ebook img

Anti-HIV-1 Antibodies and CD4-IgG Breadth and Potency of Neutralization of Antibody Conjugation ... PDF

44 Pages·2013·1.38 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Anti-HIV-1 Antibodies and CD4-IgG Breadth and Potency of Neutralization of Antibody Conjugation ...

Antibody Conjugation Approach Enhances Breadth and Potency of Neutralization of Anti-HIV-1 Antibodies and CD4-IgG Julia Gavrilyuk, Hitoshi Ban, Hisatoshi Uehara, Shannon J. D Sirk, Karen Saye-Francisco, Angelica Cuevas, Elise o w Zablowsky, Avinash Oza, Michael S. Seaman, Dennis R. n Burton and Carlos F. Barbas III lo a J. Virol. 2013, 87(9):4985. DOI: 10.1128/JVI.03146-12. d Published Ahead of Print 20 February 2013. ed f r o m h t t p Updated information and services can be found at: : / / http://jvi.asm.org/content/87/9/4985 jv i. a s m These include: .o r g SUPPLEMENTAL MATERIAL Supplemental material / o n A REFERENCES This article cites 44 articles, 19 of which can be accessed free p r at: http://jvi.asm.org/content/87/9/4985#ref-list-1 il 9 , 2 0 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new 1 3 articles cite this article), more» b y K r e s g e L ib r a r y , T h e S c r ip p s R e s e a r c h I n s t it u t e Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ Antibody Conjugation Approach Enhances Breadth and Potency of Neutralization of Anti-HIV-1 Antibodies and CD4-IgG JuliaGavrilyuk,aHitoshiBan,a,bHisatoshiUehara,a,cShannonJ.Sirk,aKarenSaye-Francisco,dAngelicaCuevas,dEliseZablowsky,e AvinashOza,eMichaelS.Seaman,eDennisR.Burton,dCarlosF.BarbasIIIa D o DepartmentsofChemistryandMolecularBiologyandtheSkaggsInstituteforChemicalBiology,TheScrippsResearchInstitute,LaJolla,California,USAa;Dainippon w n SumitomoPharma,Osaka,Japanb;MitsubishiChemicalGroupScienceandTechnologyResearchCenter,Yokohama,Japanc;DepartmentofImmunologyandMicrobial lo ScienceandIAVINeutralizingAntibodyCenter,TheScrippsResearchInstitute,LaJolla,California,USAd;BethIsraelDeaconessMedicalCenter,HarvardMedicalSchool, a d Boston,Massachusetts,USAe e d f BroadlyneutralizingantibodiesPG9andPG16effectivelyneutralize70to80%ofcirculatingHIV-1isolates.Inthisstudy,the r o neutralizationabilitiesofPG9andPG16werefurtherenhancedbybioconjugationwithaplaviroc,asmall-moleculeinhibitorof m virusentryintohostcells.Anovelair-stablediazoniumhexafluorophosphatereagentthatallowsforrapid,tyrosine-selective h t t functionalizationofproteinsandantibodiesundermildconditionswasusedtoprepareaseriesofaplaviroc-conjugatedanti- p : bodies,includingb12,2G12,PG9,PG16,andCD4-IgG.TheconjugatedantibodiesblockedHIV-1entrythroughtwomecha- // jv nisms:bybindingtothevirusitselfandbyblockingtheCCR5receptoronhostcells.Chemicalmodificationdidnotsignificantly i. a alterthepotencyoftheparentantibodiesagainstnonresistantHIV-1strains.Conjugationdidnotalterthepharmacokineticsof s m amodelIgGinblood.ThePG9-aplavirocconjugatewastestedagainstapanelof117HIV-1strainsandwasfoundtoneutralize . o 100%oftheviruses.PG9-aplavirocconjugateIC swerelowerthanthoseofPG9inneutralizationstudiesof36ofthe117HIV-1 r 50 g strains.TheseresultssupportthisnewapproachtobispecificantibodiesandofferapotentialnewstrategyforcombiningHIV-1 / o therapies. n A p r Innovative new approaches to HIV-1 prophylaxis and therapy demonstrating that catalytic monoclonal antibodies covalently il 9 , are desperately needed. Despite the successes of highly active linkedtodesignedligandspossesspotentbiologicalactivitiesina 2 0 antiretroviraltherapy(HAART),morethan2millionpeopledie varietyofanimalmodelsofdisease(15–19).Severaloftheseare 1 3 each year and more than 33 million individuals are infected nowinclinicaldevelopment(20).Thesestudiesrevealedthemany b worldwide (http://aids.gov/hiv-aids-basics/hiv-aids-101/global advantagesofcouplingactivesmallmoleculesandpeptideswith y -statistics/).AlthoughHAARTistypicallyeffective,itisnotwith- antibodies. In contrast to bispecific-antibody approaches based K r outproblems,includingcomplicateddrug-druginteractions,ad- on protein engineering, such as the dual-variable-domain e s herenceissues,andamyriadofsideeffects.Thedevelopmentof (DVD)-Ig (21) or single-chain variable fragment (scFv)-Ig (22) g e potentandbroadlyactingbiologicdrugsmightofferasolutionto fusionapproaches,amongothers,laboriousproteinengineering L someoftheseproblemsandcomplementtraditionalHAART. is not required to endow a second specificity when the desired ib r Broadly neutralizing monoclonal antibodies (BNmAbs) that ligand is chemically coupled to the antibody. Furthermore, ex- a r y recognizefeaturesconservedacrosscladesofHIVarepromising pressionissuesarebypassed,sincedevelopmentofanewcellline , startingpointsforthedevelopmentofimmunotherapeuticagents isnotrequired. T h againstHIV-1(1–8).Severalstudieshaveshownthatthetransfer A promising additional blockade to HIV-1 infection that e S of sufficient quantities of broadly neutralizing antibodies can shouldcomplementthetargetingofviralproteinsisthetargeting c achievesterilizingimmunityagainstintravenous,vaginal,orrec- ofhostproteinsrequiredforviralentryandreplication.Unlike rip talchallengeinmacaquemodels(9,10).Thedeliveryofbroadly viral proteins, host proteins are not under selective pressure to p s neutralizing antibodies using gene-based approaches has also evolvetoevadethetherapeuticagent.Anumberofsmall-mole- R beenshowntobeeffectiveinanimalmodels(11,12).Indeed,soon culeinhibitorsoftheHIV-1coreceptorsCCR5andCXCR4have e s after our discovery of BNmAb b12, we developed protein engi- beendeveloped(23,24),andoneCCR5-targetingdrughasbeen e a neeringmethodstoincreasethepotencyandbreadthofneutral- approved (25–28). Here we covalently linked a CCR5-targeting r c ization by b12 with the original aim of developing evolved b12 small molecule, aplaviroc, to BNmAbs and CD4-IgG. This ap- h variants for HIV-1 therapy (13, 14). Collectively, these studies proach provided rapid access to bispecific proteins with excep- In s suggestthatBNmAbscouldbeeffectiveHIV-1prophylacticand t it therapeuticagents.Unfortunately,eventhemostbroadlyneutral- u t izingantibodyisvulnerabletoviralescape,becauseasingleamino Received9November2012 Accepted2February2013 e acidchangeonthetargetproteincanalterthebindingepitope.If Publishedaheadofprint20February2013 aBNmAbcouldbemodifiedtoinhibitHIVinmultipleways,the AddresscorrespondencetoCarlosF.BarbasIII,[email protected]. evolutionary hurdle for escape would be significantly elevated. Supplementalmaterialforthisarticlemaybefoundathttp://dx.doi.org/10.1128 Furthermore, by combining multiple inhibitory functions in a /JVI.03146-12. singlemolecule,theregulatoryandcostissuesforabiologiccom- Copyright©2013,AmericanSocietyforMicrobiology.AllRightsReserved. plementtocombinatorialdrugtherapymightbeminimized. doi:10.1128/JVI.03146-12 Recently,wedevelopedanewclassoftherapeuticmoleculesby May2013 Volume87 Number9 JournalofVirology p.4985–4993 jvi.asm.org 4985 Gavrilyuketal. tional breadth in their abilities to neutralize diverse isolates of finalconcentrationof20(cid:1)g/ml;eachsamplewastestedintriplicate.The HIV-1. cellswereincubatedonicefor1h,washedtwicewithstainbuffer,and resuspendedin100(cid:1)lofstainbuffer.Afluorescence-labeledsecondary antibodywasaddedataconcentrationrecommendedbymanufacturer. MATERIALSANDMETHODS Theplatewasincubatedonice,protectedfromlight,for1h.Thecellswere Antibodies.Antibodiesb12,2G12,andDEN3wereprovidedbyDennis washedtwicewiththestainbuffer,resuspendedin200(cid:1)lofstainbuffer, R.Burton(ScrippsResearchInstitute);antibodiesPG9andPG16were and transferred to filter-top fluorescence-activated cell sorter (FACS) providedbytheIAVI;theCD4-IgG2immunoadhesionproteinwasob- tubes(BDBiosciences)containing300(cid:1)lofbuffer(2%fetalbovinese- D tainedfromProgenics(PRO542).Antibodieswerestoredat4°C.Thera- rum[FBS]inphosphate-bufferedsaline[PBS]).Cellcountingwasper- o peutic-gradetrastuzumab(Genentech)wasusedwithoutadditionalpu- w formedusingadigitalLSRIIcytometer.DatawereanalyzedwithFlowJo rification. n software,version8.7.1. lo Synthesisoflabelingreagents.Thesynthesisandcharacterizationof Pharmacokineticstudy.Thepharmacokineticexperimentwascar- a aplavirocwithalinkerhavebeendescribedpreviously(29). d riedoutasdescribedpreviously(19).Inbrief,allanimalexperimentswere e Antibodylabelingprocedure.Ina1.5-mltube,anantibodysolution d (99(cid:1)l;1.5mg/mlin0.1MNa HPO [pH8.0])and10equivalentsof performedaccordingtoDivisionofAnimalResources(TSRI)guidelines f 4-formylbenzenediazoniumhex2afluor4ophosphate(FBDP;1(cid:1)l;10mM followingapprovedprotocols.Femaleathymicnudemice(8weeksofage) ro wereinjectedsubcutaneouslywith100(cid:1)gtrastuzumabortrastuzumab- m solutioninCH3CN)werecombined(30).Thesolutionwasmixedgently aplavirocin100(cid:1)lsterilePBS(4animalspergroup).Bloodwascollected h andwasallowedtoreactfor30minatroomtemperaturewithintermit- t tentmixing.Thesolutionturnedyellowuponcompletionofthereaction. fromtailveinsafter5min,2h,4h,8h,24h,48h,72h,96h,168h,and tp After 30 min, excess FBDP was removed using a Zeba Spin desalting 336h.Inordertominimizebloodloss,only10(cid:1)lofbloodwaswithdrawn :// column(molecularweightcutoff[MWCO],7,000[7K];Pierce),andbuf- per bleed; blood was diluted 1/5 in PBS containing 1% bovine serum jvi. ferwasexchangedwith0.1MNa2HPO4(pH6.0).Aplaviroc-oxyamine albumin(BSA).Sampleswereallowedtochillonicefor20min.Insoluble as (20equivalents;2(cid:1)l;10mMsolutioninCH CN)wasadded,andthe componentswereremovedbycentrifugation,andsampleswerestoredat m solutionwasincubatedovernightat4°C.Exces3saplaviroc-oxyaminewas (cid:3)20°Cuntilanalysis. .o removed using a Zeba Spin desalting column (MWCO, 7K), and free Thebindingandwashbufferforenzyme-linkedimmunosorbentas- rg aplavirocwasremovedbyusingaproteinAspincolumn(GEHealthcare) says(ELISA)wasPBScontaining1%BSA.Half-areaELISAplates(Corn- o/ accordingtothemanufacturer’sinstructions. ing)werecoatedwithanti-humanIgGFc(Pierce)at750ng/wellover- n Trypticdigestionandquadrupoletimeofflighttandemmassspec- night at 4°C. After wells were blocked with 3% BSA, serum samples A p trometry (Q-TOF MS-MS) characterization of antibody conjugates. dilutedinbindingbufferwereadded,andsampleswereincubatedfor1h r Purifiedantibodysamples(100(cid:1)l;1mg/ml)wereexchangedinto6M at37°C.Trastuzumabandtrastuzumab-aplavirocweredetectedbyincu- il 9 guanidine,0.1MTris(pH8.0)byusing0.5-mlZebaSpindesaltingcol- bationwithdonkeyanti-humanIgGconjugatedwithhorseradishperox- , 2 umns (MWCO, 7K) according to the manufacturer’s instructions. To idase(HRPO)(JacksonImmunoResearch).Todeterminetheserumdi- 0 eachsample,1Mdithiothreitol(DTT)(Fisher)wasaddedtoafinalcon- lution at which 80% saturation was reached, the 5-min samples were 13 centrationof20mM.Thesampleswereincubatedfor1hat37°Cwith seriallydilutedandanalyzed;80%saturationoftheELISAsignalattime b gentleshaking,anda1Msolutionofiodoacetamide(Fisher)wasaddedto zerowasreachedatadilutionof1/500fortheanti-humanIgG.Inall y K eachsampletoafinalconcentrationof40mM.Sampleswereincubatedat subsequentexperiments,theopticaldensity(OD)attimezerowassetas r roomtemperatureinthedarkfor40min.Thealkylationreactionswere 100%,andtheabsorptionatalllatertimepointswasdisplayedasaper- es quenchedbyadding1MDTTtoa40mMfinalconcentration.Sample centageofthatattimezero.TheresultingcurveswerefittedusingGraph- g e bufferwasthenexchangedfortrypsindigestionbuffer(50mMTris[pH PadPrismone-phaseexponentialdecay. L 7.5],5mMCaCl2)using0.5-mlZebaSpindesaltingcolumns(MWCO, Virusneutralizationassay.Neutralizationassayswithsingle-round ib 7K).TrypsinGold(0.5mg/ml;Pierce)wasdissolvedin50mMaceticacid. r infectious pseudovirus were performed as described elsewhere (10) by a Thetrypsinsolutionwasaddedtoeachsampleatanenzyme-to-protein usingU87.CD4.CCR5targetcellsobtainedfromtheNIHAIDSResearch ry ratioof1:20(wt/wt),andsampleswereincubatedat37°Cwithshakingat andReferenceReagentProgram(contributedbyHongKuiDengandDan , T 600rpmforapproximately18h.Digestionwasstoppedbytheadditionof Littman).Briefly,1(cid:2)104targetcellsinavolumeof100(cid:1)lwereseeded h trifluoroaceticacid(TFA)toapproximately0.1%. e Samples(with20(cid:1)gproteininjected)wereanalyzedusinganAgilent intowellsof96-wellplates(Corning)andwereincubatedovernightat S 37°Cunder5%CO .Afterovernightincubation,themediumwasre- c 6510Q-TOFmassspectrometerequippedwithaZorbaxSBC18column moved,and50(cid:1)loff2reshmediumwasaddedtoeachwell.Seriallydiluted rip ((cid:1)nmar)ro(Awgbiloernet;)i.nHneigrhd-ipaemrfeotremr,a2n.1cemlmiqu;liedncghthro,1m5a0tomgmra;pphayrt(iHclPeLsiCze),p3a.5- samples(50(cid:1)l)weretransferredtoplatedtargetcellsandwereincubated ps for1hat37°C.Anequalvolumeofviruspreviouslydeterminedtoyield R rameterswereasfollows:flowrate,0.2ml/min;agradientfrom0to40% 2(cid:2)105relativelightunits(RLU)wasadded(100(cid:1)l),andplateswere e mobilephaseBover80min,followedbyagradientto0%Bfrom80to90 s incubatedforanadditional72h.Tomeasureluciferaseactivity,theme- e a9mc0ie%nto.naMciteortbiolienlei(tpvriohlela/sv(eovAol)l,/wvaoansld)0.m.M05oS%bdilTaetFapAhwa(esvreoelB/cvoowllla)escitn0e.dH04fPo%LrC2T-0Fg0rAatdo(ev2oH,l5/2v0Oo0,l)m2%i/nz dfrieuemphwoassprheamteo-bveudff,etrheedwsaellilnsew,aenredw5a0s(cid:1)heldofoannceapwpirthopCriaa2t(cid:4)el-yadnidluMtedg2l(cid:4)u-- arch and 100 to 2,000 m/z, positive polarity, a gas temperature of 325°C, a ciferase cell culture lysis reagent (Promega) was added and mixed by In nebulizerpressureof30lb/in2,andacapillaryvoltageof3,500V.Data pipettingvigorouslyupanddown.Aliquots(20(cid:1)l)weretransferredto st wereanalyzedusingMassHuntersoftware(Agilent)andGPMAWsoft- opaque96-wellassayplates(Corning),andluciferaseactivitywasmea- itu ware(version8.20;ChemSW). suredonaluminometer(EG&GBertholdLB96V;Perkin-Elmer)usinga te Flowcytometry.Flowcytometryexperimentswereperformedasde- luciferaseassaysubstrate(Promega).Thepercentageofvirusneutraliza- scribedpreviously(29).ThecelllinesusedwereA431cells,whichdonot tionatagivenantibodyconcentrationwasdeterminedbycalculatingthe express CCR5, and TZM-bl cells, which do express CCR5. In brief, a reductioninluciferaseactivityinthepresenceofanantibody(relativeto single-cellsuspensionwasprepared,andcellswerewashedtwicewithcold thatinvirus-onlywells). stainbuffer(BDPharmingen)andwerepelletedbycentrifugation(300(cid:2) High-throughput virus neutralization assay. High-throughput g).Thecellpelletwasresuspendedincoldstainbuffertoafinalconcen- screeningofthePG9-aplavirocconjugatewasperformedinthelaboratory trationof2(cid:2)107cells/ml.Aliquotsof50(cid:1)lweredistributedtoV-bottom ofMichaelSeaman,HarvardMedicalSchool.Thehighestconcentration wellsofmicrowellplates(Corning).Primaryantibodieswereaddedtoa ofPG9-aplaviroctestedwas50(cid:1)g/ml;seven5-folddilutionswerealso 4986 jvi.asm.org JournalofVirology Potent,BroadlyActiveBispecificAnti-HIVAntibodies D o w n lo a d e d f r o m FIG1 Schematicrepresentationofthechemicalmodificationofanantibodywithadiazoniumhexafluorophosphate(FBDP)reagent.Theantibodyisfirst h t modifiedwiththeFBDPreagentatasurface-exposedtyrosineresidue(s),introducinganaldehydetagontotheantibody.Inthesecondstep,chemoselective tp conjugationofthealdehydewithoxyamineisperformed,resultingintheintroductionoftheaplavirocmoietyontothesurfaceoftheantibody. :/ / jv i. a s testedinduplicatewells.Thehighestconcentrationofaplaviroctestedwas ofHer2;however,meanfluorescenceintensitywasconsiderably m . 100nM. higherfortrastuzumab-aplavirocboundtoTZM-blcellsthanfor o r g theparentantibody,indicatingthattheCCR5bindingactivityof / RESULTS aplavirocwasmaintainedfollowingconjugation. o n Model trastuzumab-aplaviroc conjugate. In order to indepen- Theanti-HIV-1activityoftrastuzumab-aplavirocwasassessed A dentlyassesstheactivityofaplavirocconjugatedtoacarrierIgG byneutralizationassayswithasingleroundofinfectiouspseudo- p r without anti-HIV-1 activity, trastuzumab, an anti-Her2 mono- virus. Trastuzumab-aplaviroc neutralized HIV-1 strains JR-FL il 9 clonalantibody(MAb),wasusedasamodelhumanIgGforchem- andYU2with50%inhibitoryconcentrations(IC50s)of2.3nM , 2 icalmodificationandtesting.Bioconjugationconditionswerese- and 4.9 nM, respectively; unmodified trastuzumab showed no 0 lected on the basis of our previous study (30) and were further 1 neutralizingactivity(Fig.2B).ThepotentCCR5bindingantibody 3 optimizedhere(forfulloptimizationdetails,seethetablesinsec- 2D7neutralizedHIV-1strainsJR-FLandYU2withIC sof0.2 b tionS3inthesupplementalmaterial).Thetwo-stepconjugation nMand0.1nM,respectively.ToensuretheCCR5-based50mecha- y K methodology involved modification of the IgG with FBDP (4- nismoftrastuzumab-aplaviroc,itwasalsotestedforneutraliza- re formylbenzene diazonium hexafluorophosphate) followed by s tionofCXCR4-tropicHIVHXB2andwasfoundtobeinactive g ligationoftheantibodytoaplaviroc-oxyamine(Fig.1).Thetras- e (seethesupplementalmaterial). tuzumab-aplavirocconjugatewassubjectedtoextensivepurifica- L tion,includinggelfiltrationandproteinApurification,toensure ModificationoftheantibodyoccurredprimarilyatTyr319in ib completeremovalofunreactedaplaviroc. theCH2regionoftheheavychain.Becausetheinvivohalf-lives rar (t )ofantibodiesaremediatedprimarilybycontactsintheC 2 y Characterizationoftrastuzumab-aplavirocbymatrix-assisted 1/2 H , regionoftheIgGwiththeneonatalFcreceptorFcRn,weevaluated T laser desorption ionization–time of flight (MALDI-TOF) mass h spectrometryrevealedtheincorporationofanaverageof1apla- thehalf-livesoftheparentandtheconjugateinmice.Thetrastu- e zumab-aplavirocconjugatehadpharmacokineticpropertiessim- S virocmoietyperIgGmolecule(seethesupplementalmaterial). c Tryptic digestion and MS-MS characterization of the trastu- ilar to those of the unmodified parent antibody (Fig. 2C). The rip zumab-aplavirocindicatedthatthediazoniummodificationoc- half-lifeoftrastuzumabinathymicnudemicewas115h,whereas p the half-life of the trastuzumab-aplaviroc conjugate was 168 h. s curredpreferentiallyattheconservedsurface-exposedtyrosinein R theFcdomainatposition319byKabatnumbering.Someminor Thehalf-lifeofaplavirocinmiceis30min(33).Therefore,con- e jugationofaplavirocwithtrastuzumabdramaticallyextendedthe s modificationwasalsoobservedintheheavychainofFab(seethe e half-life of aplaviroc in vivo and did not negatively impact the a supplemental material). This observation is in agreement with r c previous studies that demonstrated preferential diazene forma- half-lifeofthescaffoldantibody. h tionwiththemostaccessibletyrosines(22,31,32).Whentrastu- Conjugationofaplaviroctobroadlyneutralizingmonoclo- In zumabthatwasnotmodifiedwithFBDPwasincubatedwithapla- nalantibodiesandCD4-IgG.BNmAbsb12,2G12,PG9,andPG16 st viroc-oxyamine,noconjugationofaplaviroc-oxyamineoccurred, and the immunoadhesin protein CD4-IgG were conjugated with itu t asshownbyMALDI-TOFmassspectrometry.Thissamplehadno aplaviroc, and the conjugates were characterized by MALDI-TOF e activityintheHIVneutralizationassays,indicatingthatthepuri- massspectrometry.Weobservedtheincorporationof0.5to2apla- fication protocol used removed unconjugated aplaviroc-oxy- virocmoietiesperproteinmolecule(Table1).Trypticdigestionand amine. MS-MSanalysisofconjugatesindicatedthattheheavy-chaincon- Flow cytometry demonstrated that trastuzumab-aplaviroc stantregionTyr319wastheprimarysiteofchemicalmodificationin bound to Her2-positive A431 cells and, to a lesser extent, to eachBNmAb,althoughminormodificationsiteswerealsoidentified CCR5-positiveTZM-blcells(Fig.2A).Theparentantibody,tras- (seethesupplementalmaterial).Nomodificationswereobservedin tuzumab,alsoboundtoTZM-blcells,duetolow-levelexpression theFvregionsoftheantibodies. May2013 Volume87 Number9 jvi.asm.org 4987 Gavrilyuketal. D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n A FIG 2Evaluation of the model antibody conjugate trastuzumab-aplaviroc. (A) Flow cytometry analysis of binding to CCR5-positive TZM-bl cells and p CCR5-negativeA431cells.ThepotentCCR5bindingantibody(Ab)2D7servedasapositivecontrolinTZM-blcellassays.MFI,meanfluorescenceintensity.(B) r NeutralizationofHIV-1JR-FLandYU2bytrastuzumabandthetrastuzumab-aplavirocconjugate.(C)Pharmacokineticprofilesoftrastuzumabandthe il 9 trastuzumab-aplavirocconjugateinathymicmice(4miceperexperimentalgroup).Allexperimentaldatarepresenttwoormoreindependentexperiments , performedintriplicate.Errorbarsrepresentstandarddeviations. 2 0 1 3 b HIV-1 neutralization studies showed that the potencies of isolate, PG9 and PG16 were inactive except as aplaviroc conju- y K BNmAbconjugatesagainstHIV-1isolatesJR-FLandYU2were gates.CD4-IgGpotentlyneutralizesbothJR-FLandYU2.Conju- r e significantlyhigherthanthoseoftheunconjugatedparentalanti- gationofaplaviroctoCD4-IgGdidnothaveanotableeffectonthe s bodiesortheCD4fusionprotein(Table1;Fig.3).Improvements neutralizationoftheseviruses,sincetheimmunoadhesinprotein g e in potency over the parent antibody ranged from (cid:5)3-fold for itselfcanneutralizeJR-FLandYU2morepotentlythanaplaviroc L 2G12-aplaviroc against the JR-FL isolate to (cid:6)400-fold for b12- alone. To determine whether aplaviroc conjugation can have a ib r aplavirocagainsttheYU2isolate.Differencesbetweenconjugates positiveeffectontheactivityofthisprotein,weadditionallyas- a r y and parent antibodies were smallest for the most potent of the sayedthecladeAvariant92RW020.5,astrainrelativelyresistant , parental antibodies. In the neutralization assay with the JR-FL toneutralizationbyCD4-IgG.Againstthisstrain,theconjugation T h resultedina20-foldimprovementintheIC .CD4-IgGneutral- e 50 S izedthe92RWpseudoviruswithanIC of10nM,whereasCD4- 50 c TABLE1NeutralizationofHIV-1JR-FLandYU2byaplaviroc- IgG–aplavirocneutralizedthisisolatewithanIC50of0.5nM.Sig- rip conjugatedBNmAbsandCD4-Ig nificantly,noevidenceofenhancedinfectionwasnotedwithany p s Avgno.of conjugatedproteinstudied. R IC (nM)for: aplavirocmoieties 50 We also studied the neutralization activity of a 1:1 molar e s Antibodya perIgGmolecule JR-FL YU2 mixtureofaplavirocandPG9againstHIV-1strainsJR-FLand e a b12-apl 0.5 0.1 0.1 YU2,andweobservedapotencyequaltothatofaplaviroc.The r c b12 0 0.3 46.7 invitroassay,however,doesnotallowustoassessthepotential h 2G12-apl 2 0.3 25.5 clinicalbenefitoftheextendedhalf-lifeoftheantibody-apla- In 2G12 0 0.8 (cid:6)100 virocconjugaterelativetothe1:1mixtureoftwoagents(vide st PG9-apl 1 11.6 1.2 infra). itu PG9 0 (cid:6)100 22.6 NeutralizationofHIV-1strainsbyPG9-aplaviroc.ThePG9 te PG16-apl 2 5.9 0.4 conjugatewaschosenformorein-depthstudybecausetheparent PG16 0 (cid:6)100 1.5 antibody,PG9,isrepresentativeofarecentlydescribedgroupof CD4-IgG–apl 1 0.6 0.6 BNmAbsthatdemonstratetremendousbreadthofneutralization CD4-IgG 0 0.6 0.7 Aplaviroc 0.95 0.86 activity.ELISAstudiesofPG9andPG9-aplavirocperformedus- 2D7(positivecontrol) 0 0.2 0.1 inggp120fromHIVstrain16055,acladeCvirus,indicatednoloss DEN3(negativecontrol) 0 (cid:6)1,000 (cid:6)1,000 ofbindingactivityforPG9followingconjugation.Theneutraliz- aapl,aplaviroc. ing ability of PG9-aplaviroc was assessed against a panel of 117 4988 jvi.asm.org JournalofVirology Potent,BroadlyActiveBispecificAnti-HIVAntibodies D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n A p r FIG3 EvaluationoftheneutralizationabilitiesofantibodyconjugatesagainstHIV-1strainsJR-FLandYU2andoftheCD4-IgG2–aplavirocconjugateagainst il 9 HIV-1strainsJR-FL,YU2,and92RW.HIV-1JR-FLisresistanttoneutralizationbyparentantibodiesPG9andPG16.Thebottomrightgraphshowsresultsfor , controlsonly:2D7,positive-controlMAb;DEN3,negative-controlMAb;aplaviroc,small-moleculepositivecontrol. 2 0 1 3 b pseudoviruses representing major circulating HIV-1 subtypes neutralizedbyPG9-aplavirocwithameanIC of6(cid:1)g/ml(Table y 50 (Table2;seealsosectionS5inthesupplementalmaterial).PG9 3).PG9-aplavirocneutralizedall117ofthesubtypeswithIC s K 50 r neutralized101ofthe117virusestestedwithIC sbelow50(cid:1)g/ below17(cid:1)g/mlandwithameanIC 28(cid:1)g/ml(seethesupple- e 50 50 s ml. The 16 viruses that were not well neutralized by PG9 were mentalmaterial).PG9-aplavirocneutralized94.9%ofthe117vi- g e L ib r TABLE2Summaryofneutralizationdataforapanelof117HIV-1strains a r y , T h e S c r ip p s R e s e a r c h I n s t it u t e aAplavirocneutralizationwithIC sof(cid:7)100nMandIC sof(cid:7)100nM. 50 80 May2013 Volume87 Number9 jvi.asm.org 4989 Gavrilyuketal. TABLE3SummaryofthepseudovirusesneutralizedbyPG9-aplaviroc TABLE4SummaryofthepseudovirusesneutralizedbyPG9-aplaviroc withIC sof(cid:7)50 (cid:1)g/mlthatarenotneutralizedbyPG9(IC s,(cid:6)50 withIC sof(cid:7)50 (cid:1)g/mlthatarenotneutralizedbyPG9(IC s,(cid:6)50 50 50 80 80 (cid:1)g/ml) (cid:1)g/ml) IC titerinTZM-blcells IC titerinTZM-blcells 50 80 ((cid:1)g/ml)c ((cid:1)g/ml)c VirusIDa Cladeb PG9 PG9-aplaviroc VirusIDa Cladeb PG9 PG9-aplaviroc QH0692.42 B (cid:6)50 10.817 WEAU_d15_410_5017 B(T/F) (cid:6)50 19.772 D 1054_07_TC4_1499 B(T/F) (cid:6)50 6.916 HIV-16845-2.22 C (cid:6)50 18.415 o 6244_13_B5_4576 B(T/F) (cid:6)50 7.674 620345.c01 CRF01_AE (cid:6)50 14.409 w 62357_14_D3_4589 B(T/F) (cid:6)50 4.305 0815.v3.c3 ACD (cid:6)50 7.406 nlo ZM214M.PL15 C (cid:6)50 2.136 6480.v4.c25 CD (cid:6)50 8.097 a Ce1086_B2 C(T/F) (cid:6)50 1.183 6952.v1.c20 CD (cid:6)50 11.544 de Ce2010_F5 C(T/F) (cid:6)50 11.145 6811.v7.c18 CD (cid:6)50 24.897 d 246FC1G C(T/F) (cid:6)50 1.262 X2088_c9 G (cid:6)50 30.361 fr o 7030102001E5(Rev-) C(T/F) (cid:6)50 6.763 3016.v5.c45 D (cid:6)50 1.571 m CNE30 BC (cid:6)50 9.645 191821_E6_1 D(T/F) (cid:6)50 0.976 h T251-18 CRF02_AG (cid:6)50 16.982 246FC1G C(T/F) (cid:6)50 3.500 tt X2088_c9 G (cid:6)50 10.453 7030102001E5(Rev-) C(T/F) (cid:6)50 29.579 p: / 6480.v4.c25 CD (cid:6)50 1.476 CNE30 BC (cid:6)50 41.902 /jv 6952.v1.c20 CD (cid:6)50 1.666 Ce1086_B2 C(T/F) (cid:6)50 4.069 i. a 6811.v7.c18 CD (cid:6)50 5.080 ZM214M.PL15 C (cid:6)50 18.933 s 0815.v3.c3 ACD (cid:6)50 1.399 PVO.4 B (cid:6)50 8.239 m . aID,identification. TRO.11 B (cid:6)50 35.584 or bT/F,transmitted/foundervirus. RHPA4259.7 B (cid:6)50 7.092 g/ cThePG9dataarehistoricaldataforthis117-viruspanelbridgedforthecurrent THRO4156.18 B (cid:6)50 20.071 o etixteprerinimTeZnMtw-bitlhcaelslsetiso5f.r9e2p1re(cid:1)sge/nmtalt,iavnedvitrhuesems.eFaonr(cid:8)PGst9a-nadpalardvirdoecv,iathtieonmiesd6ia.1n8I1C(cid:8)50 16025444__0173__TB5C_44_5174699 BB((TT//FF)) (cid:6)(cid:6)5500 3268..069440 n Ap 4.703(cid:1)g/ml. 62357_14_D3_4589 B(T/F) (cid:6)50 17.254 ril aID,identification. 9 , ruseswithIC80sof(cid:7)50 (cid:1)g/ml;for22ofthepseudovirusstrains bcTTh/Fe,PtGra9ndsmataittaerde/hfoisutonrdicearlvdiartuasf.orthis117-viruspanelbridgedforthecurrent 20 1 naneutitbroadlizye,dPGby9,thweaPsGab9o-avpela5v0ir(cid:1)ocg/cmonlj(uTgaabtele,t4h)e.IUCn8l0ikoeftthheeppaarreenntt eTxZpMer-imblecnetllwsiisth17a.8se3t4o(cid:1)fgre/mprle,saenndtatthiveemvieraunse(cid:8)s.FstoarnPdaGr9d-dapevlaivatirioonc,itsh1e7m.6e5d5i(cid:8)an1IC2.8106t0iterin 3 b antibody,theconjugateneutralizedallcladeBandCviruses,includ- (cid:1)g/ml. y K ingtransmitted/founderviruses.CladeCispredominantinSouthern r bolictoxicity.Bothoftheselimitationsmightbeaddressedbythe e andEastAfrica,India,andNepalandisresponsibleforabouthalfof s developmentofaHAARTequivalentbasedonproteindrugs.For g worldwideinfections.CladeBisthemajorcauseofinfectioninthe e Americas,Europe,Japan,andAustralia.Thus,conjugationtoaplavi- example, antibodies have long in vivo half-lives. Native human L IgG1hasat of23daysinhumans,andengineeredvariantsof ib rocsignificantlyimprovedthebreadthofneutralizationability. 1/2 r a The PG9-aplaviroc conjugate demonstrated a dramatic im- r y provementovertheparentantibodyinthemaximumpercentage , TABLE5SummaryofMPIsaforPG9andPG9-aplaviroc T ofinhibition(MPI)acrossthe117-viruspanel(Table5;seealso h e thesupplementalmaterial).PG9issensitivetotheglycosylation No.ofviruses S profile of a virus and cannot completely neutralize certain viral No.of neutralizedwithan c strainsevenathighantibodyconcentrations(34).ThePG9-apla- viruses MPIof100% AvgMPI rip viroc conjugate did not display this glycan sensitivity and was Cladeb tested PG9 PG9-aplaviroc PG9 PG9-aplaviroc ps foundtobemorepotentthannativePG9whenMPIswerecom- A 8 3 6 97 99 R pared.PG9andPG9-aplavirocneutralized40and84ofthe117 e A(T/F) 3 3 3 100 100 s viralisolatestestedatMPIsof(cid:6)99.5%,respectively. B 12 1 4 77 95 ea B(T/F) 9 0 2 63 94 rc DISCUSSION C 16 7 12 88 99 h The success of HAART is predicated on the fact that although C(T/F) 15 10 13 76 97 In s HIV-1isahypermutatingvirus,atherapyconsistingofacombi- DandD(T/F) 5 1 3 83 99 t nationofinhibitorstargetingthreeviralenzymes—reversetrans- G 7 1 4 85 98 itu t AC 4 1 3 98 100 e criptase,protease,andintegrase—presentsastringentbarrierto AG 9 3 7 92 97 viralreplication.HAARToftenreducesviralreplicationtounde- AE 10 5 7 96 99 tectablelevelsinpatients.HAARTdoesnot,however,presentan AE(T/F) 4 0 2 93 100 insurmountable barrier to viral replication, and drug resistance ACD 2 0 0 29 84 canevolverapidlywhenpatientcomplianceispoor.Twokeyfac- BC 8 5 6 89 98 torsthatcontributetodrugcompliancefailurearefrequencyof CD 5 0 2 47 97 administration, which has been reduced to once daily for some aMPIsof(cid:6)99.5%wereroundedupto100%bytheanalysissoftware. HAARTregimens,andadversesideeffects,oftendrivenbymeta- bT/F,transmitted/foundervirus. 4990 jvi.asm.org JournalofVirology Potent,BroadlyActiveBispecificAnti-HIVAntibodies theFcregionsofantibodiespromiset sof(cid:6)6months(35, 36). rocderivativesthatareamenabletolinkagetoproteinsorlong- 1/2 ThemetabolicliabilityofHIV-1small-moleculedrugsisapartic- livedcarriershavenotyetbeendescribed. ular challenge, because the drugs are dosed chronically at very Wepreparedaplavirocconjugateswiththebroadlyneutral- highcompoundloadinglevelsduetotheirshortpharmacokinetic izing antibodies b12, 2G12, PG9, PG16, and CD4-IgG. The profiles.Themetabolismofantibodiesdoesnotcreatenewactive incorporationofaplavirocsignificantlyimprovedtheneutral- metabolites. ization abilities of BNmAbs for strains resistant to or weakly Both the high genetic variability and the diversity of HIV-1 neutralized by the parent antibodies. The antiviral activity of pose challenges to the creation of a HAART therapy based on PG9-aplaviroc was analyzed against a panel of 117 different D o protein therapeutic agents such as antibodies. The extracellular viralstrains.Theconjugateneutralizedtheactivitiesof100%of w targets on which this approach focuses are the HIV-1 envelope viralstrainswithIC50slowerthan50(cid:1)g/ml.Tothebestofour nlo andthehostcellreceptorsCD4,CCR5,andCXCR4.Despitethe knowledge, none of the currently known BNmAbs neutralize a highgeneticvariabilityandpreexistingdiversityoftheHIVenve- allofthese117cross-cladepseudoviruseswithIC50slowerthan de lopeprotein,anumberofBNmAbsthatpossessexceptionalanti- 50 (cid:1)g/ml. Notably, compared to parent PG9-aplaviroc had d f HIV-1activityandbreadthhavebeencharacterized(1–8).Target- lower IC50s against 13 out of 32 tested transmitted/founder ro ing the host cell receptors CD4, CCR5, and CXCR4 has the virusesofdifferentcladesandwasmorepotentthananyofthe m advantageofgeneticstabilitybutcouldhavedeleteriouseffectsif parentmoleculesaloneagainst10oftheseviruses(seethesup- h t the therapeutic agent negatively impacts the host cells. Certain plementalmaterial).PG9-aplavirocalsodisplayedMPIssignif- tp : tshtuedraiepseuantidcaapnptiebaordtioespotasrsgesestipnrgomCDis4ingansdafeCtyCpRr5ofiarlees;inhocwlinevicearl, icanTthlyeimmepdrioanveIdCo50veorftthhoesPeGo9f-tahpelapvairreonctcaonntjiubgoadtey.against the //jvi. panelwas2.76nM,whereasthatoftheparentantibody,PG9,was a noneareapproveddrugs(37–39). s 0.77 nM. On a panel of 76 of 117 viruses, PG9-aplaviroc had m The road to an approved drug cocktail is long and requires . higherIC sthanthenakedPG9antibody(seesectionS5inthe o independenttestingandapprovalofeachspecies.Oneapproach 50 r supplementalmaterial),withmedianIC sof0.674nMforPG9 g tostreamliningthisprocessistoconstructsingleentitiesthatpos- 50 / and1.737nMforPG9-aplaviroc.Notably,aplavirocitselfwasnot o sessmultipleactivities.Thefirststeptowardthisgoalisthecre- n verypotentonthissetoftheviruses,withamedianIC of4.6nM. ation of bispecific-antibody therapeutic agents. To address this 50 A Wehypothesizethatduringtheneutralizationassaythereiscom- p challenge,modifiedantibodyformats(e.g.,knobsintoholes[40], r IgG-scFv[41],andDVD-Ig[21])havebeencreatedusingprotein petitionbetweenbindingtoCCR5andbindingtotheHIV-1en- il 9 velope, and thus, the conjugate is not always used in the most , engineeringmethods.Oftentheseapproachessufferfromprotein 2 instability and low expression yields, although the recently de- efficientneutralizationpathway.Sincethesetwomechanismsof 0 neutralizationareincompetitionwhentheconjugateisassayed 1 scribedpeptidefusionapproachovercomesmanyoftheseprob- 3 againstvirusesthatareverysensitivetoPG9neutralization,some b lems(42).Theapproachusedhereinvolveschemicalconjugation reductioninpotencyagainsttheseisolatesisexpected. y of a peptide or small molecule to a monoclonal antibody that K CombiningpotentmoleculesthatpreventHIVentrythrough r possessesadesiredspecificity.Theconjugationisperformedusing e differentmechanismsintoasinglemultifunctionalmoleculemay s amethodologythatallowsboththeMAbandtheprogramming g createaninsurmountableevolutionarychallengelimitingthede- e agenttobindtheirrespectivetargets. velopmentofresistance.Thishypothesisissupportedbyarecent L HereweconjugatedtheCCR5-specificdrugaplaviroctosev- reportbyZhouetal.showingthatHIVescapemutantsselectedby ib r eralbroadlyneutralizingantibodiesandCD4-IgG.Aplavirocwas a exposure to entry inhibitors were much more sensitive to BN- r withdrawnfromclinicalstudyfollowingtheobservationofidio- y mAbsthantheoriginalvirus(44).Thechemicalapproachtothe , syncratic hepatotoxicity in phase IIb clinical trials (43). In hu- T synthesisofmultispecificBNmAbsdescribedherewillallowready h mans,aplavirochasahalf-lifeofapproximately3h,makinghigh access to various combinations of neutralizing antibodies and e dosesanunavoidablerequirement.Wehypothesizedthatinthe S host-protectingsmall-moleculedrugsthatbindtothereceptors c contextofanantibodyconjugate,thehalf-lifeofaplavirocwould crucialforHIVentry(CCR5,CXCR4,CD4).Intelligentdesignof rip be considerably extended. To test this, we prepared a trastu- thelinkerarchitecturewillallowthepreparationoftri-andtetras- p s zumab-aplavirocconjugatethroughatyrosine-selectivereaction. pecificantibodyconjugates. R The plasma half-life of the trastuzumab-aplaviroc conjugate in e s micewassignificantlylonger(168h)thanthatofaplavirocalone ACKNOWLEDGMENTS e a (30min).Ithasbeenshownpreviouslythatchemicalprogram- r This work was supported by NIH grants AI095038 (C.F.B.), AI33292 c ming of an antibody resulted in a 1,000-fold reduction of the h (D.R.B.),AI100663(D.R.B.),andIAVI(D.R.B.). amountofasmallmoleculerequiredfortherapeuticeffect(17). WethankB.Hahn,F.McCutchan,G.Shaw,D.Montefiori,M.Thom- In Reductionoftheeffectivedosewilllikelymitigatethemetabolic son,J.Overbaugh,R.Swanstrom,L.Morris,J.Kim,L.Zhang,D.Ellens- stit toxicityobservedwithanti-HIVdrugssuchasaplaviroc,although berger,andC.WilliamsonforcontributingtheHIV-1envelopeplasmids u t thisremainstobedemonstrated.Thetrastuzumab-aplaviroccon- usedintheextendedneutralizationpanel. e jugatewasabletorecognizetheCCR5receptoronthesurfacesof CCR5-expressing cells and efficiently blocked HIV entry at low REFERENCES nanomolar concentrations. Thus, attributes of both the parent 1. BinleyJM,WrinT,KorberB,ZwickMB,WangM,ChappeyC,Stiegler antibodyandthesmallmoleculeweremaintainedinthecontext G,KunertR,Zolla-PaznerS,KatingerH,PetropoulosCJ,BurtonDR. 2004. Comprehensive cross-clade neutralization analysis of a panel of of the conjugate. Success with aplaviroc suggests that clinically anti-humanimmunodeficiencyvirustype1monoclonalantibodies.J.Vi- approved CCR5 inhibitors, such as maraviroc, can potentially rol.78:13232–13252. benefitfromevaluationasBNmAbconjugates.However,maravi- 2. DiskinR,ScheidJF,MarcovecchioPM,WestAP,Jr,KleinF,GaoH, May2013 Volume87 Number9 jvi.asm.org 4991 Gavrilyuketal. GnanapragasamPN,AbadirA,SeamanMS,NussenzweigMC,Bjork- 17. PopkovM,RaderC,GonzalezB,SinhaSC,BarbasCF,III.2006.Small manPJ.2011.IncreasingthepotencyandbreadthofanHIVantibodyby molecule drug activity in melanoma models may be dramatically en- usingstructure-basedrationaldesign.Science334:1289–1293. hancedwithanantibodyeffector.Int.J.Cancer119:1194–1207. 3. FalkowskaE,RamosA,FengY,ZhouT,MoquinS,WalkerLM,WuX, 18. Rader C, Sinha SC, Popkov M, Lerner RA, Barbas CF, III. 2003. SeamanMS,WrinT,KwongPD,WyattRT,MascolaJR,PoignardP, Chemically programmed monoclonal antibodies for cancer therapy: BurtonDR.2012.PGV04,anHIV-1gp120CD4bindingsiteantibody,is adaptorimmunotherapybasedonacovalentantibodycatalyst.Proc.Natl. broadandpotentinneutralizationbutdoesnotinduceconformational Acad.Sci.U.S.A.100:5396–5400. changescharacteristicofCD4.J.Virol.86:4394–4403. 19. WuellnerU,GavrilyukJI,BarbasCF,III.2010.Expandingtheconcept 4. ScheidJF,MouquetH,UeberheideB,DiskinR,KleinF,OliveiraTY, of chemically programmable antibodies to RNA aptamers: chemically D PietzschJ,FenyoD,AbadirA,VelinzonK,HurleyA,MyungS,Boulad programmed biotherapeutics. Angew. Chem. Int. Ed. Engl. 49:5934– o F,PoignardP,BurtonDR,PereyraF,HoDD,WalkerBD,SeamanMS, 5937. w BjorkmanPJ,ChaitBT,NussenzweigMC.2011.Sequenceandstruc- 20. DoppalapudiVR,TryderN,LiLN,AjaT,GriffithD,LiaoFF,RoxasG, n turalconvergenceofbroadandpotentHIVantibodiesthatmimicCD4 Ramprasad MP, Bradshaw C, Barbas CF, III. 2007. Chemically pro- lo a binding.Science333:1633–1637. grammedantibodies:endothelinreceptortargetingCovX-Bodies.Bioorg. d 5. WalkerLM,HuberM,DooresKJ,FalkowskaE,PejchalR,JulienJP, Med.Chem.Lett.17:501–506. e d WangSK,RamosA,Chan-HuiPY,MoyleM,MitchamJL,Hammond 21. Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A, Bose S, f PW,OlsenOA,PhungP,FlingS,WongCH,PhogatS,WrinT,Simek McCarthy D, Zhu RR, Santora L, Davis-Taber R, Kunes Y, Fung E, ro MD,KoffWC,WilsonIA,BurtonDR,PoignardP.2011.Broadneu- SchwartzA,SakorafasP,GuJ,TarcsaE,MurtazaA,GhayurT.2007. m tralizationcoverageofHIVbymultiplehighlypotentantibodies.Nature Simultaneoustargetingofmultiplediseasemediatorsbyadual-variable- h 477:466–470. domainimmunoglobulin.Nat.Biotechnol.25:1290–1297. tt p 6. WalkerLM,PhogatSK,Chan-HuiPY,WagnerD,PhungP,GossJL, 22. KovacsEW,HookerJM,RomaniniDW,HolderPG,BerryKE,Francis : / Wrin T, Simek MD, Fling S, Mitcham JL, Lehrman JK, Priddy FH, MB.2007.Dual-surface-modifiedbacteriophageMS2asanidealscaffold /jv OlsenOA,FreySM,HammondPW,KaminskyS,ZambT,MoyleM, foraviralcapsid-baseddrugdeliverysystem.Bioconjug.Chem.18:1140– i. KoffWC,PoignardP,BurtonDR.2009.Broadandpotentneutralizing 1147. a s antibodiesfromanAfricandonorrevealanewHIV-1vaccinetarget.Sci- 23. ChenW,ZhanP,DeClercqE,LiuX.2012.Recentprogressinsmall m ence326:285–289. molecule CCR5 antagonists as potential HIV-1 entry inhibitors. Curr. . o 7. WuX,YangZY,LiY,HogerkorpCM,SchiefWR,SeamanMS,Zhou Pharm.Des.18:100–112. r g T,SchmidtSD,WuL,XuL,LongoNS,McKeeK,O’DellS,LouderMK, 24. LiuT,WengZ,DongX,HuY.2010.Recentadvancesinthedevelop- / WycuffDL,FengY,NasonM,Doria-RoseN,ConnorsM,KwongPD, mentofsmall-moleculeCCR5inhibitorsforHIV.MiniRev.Med.Chem. o n RoedererM,WyattRT,NabelGJ,MascolaJR.2010.Rationaldesignof 10:1277–1292. A envelopeidentifiesbroadlyneutralizinghumanmonoclonalantibodiesto 25. DorrP,WestbyM,DobbsS,GriffinP,IrvineB,MacartneyM,MoriJ, p HIV-1.Science329:856–861. RickettG,Smith-BurchnellC,NapierC,WebsterR,ArmourD,Price r 8. WuX,ZhouT,ZhuJ,ZhangB,GeorgievI,WangC,ChenX,Longo D,StammenB,WoodA,PerrosM.2005.Maraviroc(UK-427,857),a il 9 NS,LouderM,McKeeK,O’DellS,PerfettoS,SchmidtSD,ShiW,Wu potent, orally bioavailable, and selective small-molecule inhibitor of , 2 L, Yang Y, Yang ZY, Yang Z, Zhang Z, Bonsignori M, Crump JA, chemokinereceptorCCR5withbroad-spectrumanti-humanimmunode- 0 Kapiga SH, Sam NE, Haynes BF, Simek M, Burton DR, Koff WC, ficiencyvirustype1activity.Antimicrob.AgentsChemother.49:4721– 1 Doria-Rose NA, Connors M, Mullikin JC, Nabel GJ, Roederer M, 4732. 3 ShapiroL,KwongPD,MascolaJR.2011.FocusedevolutionofHIV-1 26. HuntJS,RomanelliF.2009.Maraviroc,aCCR5coreceptorantagonist b y neutralizingantibodiesrevealedbystructuresanddeepsequencing.Sci- thatblocksentryofhumanimmunodeficiencyvirustype1.Pharmaco- K ence333:1593–1602. therapy29:295–304. r e 9. Hessell AJ, Hangartner L, Hunter M, Havenith CE, Beurskens FJ, 27. KromdijkW,HuitemaAD,MulderJW.2010.TreatmentofHIVinfec- s BakkerJM,LaniganCM,LanducciG,ForthalDN,ParrenPW,Marx tionwiththeCCR5antagonistmaraviroc.ExpertOpin.Pharmacother. g e PA,BurtonDR.2007.Fcreceptorbutnotcomplementbindingisimpor- 11:1215–1223. L tantinantibodyprotectionagainstHIV.Nature449:101–104. 28. LorenzenT.2010.Profileofmaraviroc:aCCR5antagonistintheman- ib 10. ParrenPW,MarxPA,HessellAJ,LuckayA,HarouseJ,Cheng-Mayer agement of treatment-experienced HIV patients. HIV AIDS (Auckl.) r a C, Moore JP, Burton DR. 2001. Antibody protects macaques against 2:151–156. r y vaginalchallengewithapathogenicR5simian/humanimmunodeficiency 29. GavrilyukJ,UeharaH,OtsuboN,HessellA,BurtonDR,BarbasCF, , virusatserumlevelsgivingcompleteneutralizationinvitro.J.Virol.75: III.2010.PotentinhibitionofHIV-1entrywithachemicallyprogrammed T 8340–8347. antibodyaidedbyanefficientorganocatalyticsynthesis.Chembiochem h e 11. Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. 2012. 11:2113–2118. S Antibody-based protection against HIV infection by vectored immu- 30. Gavrilyuk J, Ban H, Nagano M, Hakamata W, Barbas CF, III. 2012. c noprophylaxis.Nature481:81–84. Formylbenzene diazonium hexafluorophosphate reagent for tyrosine- rip 12. JohnsonPR,SchneppBC,ZhangJ,ConnellMJ,GreeneSM,YusteE, selectivemodificationofproteinsandtheintroductionofabioorthogonal p DesrosiersRC,ClarkKR.2009.Vector-mediatedgenetransferengenders aldehyde.Bioconjug.Chem.23:2321–2328. s long-livedneutralizingactivityandprotectionagainstSIVinfectionin 31. HookerJM,KovacsEW,FrancisMB.2004.Interiorsurfacemodification R e monkeys.Nat.Med.15:901–906. ofbacteriophageMS2.J.Am.Chem.Soc.126:3718–3719. s 13. Saphire EO, Parren PW, Barbas CF, III, Burton DR, Wilson IA. 32. SchlickTL,DingZ,KovacsEW,FrancisMB.2005.Dual-surfacemod- e a 2001. Crystallization and preliminary structure determination of an ificationofthetobaccomosaicvirus.J.Am.Chem.Soc.127:3718–3723. r intacthumanimmunoglobulin,b12:anantibodythatbroadlyneutral- 33. NakataH,MaedaK,MiyakawaT,ShibayamaS,MatsuoM,TakaokaY, ch izesprimaryisolatesofHIV-1.ActaCrystallogr.DBiol.Crystallogr. ItoM,KoyanagiY,MitsuyaH.2005.Potentanti-R5humanimmuno- I 57:168–171. deficiencyvirustype1effectsofaCCR5antagonist,AK602/ONO4128/ n s 14. ZwickMB,BonnycastleLL,MenendezA,IrvingMB,BarbasCF, III, GW873140,inanovelhumanperipheralbloodmononuclearcellnon- tit ParrenPW,BurtonDR,ScottJK.2001.Identificationandcharacteriza- obesediabetic-SCID,interleukin-2receptorgamma-chain-knocked-out u t tionofapeptidethatspecificallybindsthehuman,broadlyneutralizing AIDSmousemodel.J.Virol.79:2087–2096. e anti-humanimmunodeficiencyvirustype1antibodyb12.J.Virol.75: 34. DooresKJ,BurtonDR.2010.Variableloopglycandependencyofthe 6692–6699. broadandpotentHIV-1-neutralizingantibodiesPG9andPG16.J.Virol. 15. Gavrilyuk JI, Wuellner U, Barbas CF, III. 2009. Beta-lactam-based 84:10510–10521. approach for the chemical programming of aldolase antibody 38C2. 35. HintonPR,XiongJM,JohlfsMG,TangMT,KellerS,TsurushitaN. Bioorg.Med.Chem.Lett.19:1421–1424. 2006.AnengineeredhumanIgG1antibodywithlongerserumhalf-life.J. 16. Gavrilyuk JI, Wuellner U, Salahuddin S, Goswami RK, Sinha SC, Immunol.176:346–356. BarbasCF,III.2009.Anefficientchemicalapproachtobispecificanti- 36. IgawaT,TsunodaH,KuramochiT,SampeiZ,IshiiS,HattoriK.2011. bodiesandantibodiesofhighvalency.Bioorg.Med.Chem.Lett.19:3716– Engineering the variable region of therapeutic IgG antibodies. MAbs 3720. 3:243–252. 4992 jvi.asm.org JournalofVirology Potent,BroadlyActiveBispecificAnti-HIVAntibodies 37. Bruno CJ, Jacobson JM. 2010. Ibalizumab: an anti-CD4 monoclonal 42. LaFleurDW,AbramyanD,KanakarajP,SmithRG,ShahRR,WangG, antibodyforthetreatmentofHIV-1infection.J.Antimicrob.Chemother. YaoX-T,KankanalaS,BoydE,ZaritskayaL,NamV,PufferBA,Buasen 65:1839–1841. P,KaithamanaS,BurnetteAF,KrishnamurthyR,PatelD,RoschkeVV, 38. Song R, Franco D, Kao CY, Yu F, Huang Y, Ho DD. 2010. Epitope Kiener P, Hilbert DM, Barbas CF, III. 2013. Monoclonal antibody mapping of ibalizumab, a humanized anti-CD4 monoclonal antibody therapeuticswithuptofivespecificities:functionalenhancementthrough withanti-HIV-1activityininfectedpatients.J.Virol.84:6935–6942. fusionoftarget-specificpeptides.mAbs5:208–218. 39. TenorioAR.2011.ThemonoclonalCCR5antibodyPRO-140:theprom- 43. Nichols WG, Steel HM, Bonny T, Adkison K, Curtis L, Millard J, iseofonce-weeklyHIVtherapy.Curr.HIV/AIDSRep.8:1–3. KabeyaK,ClumeckN.2008.Hepatotoxicityobservedinclinicaltrials 40. RidgwayJB,PrestaLG,CarterP.1996.‘Knobs-into-holes’engineering of aplaviroc (GW873140). Antimicrob. Agents Chemother. 52:858– D ofantibodyCH3domainsforheavychainheterodimerization.Protein 865. o Eng.9:617–621. 44. Zhou N, Fan L, Ho HT, Nowicka-Sans B, Sun Y, Zhu Y, Hu Y, w 41. Bostrom J, Yu SF, Kan D, Appleton BA, Lee CV, Billeci K, Man W, McAuliffeB,RoseB,FangH,WangT,KadowJ,KrystalM,Alexander n PealeF,RossS,WiesmannC,FuhG. 2009.Variantsoftheantibody L,ColonnoR,LinPF.2010.IncreasedsensitivityofHIVvariantsselected lo a herceptinthatinteractwithHER2andVEGFattheantigenbindingsite. byattachmentinhibitorstobroadlyneutralizingantibodies.Virology402: d Science323:1610–1614. 256–261. e d f r o m h t t p : / / jv i. a s m . o r g / o n A p r il 9 , 2 0 1 3 b y K r e s g e L ib r a r y , T h e S c r ip p s R e s e a r c h I n s t it u t e May2013 Volume87 Number9 jvi.asm.org 4993

Description:
6510 Q-TOF mass spectrometer equipped with a Zorbax SB C18 column. (narrow subsequent experiments, the optical density (OD) at time zero was set as .. Diskin R, Scheid JF, Marcovecchio PM, West AP, Jr, Klein F, Gao H, . Kovacs EW, Hooker JM, Romanini DW, Holder PG, Berry KE, Francis.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.