers have investigated the antimicrobialactivityofA.nilotica. However,themechanismofactionhasnotbeenstudiedindetail. Thus,theobjectiveofthisstudywastoevaluatetheantimicrobialeffectsandpossibleantimicrobial modesofactionofA.niloticaleaves,podsandbarkextractsagainstmultidrug-resistantstrainsofE.coli andSalmonella. 2. ResultsandDiscussion 2.1. AntibiogramofSalmonellaandE.coli The prevalence of antibacterial drug resistance is high among foodborne pathogens due to extensive therapeutic and prophylactic use of antibiotics in animal farming. In South East Asia, multidrug-resistant strains of E. coli and Salmonella are frequently isolated from food sources. Thetreatmentofinfectionscausedbymultidrug-resistantbacteriaisbecominganincreasinglymore difficulttaskandisofgreatfoodandpatientsafetyconcern[16,17]. Antibiogrampatternsofbacterialisolatesweredeterminedbythediscdiffusionassay,following the guidelines of Clinical and Laboratory Standard Institute (CLSI). The results were interpreted bymeasuringthediameterofinhibitionzone. TheantibacterialsusceptibilitytestingofE.coliand Salmonella spp. obtained from clinical and food sources demonstrated that both clinical and food sourceisolatesofE.coliandSalmonellawereresistanttovariousantibioticsasshowninTable1. E.coli (E1)obtainedfromhumanclinicalisolateswasfoundtoberesistanttoampicillin(10µg),amoxicillin (10µg), chloramphenicol(30µg), tetracycline(30µg), ciprofloxacin(5µg)andceftriaxone(30µg), whereasclinicalisolateofSalmonellatyphimurium(S1)wasfoundtoberesistanttoampicillin(10µg), amoxicillin (10 µg), tetracycline (30 µg) and streptomycin (10 µg). E. coli and Salmonella enterica (E2andS2, respectively) isolated from poultry meat were found to be susceptible to all the tested antibiotics,whereasE.coli(E3),isolatedfrombeefmeatwasresistanttoampicillin(10µg),amoxicillin (10µg),chloramphenicol(30µg)andtetracycline(30µg);Salmonellatyphimurium(S3),isolatedfrom poultrymeatwasresistanttotetracycline(30µg),andchloramphenicol(30µg);Salmonellaenteritidis (S4),isolatedfrombeefmeatwasresistanttoampicillin(10µg),amoxicillin(10µg)andtetracycline (30µg). TheantibiogramoftestedpathogensdemonstratedthattheclinicalisolatesofE.coli(E1)and Salmonella (S1) were highly resistant, which might be due to previous exposure of pathogens to antibiotics and their ability to develop resistance upon repeated exposure in humans. Moreover, both strains were found to be resistant to beta-lactam antibiotics including ampicillin (10 µg) and Molecules2017,22,47 3of16 amoxicillin(10µg)indicatingtheabilitytoproducebeta-lactamase. Theseresultssupportaprevious report,suggestingthatE.coliisolatedfromvariousmeatsampleswerefoundresistanttobeta-lactams Molecules 2017, 22, 47 3 of 14 andtetracyclineantibiotics[18]. Table 1. Antibiogram of E. coli and Salmonella isolates. Table1.AntibiogramofE.coliandSalmonellaisolates. Bacteria Resistance Susceptible BacterEia1 Amp,R Aesmisl,t aCnhcle, Gen, Tet, Cip, Ctx AmkS, Sutsrc, eSpxtti ble E2 Amp, Aml, Chl, Gen, Amk, Str, Tet, Sxt, Cip, Ctx E1 Amp,Aml,Chl,Gen,Tet,Cip,Ctx Amk,Str,Sxt E3 Amp, Aml, Chl, Tet Gen, Amk, Str, Sxt, Cip, Ctx E2 Amp,Aml,Chl,Gen,Amk,Str,Tet,Sxt,Cip,Ctx E3 S1 Amp,A Ammpl,, AStmr,l T,Ceth l,Tet Chl, GGeenn,, AAmmkk,, SStxrt,, SCxitp,,C Ciptx, Ctx S1 S2 Amp,Aml,Str,Tet AmpC, Ahlm,Gl,e Cnh,Al, mGekn,,S Axtm,Cki,p S,tCr,t Txet, Sxt, Cip, Ctx S2 S3 Tet, Chl AmpA, Ammp,l,A Gmenl,, CAhml,kG, eSntr,,A Smxtk, ,CSitpr,, TCettx, Sxt,Cip,Ctx S3 S4 Amp,T Aetm,Cl,h Tlet Gen, AAmmpk,, AStmr,l C,Gipe,n C,Atxm, Ckh,lS,t Sr,xSt xt,Cip,Ctx S4 Amp,Aml,Tet Gen,Amk,Str,Cip,Ctx,Chl,Sxt Amp = Ampicillin, Aml = Amoxicillin, Chl = Chloramphenicol, Gen = Gentamycin, Tet = Tetracycline, ACmipp == CAimprpoicfliollxina,cAinm, lA=mAkm =o xAicmilliink,aCcihnl, =SCtrh =lo rSatmrepphtoenmicyocli,nG, eSnx=t G= eTnrtiammeytchino,pTreint/=SuTelftaramcyecthlinoex,aCzoiple=. Ciprofloxacin,Amk=Amikacin,Str=Streptomycin,Sxt=Trimethoprin/Sulfamethoxazole.E1=E.coliand E1 = E. coli and S1 = Salmonella typhimurium were isolated from clinical samples, E2 = E. coli, S1=Salmonellatyphimuriumwereisolatedfromclinicalsamples,E2=E.coli,S2=SalmonellaentericaandS3= SSa2l m= oSnaellmlaotnyeplhlai menutreiruimca wanedre Sis3o =la Steadlmforonmellap toyuplhtrimyumreiuamt, awnedreE 3is=olEat.ecdol ifraonmd Sp4ou=ltSrayl mmoenaeltl,a aenndte Eri3ti d=i sEw. ceorlei iasnolda tSe4d =fr oSmalmbeoenfelmlae eanttsearmitipdliess .were isolated from beef meat samples. 2.22..2D. Deteectetciotinono foBf Beteat-aL-Lacatcatmams-s-a annddT Teetrtraaccyycclilinnee--RReessiissttaanntt GGeenneess ThTehpe rperseesnecneceo foaf natnitbibioiotitcicr eressisisttaannccee ggeenneess eennccooddiinngg rreessiissttaannccee ttoo tthhee bbeetata-l-alactcatmam anadn dtettertarcayccylicnlein e clacslassosf oafn atnibtiiboitoictiscsw wasasi ninvveesstitgigaateteddu ussiinngg ppoollyymmeerraassee cchhaaiinn rreeaaccttiioonn ((PPCCRR) )wwitihth ggenenomomici cDDNNAA, a,nadn d amapmlpifiliefdiedp rpordoudcutcstsw wereerer erseosolvlvededb byyg geelle eleleccttrroopphhoorreessiiss ((FFiigguurree 11)).. FigFiugruere1 1.. E1E =1 E.= coEli .ancdol iS1a =n SdalmS1on=ellaS taylpmhoimneulrlaiumty wpheirmeu isroiulamtedw ferorem icsloinlaictaeld safmropmles,c Sli3n i=c Salalmsaomnepllale s, S3ty=pShaimlmuorniuemlla wtyapsh iismoluartieudm frwomas pisooulalttreyd mfreoamt, apnodu lEtr3y =m Ee. acot,lia annddE S34= = ES.alcmoloinaenllda Sen4te=riStiadlims owneerllea iesnotleartietdid is wefrroemis oblaeetef dmfreoamt sbameepflems.e aCtMsa mrepplreess.enCtsM breetap-rleascetanmts-rbeseitsat-alnatc tagmen-er easinsdta nTtAg eanned anTdB TrAepraensdenTt B reptertersaecynctltienter-arceysicsltiannet- rgeesnisetsa. ntgenes. E. coli (E1) obtained from human clinical isolates showed the presence of bla CMY and tet (A) genes, whereas clinical isolate of Salmonella typhimurium (S1) showed the presence of bla CMY and tet (B). E. coli (E3) isolated from beef meat showed the presence of bla CMY and tet (A); Salmonella typhimurium (S3) Molecules2017,22,47 4of16 E.coli(E1)obtainedfromhumanclinicalisolatesshowedthepresenceofbla andtet(A)genes, CMY whereasclinicalisolateofSalmonellatyphimurium(S1)showedthepresenceofbla andtet(B).E.coli CMY (E3)isolatedfrombeefmeatshowedthepresenceofbla andtet(A);Salmonellatyphimurium(S3) CMY isolatedfrompoultrymeatandSalmonellaenteritidis(S4)isolatedfrombeefmeatshowedthepresence oftet(B)andtet(A),respectively. E.coliandSalmonellaenterica(E2andS2,respectively)isolatedfrom poultrymeatwerefoundnegativeforallthetestedresistantgenesandthisfindingwasinaccordance withtheantibioticsusceptibilityresults. 2.3. AntimicrobialActivityofAcaciaExtracts The antimicrobial activities of acacia extracts were investigated by the disc diffusion assay at differentconcentrations(5and10mg/disc). Theresultswerereadafter24hofincubationat37◦C bymeasuringthediameterofinhibitionzone(Table2). Allselectedpartsofacaciawerefoundtobe effectiveagainsttheselectedpathogens. Thelowesttestedconcentration(5mg/disc)ofallextractsof acaciainhibitedthegrowthofbothclinicalandfoodisolatesofE.coliandSalmonella. Similarresults were previously reported by Kavitha et al. [19], who studied the antibacterial effects of A. nilotica againstvariousclinicalbacterialisolates. Theleafextractsataconcentrationof10mg/discshowedthe maximummeandiameterzoneofinhibitionof21.11±1.05mmand16.83±0.94mmagainstE.coli andSalmonellastrains,respectively. Theleaveswerefoundmoreeffectiveininhibitingbacterialgrowth ascomparedtopodsandbarkextracts. Theresultsdemonstratedthatallselectedpathogenswere susceptibletoalltestedpartsoftheplant. ThisindicatedastrongantibacterialpotentialofA.nilotica against the antibiotic-resistant pathogens tested here, arguably with a novel mechanism of action than other tested antibiotics. The antibacterial results of the current study are in accordance with literature,whereextractsofA.niloticawereeffectiveagainstclinicalbacterialisolatesofE.coliand Salmonella[20,21]. 2.4. MinimumInhibitoryConcentrationandMinimumBactericideConcentrationofAcacianiloticaExtracts Minimuminhibitoryconcentration(MIC)valuesofacaciaextractsweredeterminedbybroth macro-dilution method and minimum bactericide concentration (MBC) values were estimated by sub-culturingallconcentrations(≥MIC)thathadnodetectablegrowth. MICandMBCofacacialeaves wereintherangeof1.56–3.12mg/mLand3.12–6.25mg/mL,respectively,againstalltestedbacterial strains(Table3). MICvaluesofleaveswerenotsignificantly(p>0.01)differentfrompodsandbark extractsbutMBCvaluesofleavesweresignificantly(p<0.01)differentcomparedtopodsandbark. TheMICvaluesofacacialeavesandbarkextractsagainstmultidrug-resistantE.coliwerelowerin thecurrentstudythanpreviouslyreportedforE.coli, causingotitisinfection[22]. Theleavesand barkextractsinthecurrentstudyalsoshowedlowerMICvalueagainstSalmonellatyphimuriumthan previouslyreportedforSalmonellatyphi[21]. Thereporteddifferencesmightbeduetodifferentstrains ofE.coliandSalmonella,and/ordifferentexperimentalprotocols. Theantibacterialactivityofethanolextractsofleaves,podsandbarkofA.niloticaagainstdrug sensitiveandmultidrug-resistantE.coliandSalmonellaspp. obtainedfromclinicalandfoodsources wereexamined. AllpartsofplantwerefoundtobeeffectiveevenagainsttheclinicalisolatesofE.coli andSalmonellatyphimuriumthatwereresistanttovariouscommerciallyavailableantibiotics. Therefore, acaciacanbeanalternateapproachtotreatresistantpathogenseitherintheformofitspurifiedextract orincombinationwithcommerciallyavailableantibiotics. Antibacterialactivitydeterminedbythe disc diffusion method has certain limitations since this assay indicates only growth inhibition of bacteriawithoutanyevidencethatthetestedextractsareeitherbacteriostaticorbactericidal. Therefore, MIC and MBC values of extracts were determined to specify the dose and nature of the activity. However, more research is needed to validate these findings in animal models and eventually in humanclinicaltrials. Molecules2017,22,47 5of16 Table2.AntibacterialeffectsofAcacianiloticaextractsagainstclinicalandfoodisolatesofE.coliandSalmonella. Conc. ZoneofInhibition(mm) Sample (mg/disc) E1 E2 E3 MeanofE.coliStrains S1 S2 S3 S4 MeanofSalmonellaStrains 5 17.0±1.0 16.7±1.15 16.7±0.58 16.78±0.83a 12.3±0.58 11.3±1.53 11.3±2.08 11.7±1.15 11.67±1.30a Leaves 10 21.7±0.6 21.0±1.0 20.7±1.53 21.11±1.05b 17.7±0.58 16.7±0.58 16.0±1.0 17.0±1.0 16.83±0.94b 5 9.3±0.58 8.3±0.58 7.7±0.58 8.44±0.88 8.3±0.58 8.7±1.15 7.7±1.15 8.3±0.58 8.25±0.86 Pods 10 19.0±1.0 18.3±0.58 15.3±0.58 17.56±1.81b 15.7±1.53 13.7±0.58 14.7±1.15 15.0±1.0 14.75±1.21b 5 8.7±0.58 9.0±1.0 8.3±0.58 8.67±0.71 5.3±4.61 8.7±0.58 8.7±1.15 8.0±1.0 7.67±2.53 Bark 10 13.0±1.0 12.3±0.58 11.3±1.53 12.22±1.20b 10.3±1.15 11.3±1.15 11.7±0.58 11.0±2.0 11.08±1.24b Amikacin(Control) 30µg 22.4±1.51 23.8±1.73 22.5±1.1 22.8±1.43 23.4±2.14 23.5±1.53 22.0±1.0 23.0±1.0 22.97±1.24 Theresultswereexpressedasmean±S.Doftriplicates.Superscript“a”representsmeansthatarestatisticallydifferent(p<0.01)comparedtoallotherextractsatconcentrationof 5mg/discagainstE.coliandSalmonellastrains.Superscript“b”representsmeansthatarestatisticallydifferent(p<0.01)betweenallextractsatconcentrationof10mg/discagainst E.coliandSalmonellastrains.E1=E.coliandS1=Salmonellatyphimuriumwereisolatedfromclinicalsamples,E2=E.coli,S2=SalmonellaentericaandS3=Salmonellatyphimuriumwere isolatedfrompoultrymeat,andE3=E.coliandS4=Salmonellaenteritidiswereisolatedfrombeefmeatsamples. Table3.Minimuminhibitoryconcentration(MIC)andminimumbactericidalconcentration(MBC)ofA.niloticaextracts. MinimumInhibitoryConcentration MinimumBactericideConcentration MicrobialStrains Leaves Pods Bark Leaves Pods Bark (mg/mL) (mg/mL) (mg/mL) (mg/mL) (mg/mL) (mg/mL) E1 3.12 3.12 6.25 6.25 12.5 12.5 E2 3.12 6.25 6.25 3.12 12.5 12.5 E3 3.12 3.12 6.25 6.25 12.5 12.5 S1 1.56 3.12 3.12 3.12 6.25 6.25 S2 1.56 3.12 3.12 3.12 6.25 6.25 S3 1.56 3.12 3.12 3.12 6.25 12.5 S4 1.56 3.12 3.12 3.12 6.25 6.25 Theresultswereexpressedasmeanoftriplicates. E1=E.coliandS1=Salmonellatyphimuriumwereisolatedfromclinicalsamples,E2=E.coli,S2=SalmonellaentericaandS3= Salmonellatyphimuriumwereisolatedfrompoultrymeat,andE3=E.coliandS4=Salmonellaenteritidiswereisolatedfrombeefmeatsamples. Molecules2017,22,47 6of16 Molecules 2017, 22, 47 6 of 14 22..55.. KKiillll--TTiimmee AAnnaallyyssiiss TThhee kkiillll--ttiimmee aannaallyyssiiss ooff cclliinniiccaall ssttrraaiinnss ooff EE.. ccoollii aanndd ssaallmmoonneellllaa wwaass ppeerrffoorrmmeedd bbyy eevvaalluuaattiinngg tthhee ddeeccrreeaassee inin CCFFUU/m/mL wLiwthi tthimtiem aet tahtet fhoellofowllionwg icnogncceonntrcaetniotrnast ioofn ascaocfiaa ceaxctriaacetsx,t craocnttsr,ocl,o 1n ×tr MolI,C1 a×ndM 2I C× ManIdC,2 re×spMecICtiv,reelysp. Techteiv teelsyt.edTh peattehsotgedenpsa sthhoowgeends dsehcorweaesdedd evciraebailsietdy wvihaebnil ietyxpwohseedn teox pacoasceida teoxtarcaacctisa. Texhter aecfftesc.tTs hoef leefafvecetss, pofodlesa avneds, bpaordks eaxntrdacbtsa rokne vxitarbaicltistyo onf vEi.a cboillii tayreo fshEo.wconli inar Feisghuorew 2n. iDnuFriignug rtehe2 . fDirustr ifnivget hheoufirrss,t tfihvereeh wouasr sa, tdheecrreeawseads anudmecbreear soefd En. ucomlib werhoenf Etr.ecaotleidw wheitnht MreaICte danwdi tlahteMr ItChearne dwlaast ear stlhoewreerw garsoawstlho wase rcogmropwatrheda stoc otmhep caorendtrtool tthheatc oclnetarrollyt hinadticclaetaerdly thinadt iMcaItCed otfh laetaMveIsC, poofdlesa vanesd, pboardks iannhdibbita trhkei nghroibwitthth oef gbraocwtetrhiao. Tfhbea clteearviae.s Tanhde lbeaarvke esxatnradctbsa artk ae cxotrnaccetnstarattaiocno nocf e2n ×t rMatIiCon koilfle2d× alMl thICe bkailclteedriaalll ctehlelsb bayc ttehreia elncdel losf b2y4 thh.e endof24h. FFiigguurree 22.. EEffffeeccttss ooff aaccaacciiaa lleeaavveess,, ppooddss aanndd bbaarrkk eexxttrraaccttss oonn tthhee vviiaabbiilliittyy ooff tteesstteedd EE.. ccoollii ((aa––cc)) aanndd SSaallmmoonneellllaa ttyypphhiimmuurriiuumm ((dd––ff)).. The effects of leaves, pods and bark extracts on the viability of Salmonella typhimurium are shown in Theeffectsofleaves,podsandbarkextractsontheviabilityofSalmonellatyphimuriumareshown Figure 2. The MIC of all extracts inhibited the growth of bacteria over a period of 24 h as compared to inFigure2. TheMICofallextractsinhibitedthegrowthofbacteriaoveraperiodof24hascompared control, whereas the 2 × MIC showed a declined viability of test bacteria from 6.75 to 3.47 Log CFU/mL to control, whereasthe 2 × MIC showeda declined viabilityof test bacteria from6.75 to 3.47Log for leaves, 6.75 to 4.54 Log CFU/mL for pods and 6.65 to 3.70 Log CFU/mL for acacia bark. CFU/mLforleaves,6.75to4.54LogCFU/mLforpodsand6.65to3.70LogCFU/mLforacaciabark. The extracts of acacia showed variable kinetics against tested pathogens. The concentration- The extracts of acacia showed variable kinetics against tested pathogens. The concentration- dependent killing showed bacteriostatic and bactericidal effects of extracts. Test compounds were dependentkillingshowedbacteriostaticandbactericidaleffectsofextracts. Testcompoundswere considered bacteriostatic at the lowest concentration that reduced the original inoculum size by 0–3 consideredbacteriostaticatthelowestconcentrationthatreducedtheoriginalinoculumsizeby0–3Log Log CFU/mL and bactericidal if inoculum size was reduced by >3 Log CFU/mL [23]. Complete CFU/mLandbactericidalifinoculumsizewasreducedby>3LogCFU/mL[23].Completeelimination elimination of E. coli was observed after 24 h of treatment with leaves and bark extracts at concentration ofE.coliwasobservedafter24hoftreatmentwithleavesandbarkextractsatconcentrationof2×MIC. of 2 × MIC. This supported previous research that reported 99.9% reduction in the growth of Salmonella Molecules2017,22,47 7of16 Molecules 2017, 22, 47 7 of 14 Thissupportedpreviousresearchthatreported99.9%reductioninthegrowthofSalmonellatyphiinan Aty.pnhiil oitni caant iAm. en-ikloiltlicaas stiamye[-2k4i]l.l Tahsseapyo [d24s]w. Tehree apboldest owdeercer aebaslee ttoh edeincorecausleu mthes iizneofcruolmum6. 6si2zteo fr3o.4m7 L6.o6g2 CtoF 3U.4/7m LLogaf CteFrU24/mhLa tafatecro n24ce hn tarta ati oconnocfe2nt×raMtioInC .of 2 × MIC. 22..66.. BBaacctteerriiaall CCeellll MMeemmbbrraannee PPeerrmmeeaabbiilliittyy aafftteerr TTrreeaattmmeenntt wwiitthh AAccaacciiaaE Exxttrraaccttss BBaacctteerriiaall cceellll mmeemmbbrraannee ppeerrmmeeaabbiilliittyy wwaass ddeetteerrmmiinneedd iinn tteerrmmss ooff rreellaattiivvee eelleeccttrriicc ccoonndduuccttiivviittyy.. EEvvaalluuaattiioonn ooff tthhee rreellaattiivvee eelleeccttrriicc ccoonndduuccttiivviittyy ooff bbaacctteerriiaall cceellllss ttrreeaatteedd wwiitthh ppllaanntt eexxttrraaccttss ddeemmoonnssttrraatteedd tthhaatt lleeaavveess, ,ppodosd sanadn bdarbka rekxtreaxcttrsa hctasveh aavne efafencte offne cthteo mnetmhebrmaneem pberramneeapbielirtmy eoaf bEi.l ictoyli oanfdE .Saclomlionaenldla Styaplmhiomnuelrliaumty.p Ahilml pulraiunmt e.xtArallctpsl arenstueltxetdra icnt sinrcerseualsteedd rienlainticvree aesleecdtrricealal tcivonedeulecctitvriictyal ocfo bnadcutecrtiiavli tcyelolsf, bwahcitcehri ianldcieclalste,dw ah liecahkaingde iocfa itnedtraacelellauklaarg iengorfeidniternatcse ellsupleacriainllgyr eeldeicetnrotslyetesps efrcoiamll ytheel ceecltlrso. lTyhtees lefarovmes tohfe accealclsia. iTnhdeucleeadv emsaoxfimacuamci arienladtuivcee dpmermaxeimabuilmityr eolfa ti6v7e.2p5%er m±e a0b.8i2li%ty aonfd6 77.245.1%9%± ±0 .802.7%2%a nadt 7c4o.n1c9e%nt±rat0i.o7n2 %of a2t ×c oMnIcCen fotrra Eti.o cnoloi fan2d× SMalmIConfoelrlaE t.ycpohliimanudriuSmal,m reosnpelelcattivypehlyim, tuhraitu wm,arse mspoercet itvhealny ,ptohdast wanads mbaorrke ethxatrnacptosd assa snhdowbanr kine xFtirgauctrse a3s. sMhoawinntaiinniFnigg uioren3 h.oMmaeinotsatainsiins gisi oinntehgormale otos ttahseis misaiinntteegnraanltcoe tohfe enmearignyt esntaatnucse, soofluentee trrgaynssptaotruts, ,msoetlaubteoltirca rnesgpuolratt,iomne, tcaobnotlriocl roefg tuulragtoiorn p,rceosnsutrroel aonfdt umrgotoirlitpyr eosfs cuerlel, athnedremfoorteil iaty sloifgchetl lc,htahnergeef oorfe tahes lsigtrhutccthuarnalg ienotefgthrietys toruf cthtuer acelliln mtegemritbyraonfeth ceacne lalfmfecetm mbreatanbeoclaisnma fafencdt mleaedta btoo lcieslml daenadthl e[a2d5]t. ocelldeath[25]. Figure 3. Effects of acacia leaves, pods and bark extracts on the impermeability of cell membrane of Figure3.Effectsofacacialeaves,podsandbarkextractsontheimpermeabilityofcellmembraneof tested E. coli (a–c) and Salmonella typhimurium (d–f). testedE.coli(a–c)andSalmonellatyphimurium(d–f). The results in this study showed that bacterial cell membrane permeability changed with increasing The results in this study showed that bacterial cell membrane permeability changed with concentrations of extracts and incubation time period, which caused leakage of intracellular electrolytes. increasingconcentrationsofextractsandincubationtimeperiod,whichcausedleakageofintracellular Similar results were reported by Zhao et al. [26], showing an increase in electric conductivity of bacterial electrolytes. Similar results were reported by Zhao et al. [26], showing an increase in electric cells with increasing concentrations of sugarcane bagasse extracts. There was a modest change in relative electrical conductivity of the control incubation during the first four hours. A rise in relative Molecules2017,22,47 8of16 conductivityofbacterialcellswithincreasingconcentrationsofsugarcanebagasseextracts. Therewas amodestchangeinrelativeelectricalconductivityofthecontrolincubationduringthefirstfourhours. Ariseinrelativeelectricalconductivityafterfourhourswasfoundduetonormallysisandbacterial deathresultinginincreasedrelativeelectricalconductivity. 2.7. IntegrityofBacterialCellMembrane Theintegrityofthecellmembranewasdeterminedbytreatingthebacterialcellswithdifferent concentrations of plant extracts (control, 1 × MIC and 2 × MIC) and measuring the released cell constituents, including proteins and absorbance at 260 nm of the supernatant of tested bacteria. TheeffectsofdifferentconcentrationsofeachextractontestedbacteriaareshowninTable4.Theresults indicatedthattherewassignificantincrease(p<0.01)inthereleaseofcellularconstituentsandprotein concentrationwithincreasingconcentrationsofacaciaextracts. Theseresultscorroborateprevious reports,indicatingthatirreversibledamagemightoccurtobacterialmembranesaftertreatmentwith plants,whichcouldleadtolossofessentialcellularcomponentssuchasproteinsandnucleicacids[27]. Theleavesshowedhigherproteinandnucleicacidreleasedcontentsascomparedtopodsandbarkat concentrationsof1×MICand2×MIC.Theresultsindicatedthattestedextractscauseirreversible damagetothecellmembrane,whichledtolossofcellularconstituentsandfinallytocelldeath. Table4.Effectsofacacialeaves,podsandbarkextractsoncellconstituents’releaseoftestedE.coliand Salmonellatyphimurium. CellConstituentsRelease E.coli Salmonellatyphimurium Sample Conc. Protein CellConstituents Protein CellConstituents (µg/mL) (OD260nm) (µg/mL) (OD260nm) 2×MIC 62.70±4.20 0.42±0.007 48.26±5.25 0.4±0.006 Acacialeaves 1×MIC 32.33±4.00 0.34±0.007 25.67±4.84 0.31±0.001 Control 8.63±2.31 0.086±0.013 10.11±2.22 0.09±0.004 2×MIC 30.85±2.80 0.31±0.029 18.63±2.31 0.27±0.01 Acaciapods 1×MIC 17.52±2.31 0.23±0.036 12.33±2.22 0.164±0.025 Control 6.78±2.94 0.102±0.006 5.67±2.94 0.1±0.017 2×MIC 39.74±4.62 0.30±0.013 31.96±3.90 0.29±0.006 Acaciabark 1×MIC 22.33±2.94 0.18±0.016 18.67±1.64 0.14±0.009 Control 5.67±2.22 0.088±0.011 7.18±1.65 0.1±0.01 Theresultswereexpressedasmean±S.D.oftriplicates.MIC=minimuminhibitoryconcentration. Themacromoleculesofmicrobialcells,includingnucleicacidsandproteins,whichconstitutekey structuralcomponents,werereleasedfromthetestedbacteriaaftertreatmentwithleaves,podsand barkextractsofacacia. Themeasurementsofspecificleakagemarkersaftertreatmentwithextracts, includingnucleicacidsandprotein,isanindicatorofbacterialcellmembraneintegrityincomparison tounexposedcells[28]. Theresultsfromthisstudyindicatedrapidlossofproteinsandnucleicacids fromtreatedpathogens,duetoirreversibledamagetothecytoplasmicmembranes. A.niloticaisrich inphenoliccompounds[29]andphenolicacidscancauseirreversiblechangestocellmembrane[30]. Thus integrity of cell membrane was concluded as an important factor to inhibit the pathogenic bacterialgrowth. Furtherresearchisneededtofindthetargetdamagesitesonbacteriacellstomake surethateitherantimicrobialeffectwasfromdamagetolipopolysaccharideormembraneproteins incellwall. 2.8. ScanningElectronMicroscopeObservations Toinvestigatetheantibacterialmodeofaction,itisessentialtoevaluatechangesinbacterialcell membranepermeability,integrity,morphologyandsurfacecharacteristics[27]. Thephysiologicaland morphologicalchangesinE.coli(Figure4)andSalmonellatyphimurium(Figure5)wereobservedby Molecules2017,22,47 9of16 scanningelectronmicroscope(SEM)aftertreatmentwithacaciaextracts. Resultsshowedadirectly destructiveeffectofacaciaextractsontestedpathogens. Thetreatedbacterialcellsshowedobvious Mmoolercpulheso 2l0o1g7,i c2a2,l 4c7h angesascomparedtountreatedcells. Mostoftreatedbacterialcellsbecamep9i totfe 1d4, deformedandbroken. Theseobservationssupportedtheresultsofcellpermeabilityandintegrity aaMssosslaeacyyu,,l eaas nn20dd1 7ii,n n2d2d,i i4cc7aa tteedd tthhaatt eexxttrraaccttss ooff AA.. nniilloottiiccaa hhaadd mmaajjoorr eeffffeeccttss oonn tthhee cceellll wwaallll aanndd ccyyttooppllaa9ss momf i1icc4 mmeemmbbrraannee ooff bbaacctteerriiaa.. assay, and indicated that extracts of A. nilotica had major effects on the cell wall and cytoplasmic membrane of bacteria. Figure 4. Scanning electron microscope imaging of untreated bacterial cells of (A) E. coli (clinical isolates); Figure 4. Scanning electron microscope imaging of untreated bacterial cells of (A) E. coli treated bacterial cells of E. coli (clinical isolate) with (B) leaves; (C) pods; (D) bark extracts of acacia. (clinicalisolates);treatedbacterialcellsofE.coli(clinicalisolate)with(B)leaves;(C)pods;(D)bark Figure 4. Scanning electron microscope imaging of untreated bacterial cells of (A) E. coli (clinical isolates); extractsofacacia. treated bacterial cells of E. coli (clinical isolate) with (B) leaves; (C) pods; (D) bark extracts of acacia. Figure 5. Scanning electron microscope imaging of untreated bacterial cells of (A) Salmonella typhimurium (clinical isolates); treated bacterial cells of Salmonella typhimurium (clinical isolate) with (B) leaves; Figure 5. Scanning electron microscope imaging of untreated bacterial cells of (A) Salmonella typhimurium (FCig) uproed5s.; (SDca)n bnairnkg eexletrcatrcotns omf iacrcoascciao.p eimagingofuntreatedbacterialcellsof(A)Salmonellatyphimurium (clinical isolates); treated bacterial cells of Salmonella typhimurium (clinical isolate) with (B) leaves; (clinicalisolates);treatedbacterialcellsofSalmonellatyphimurium(clinicalisolate)with(B)leaves;(C)pods; (C) pods; (D) bark extracts of acacia. 3. Ma(Dte)rbiaalr kanexdtr Mactestohfoadcasc ia. 3. Material and Methods 3.1. Preparation of Plant Extracts and Microbial Sample Collection and Identification 3.1. PLreeapvareast,i opno dofs P alnandt bEaxrtkra ocft st haned A M. nicirlootbiicaal pSalamnpt l(ew Ciolldle) cwtioenre a ncodl Iledcentetdif icfraotimon L ahore, Pakistan. The plant was authenticated and voucher specimen (Voucher number S6 HbGCS with Reference number Leaves, pods and bark of the A. nilotica plant (wild) were collected from Lahore, Pakistan. The 7998) was deposited to Botany Society Government College of Science, Lahore, Pakistan. The selected plant was authenticated and voucher specimen (Voucher number S6 HbGCS with Reference number plant parts were washed thoroughly under running tap water to remove the surface dirt, followed 7998) was deposited to Botany Society Government College of Science, Lahore, Pakistan. The selected by rinsing with sterilized distilled water. The plant samples were dried under shade in open air for plant parts were washed thoroughly under running tap water to remove the surface dirt, followed by rinsing with sterilized distilled water. The plant samples were dried under shade in open air for Molecules2017,22,47 10of16 3. MaterialandMethods 3.1. PreparationofPlantExtractsandMicrobialSampleCollectionandIdentification Leaves, pods and bark of the A. nilotica plant (wild) were collected from Lahore, Pakistan. The plant was authenticated and voucher specimen (Voucher number S6 HbGCS with Reference number 7998) was deposited to Botany Society Government College of Science, Lahore, Pakistan. Theselectedplantpartswerewashedthoroughlyunderrunningtapwatertoremovethesurfacedirt, followedbyrinsingwithsterilizeddistilledwater. Theplantsamplesweredriedundershadeinopen airfor48h. Thedriedsamplesweregroundedbymeansofamechanicalgrinder(PhilipsCo. Ltd., Shanghai,China)andfinallyintofinelydividedpowderbypestleandmortar. The extraction from these dried parts of A. nilotica was conducted following the method as describedbyAdwanetal.[31],withslightmodifications. Powderedplantsamples(30g)wereplaced in250mLofethanol(80%,v/v)inconicalflasksandplacedonshakingincubator(Gallenkamp,UK)at 200rpmfor48hat25◦C.Theextractswerefilteredandconcentratedbymeansofarotaryevaporator (Büchi rotavapor R-144, Flawil, Switzerland) followed by lyophilization for 24 h in a freeze dryer (Scanvac Cool Safe 55-4, Scanvac, Denmark). The freeze dried extracts were stored at 4 ◦C until furtheruse. E.coli,Salmonellaentericasubsp. enterica,SalmonellaenteritidisandSalmonellatyphimuriumwere isolatedfrombeefandpoultrymeatsamplesandidentifiedbybiochemicalandimmunologicaltesting intheBioprocessTechnologylaboratoryattheAsianInstituteofTechnology,Bangkok,Thailand. Other human clinical isolates, namely E. coli and Salmonella typhimurium were acquired from the clinical laboratoryofThammasatHospital,Pathumthani,Thailand. 3.2. AntibiogramofSalmonellaspp. andE.coli Antibacterial susceptibility patterns of Salmonella spp. and E. coli isolates were determined by using the disc diffusion assay, following the guidelines of CLSI, M100-S23 [32]. The following commonly used antibiotics were tested: ampicillin (10 µg), amoxicillin (10 µg), chloramphenicol (30 µg), gentamicin (10 µg), amikacin (30 µg), streptomycin (10 µg), tetracycline (30 µg), trimethoprim–sulfamethoxazole(25µg),ciprofloxacin(5µg),andceftriaxone(30µg)(Oxoid,UK). Thepre-incubated24hculturesofE.coliandSalmonellawereadjustedto0.5McFarlandstandardtoget 108CFU/mL.Thebacterialsuspensionswerespreadbyusingthesterilizedcottonswabonthesurface ofMueller-HintonAgar(MHA)(Himedia,India)plates. Antibioticdiscsweredispensedbyusing sterilizedforcepsonthesurfaceofagarmediumandgentlypressed. Theplateswerethenincubated for24hat37◦Candresultsweremeasuredasdiameterofinhibitionzoneintriplicates. 3.3. DetectionofBeta-Lactam-andTetracycline-ResistantGenes E.coliandSalmonellaisolatesweresub-culturedovernightinnutrientbrothandgenomicDNA wasextractedbyusinggenomicDNApurificationkit(Insta-maxgenematrixBio-Rad,Hercules,CA, USA)accordingtomanufacturer’sinstructions. Thepresenceofgenesassociatedwithresistanceto tetracycline, tet (A), tet(B) and beta lactams (bla , bla ) were determined by PCR and set of SHV CMY primersusedforeachgenewereacquiredfromSigmaAldrich,Singapore(Table5). PCRreactions wereperformedinatotalvolumeof25µLincluding,14µLPCRmastermix(TagPCRmastermixkit, Bio-Rad,Hercules,CA,USA),9µLofDNA(50–200ng/µL)and1µLofeachreverseandforward primer(10µM).PCRreactionswerecarriedoutbyusingDNAthermos-cycler(Bio-Rad)asfollows: initialdenaturationfor30sat95◦Cfollowedby30cycles,for30sat95◦C,annealingfor30s(65.2,57.2, 61.1and60.3◦Cforbla ,bla ,tet(A)andtet(B),respectively)and1minat68◦C,followedby CMY SHV afinalextensionstepof5minat68◦C.Amplifiedsamplesweresubjectedtogelelectrophoresisby usingQIAxceladvancesystem(QIAGENInc.,Valencia,CA,USA)andresultswereinterpretedby QIAxcelscreenGel1.4.0.
Description: