Antibody Conjugation Approach Enhances Breadth and Potency of Neutralization of Anti-HIV-1 Antibodies and CD4-IgG Julia Gavrilyuk, Hitoshi Ban, Hisatoshi Uehara, Shannon J. D Sirk, Karen Saye-Francisco, Angelica Cuevas, Elise o w Zablowsky, Avinash Oza, Michael S. Seaman, Dennis R. n Burton and Carlos F. Barbas III lo a J. Virol. 2013, 87(9):4985. DOI: 10.1128/JVI.03146-12. d Published Ahead of Print 20 February 2013. ed f r o m h t t p Updated information and services can be found at: : / / http://jvi.asm.org/content/87/9/4985 jv i. a s m These include: .o r g SUPPLEMENTAL MATERIAL Supplemental material / o n A REFERENCES This article cites 44 articles, 19 of which can be accessed free p r at: http://jvi.asm.org/content/87/9/4985#ref-list-1 il 9 , 2 0 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new 1 3 articles cite this article), more» b y K r e s g e L ib r a r y , T h e S c r ip p s R e s e a r c h I n s t it u t e Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ Antibody Conjugation Approach Enhances Breadth and Potency of Neutralization of Anti-HIV-1 Antibodies and CD4-IgG JuliaGavrilyuk,aHitoshiBan,a,bHisatoshiUehara,a,cShannonJ.Sirk,aKarenSaye-Francisco,dAngelicaCuevas,dEliseZablowsky,e AvinashOza,eMichaelS.Seaman,eDennisR.Burton,dCarlosF.BarbasIIIa D o DepartmentsofChemistryandMolecularBiologyandtheSkaggsInstituteforChemicalBiology,TheScrippsResearchInstitute,LaJolla,California,USAa;Dainippon w n SumitomoPharma,Osaka,Japanb;MitsubishiChemicalGroupScienceandTechnologyResearchCenter,Yokohama,Japanc;DepartmentofImmunologyandMicrobial lo ScienceandIAVINeutralizingAntibodyCenter,TheScrippsResearchInstitute,LaJolla,California,USAd;BethIsraelDeaconessMedicalCenter,HarvardMedicalSchool, a d Boston,Massachusetts,USAe e d f BroadlyneutralizingantibodiesPG9andPG16effectivelyneutralize70to80%ofcirculatingHIV-1isolates.Inthisstudy,the r o neutralizationabilitiesofPG9andPG16werefurtherenhancedbybioconjugationwithaplaviroc,asmall-moleculeinhibitorof m virusentryintohostcells.Anovelair-stablediazoniumhexafluorophosphatereagentthatallowsforrapid,tyrosine-selective h t t functionalizationofproteinsandantibodiesundermildconditionswasusedtoprepareaseriesofaplaviroc-conjugatedanti- p : bodies,includingb12,2G12,PG9,PG16,andCD4-IgG.TheconjugatedantibodiesblockedHIV-1entrythroughtwomecha- // jv nisms:bybindingtothevirusitselfandbyblockingtheCCR5receptoronhostcells.Chemicalmodificationdidnotsignificantly i. a alterthepotencyoftheparentantibodiesagainstnonresistantHIV-1strains.Conjugationdidnotalterthepharmacokineticsof s m amodelIgGinblood.ThePG9-aplavirocconjugatewastestedagainstapanelof117HIV-1strainsandwasfoundtoneutralize . o 100%oftheviruses.PG9-aplavirocconjugateIC swerelowerthanthoseofPG9inneutralizationstudiesof36ofthe117HIV-1 r 50 g strains.TheseresultssupportthisnewapproachtobispecificantibodiesandofferapotentialnewstrategyforcombiningHIV-1 / o therapies. n A p r Innovative new approaches to HIV-1 prophylaxis and therapy demonstrating that catalytic monoclonal antibodies covalently il 9 , are desperately needed. Despite the successes of highly active linkedtodesignedligandspossesspotentbiologicalactivitiesina 2 0 antiretroviraltherapy(HAART),morethan2millionpeopledie varietyofanimalmodelsofdisease(15–19).Severaloftheseare 1 3 each year and more than 33 million individuals are infected nowinclinicaldevelopment(20).Thesestudiesrevealedthemany b worldwide (http://aids.gov/hiv-aids-basics/hiv-aids-101/global advantagesofcouplingactivesmallmoleculesandpeptideswith y -statistics/).AlthoughHAARTistypicallyeffective,itisnotwith- antibodies. In contrast to bispecific-antibody approaches based K r outproblems,includingcomplicateddrug-druginteractions,ad- on protein engineering, such as the dual-variable-domain e s herenceissues,andamyriadofsideeffects.Thedevelopmentof (DVD)-Ig (21) or single-chain variable fragment (scFv)-Ig (22) g e potentandbroadlyactingbiologicdrugsmightofferasolutionto fusionapproaches,amongothers,laboriousproteinengineering L someoftheseproblemsandcomplementtraditionalHAART. is not required to endow a second specificity when the desired ib r Broadly neutralizing monoclonal antibodies (BNmAbs) that ligand is chemically coupled to the antibody. Furthermore, ex- a r y recognizefeaturesconservedacrosscladesofHIVarepromising pressionissuesarebypassed,sincedevelopmentofanewcellline , startingpointsforthedevelopmentofimmunotherapeuticagents isnotrequired. T h againstHIV-1(1–8).Severalstudieshaveshownthatthetransfer A promising additional blockade to HIV-1 infection that e S of sufficient quantities of broadly neutralizing antibodies can shouldcomplementthetargetingofviralproteinsisthetargeting c achievesterilizingimmunityagainstintravenous,vaginal,orrec- ofhostproteinsrequiredforviralentryandreplication.Unlike rip talchallengeinmacaquemodels(9,10).Thedeliveryofbroadly viral proteins, host proteins are not under selective pressure to p s neutralizing antibodies using gene-based approaches has also evolvetoevadethetherapeuticagent.Anumberofsmall-mole- R beenshowntobeeffectiveinanimalmodels(11,12).Indeed,soon culeinhibitorsoftheHIV-1coreceptorsCCR5andCXCR4have e s after our discovery of BNmAb b12, we developed protein engi- beendeveloped(23,24),andoneCCR5-targetingdrughasbeen e a neeringmethodstoincreasethepotencyandbreadthofneutral- approved (25–28). Here we covalently linked a CCR5-targeting r c ization by b12 with the original aim of developing evolved b12 small molecule, aplaviroc, to BNmAbs and CD4-IgG. This ap- h variants for HIV-1 therapy (13, 14). Collectively, these studies proach provided rapid access to bispecific proteins with excep- In s suggestthatBNmAbscouldbeeffectiveHIV-1prophylacticand t it therapeuticagents.Unfortunately,eventhemostbroadlyneutral- u t izingantibodyisvulnerabletoviralescape,becauseasingleamino Received9November2012 Accepted2February2013 e acidchangeonthetargetproteincanalterthebindingepitope.If Publishedaheadofprint20February2013 aBNmAbcouldbemodifiedtoinhibitHIVinmultipleways,the AddresscorrespondencetoCarlosF.BarbasIII,[email protected]. evolutionary hurdle for escape would be significantly elevated. Supplementalmaterialforthisarticlemaybefoundathttp://dx.doi.org/10.1128 Furthermore, by combining multiple inhibitory functions in a /JVI.03146-12. singlemolecule,theregulatoryandcostissuesforabiologiccom- Copyright©2013,AmericanSocietyforMicrobiology.AllRightsReserved. plementtocombinatorialdrugtherapymightbeminimized. doi:10.1128/JVI.03146-12 Recently,wedevelopedanewclassoftherapeuticmoleculesby May2013 Volume87 Number9 JournalofVirology p.4985–4993 jvi.asm.org 4985 Gavrilyuketal. tional breadth in their abilities to neutralize diverse isolates of finalconcentrationof20(cid:1)g/ml;eachsamplewastestedintriplicate.The HIV-1. cellswereincubatedonicefor1h,washedtwicewithstainbuffer,and resuspendedin100(cid:1)lofstainbuffer.Afluorescence-labeledsecondary antibodywasaddedataconcentrationrecommendedbymanufacturer. MATERIALSANDMETHODS Theplatewasincubatedonice,protectedfromlight,for1h.Thecellswere Antibodies.Antibodiesb12,2G12,andDEN3wereprovidedbyDennis washedtwicewiththestainbuffer,resuspendedin200(cid:1)lofstainbuffer, R.Burton(ScrippsResearchInstitute);antibodiesPG9andPG16were and transferred to filter-top fluorescence-activated cell sorter (FACS) providedbytheIAVI;theCD4-IgG2immunoadhesionproteinwasob- tubes(BDBiosciences)containing300(cid:1)lofbuffer(2%fetalbovinese- D tainedfromProgenics(PRO542).Antibodieswerestoredat4°C.Thera- rum[FBS]inphosphate-bufferedsaline[PBS]).Cellcountingwasper- o peutic-gradetrastuzumab(Genentech)wasusedwithoutadditionalpu- w formedusingadigitalLSRIIcytometer.DatawereanalyzedwithFlowJo rification. n software,version8.7.1. lo Synthesisoflabelingreagents.Thesynthesisandcharacterizationof Pharmacokineticstudy.Thepharmacokineticexperimentwascar- a aplavirocwithalinkerhavebeendescribedpreviously(29). d riedoutasdescribedpreviously(19).Inbrief,allanimalexperimentswere e Antibodylabelingprocedure.Ina1.5-mltube,anantibodysolution d (99(cid:1)l;1.5mg/mlin0.1MNa HPO [pH8.0])and10equivalentsof performedaccordingtoDivisionofAnimalResources(TSRI)guidelines f 4-formylbenzenediazoniumhex2afluor4ophosphate(FBDP;1(cid:1)l;10mM followingapprovedprotocols.Femaleathymicnudemice(8weeksofage) ro wereinjectedsubcutaneouslywith100(cid:1)gtrastuzumabortrastuzumab- m solutioninCH3CN)werecombined(30).Thesolutionwasmixedgently aplavirocin100(cid:1)lsterilePBS(4animalspergroup).Bloodwascollected h andwasallowedtoreactfor30minatroomtemperaturewithintermit- t tentmixing.Thesolutionturnedyellowuponcompletionofthereaction. fromtailveinsafter5min,2h,4h,8h,24h,48h,72h,96h,168h,and tp After 30 min, excess FBDP was removed using a Zeba Spin desalting 336h.Inordertominimizebloodloss,only10(cid:1)lofbloodwaswithdrawn :// column(molecularweightcutoff[MWCO],7,000[7K];Pierce),andbuf- per bleed; blood was diluted 1/5 in PBS containing 1% bovine serum jvi. ferwasexchangedwith0.1MNa2HPO4(pH6.0).Aplaviroc-oxyamine albumin(BSA).Sampleswereallowedtochillonicefor20min.Insoluble as (20equivalents;2(cid:1)l;10mMsolutioninCH CN)wasadded,andthe componentswereremovedbycentrifugation,andsampleswerestoredat m solutionwasincubatedovernightat4°C.Exces3saplaviroc-oxyaminewas (cid:3)20°Cuntilanalysis. .o removed using a Zeba Spin desalting column (MWCO, 7K), and free Thebindingandwashbufferforenzyme-linkedimmunosorbentas- rg aplavirocwasremovedbyusingaproteinAspincolumn(GEHealthcare) says(ELISA)wasPBScontaining1%BSA.Half-areaELISAplates(Corn- o/ accordingtothemanufacturer’sinstructions. ing)werecoatedwithanti-humanIgGFc(Pierce)at750ng/wellover- n Trypticdigestionandquadrupoletimeofflighttandemmassspec- night at 4°C. After wells were blocked with 3% BSA, serum samples A p trometry (Q-TOF MS-MS) characterization of antibody conjugates. dilutedinbindingbufferwereadded,andsampleswereincubatedfor1h r Purifiedantibodysamples(100(cid:1)l;1mg/ml)wereexchangedinto6M at37°C.Trastuzumabandtrastuzumab-aplavirocweredetectedbyincu- il 9 guanidine,0.1MTris(pH8.0)byusing0.5-mlZebaSpindesaltingcol- bationwithdonkeyanti-humanIgGconjugatedwithhorseradishperox- , 2 umns (MWCO, 7K) according to the manufacturer’s instructions. To idase(HRPO)(JacksonImmunoResearch).Todeterminetheserumdi- 0 eachsample,1Mdithiothreitol(DTT)(Fisher)wasaddedtoafinalcon- lution at which 80% saturation was reached, the 5-min samples were 13 centrationof20mM.Thesampleswereincubatedfor1hat37°Cwith seriallydilutedandanalyzed;80%saturationoftheELISAsignalattime b gentleshaking,anda1Msolutionofiodoacetamide(Fisher)wasaddedto zerowasreachedatadilutionof1/500fortheanti-humanIgG.Inall y K eachsampletoafinalconcentrationof40mM.Sampleswereincubatedat subsequentexperiments,theopticaldensity(OD)attimezerowassetas r roomtemperatureinthedarkfor40min.Thealkylationreactionswere 100%,andtheabsorptionatalllatertimepointswasdisplayedasaper- es quenchedbyadding1MDTTtoa40mMfinalconcentration.Sample centageofthatattimezero.TheresultingcurveswerefittedusingGraph- g e bufferwasthenexchangedfortrypsindigestionbuffer(50mMTris[pH PadPrismone-phaseexponentialdecay. L 7.5],5mMCaCl2)using0.5-mlZebaSpindesaltingcolumns(MWCO, Virusneutralizationassay.Neutralizationassayswithsingle-round ib 7K).TrypsinGold(0.5mg/ml;Pierce)wasdissolvedin50mMaceticacid. r infectious pseudovirus were performed as described elsewhere (10) by a Thetrypsinsolutionwasaddedtoeachsampleatanenzyme-to-protein usingU87.CD4.CCR5targetcellsobtainedfromtheNIHAIDSResearch ry ratioof1:20(wt/wt),andsampleswereincubatedat37°Cwithshakingat andReferenceReagentProgram(contributedbyHongKuiDengandDan , T 600rpmforapproximately18h.Digestionwasstoppedbytheadditionof Littman).Briefly,1(cid:2)104targetcellsinavolumeof100(cid:1)lwereseeded h trifluoroaceticacid(TFA)toapproximately0.1%. e Samples(with20(cid:1)gproteininjected)wereanalyzedusinganAgilent intowellsof96-wellplates(Corning)andwereincubatedovernightat S 37°Cunder5%CO .Afterovernightincubation,themediumwasre- c 6510Q-TOFmassspectrometerequippedwithaZorbaxSBC18column moved,and50(cid:1)loff2reshmediumwasaddedtoeachwell.Seriallydiluted rip ((cid:1)nmar)ro(Awgbiloernet;)i.nHneigrhd-ipaemrfeotremr,a2n.1cemlmiqu;liedncghthro,1m5a0tomgmra;pphayrt(iHclPeLsiCze),p3a.5- samples(50(cid:1)l)weretransferredtoplatedtargetcellsandwereincubated ps for1hat37°C.Anequalvolumeofviruspreviouslydeterminedtoyield R rameterswereasfollows:flowrate,0.2ml/min;agradientfrom0to40% 2(cid:2)105relativelightunits(RLU)wasadded(100(cid:1)l),andplateswere e mobilephaseBover80min,followedbyagradientto0%Bfrom80to90 s incubatedforanadditional72h.Tomeasureluciferaseactivity,theme- e a9mc0ie%nto.naMciteortbiolienlei(tpvriohlela/sv(eovAol)l,/wvaoansld)0.m.M05oS%bdilTaetFapAhwa(esvreoelB/cvoowllla)escitn0e.dH04fPo%LrC2T-0Fg0rAatdo(ev2oH,l5/2v0Oo0,l)m2%i/nz dfrieuemphwoassprheamteo-bveudff,etrheedwsaellilnsew,aenredw5a0s(cid:1)heldofoannceapwpirthopCriaa2t(cid:4)el-yadnidluMtedg2l(cid:4)u-- arch and 100 to 2,000 m/z, positive polarity, a gas temperature of 325°C, a ciferase cell culture lysis reagent (Promega) was added and mixed by In nebulizerpressureof30lb/in2,andacapillaryvoltageof3,500V.Data pipettingvigorouslyupanddown.Aliquots(20(cid:1)l)weretransferredto st wereanalyzedusingMassHuntersoftware(Agilent)andGPMAWsoft- opaque96-wellassayplates(Corning),andluciferaseactivitywasmea- itu ware(version8.20;ChemSW). suredonaluminometer(EG&GBertholdLB96V;Perkin-Elmer)usinga te Flowcytometry.Flowcytometryexperimentswereperformedasde- luciferaseassaysubstrate(Promega).Thepercentageofvirusneutraliza- scribedpreviously(29).ThecelllinesusedwereA431cells,whichdonot tionatagivenantibodyconcentrationwasdeterminedbycalculatingthe express CCR5, and TZM-bl cells, which do express CCR5. In brief, a reductioninluciferaseactivityinthepresenceofanantibody(relativeto single-cellsuspensionwasprepared,andcellswerewashedtwicewithcold thatinvirus-onlywells). stainbuffer(BDPharmingen)andwerepelletedbycentrifugation(300(cid:2) High-throughput virus neutralization assay. High-throughput g).Thecellpelletwasresuspendedincoldstainbuffertoafinalconcen- screeningofthePG9-aplavirocconjugatewasperformedinthelaboratory trationof2(cid:2)107cells/ml.Aliquotsof50(cid:1)lweredistributedtoV-bottom ofMichaelSeaman,HarvardMedicalSchool.Thehighestconcentration wellsofmicrowellplates(Corning).Primaryantibodieswereaddedtoa ofPG9-aplaviroctestedwas50(cid:1)g/ml;seven5-folddilutionswerealso 4986 jvi.asm.org JournalofVirology Potent,BroadlyActiveBispecificAnti-HIVAntibodies D o w n lo a d e d f r o m FIG1 Schematicrepresentationofthechemicalmodificationofanantibodywithadiazoniumhexafluorophosphate(FBDP)reagent.Theantibodyisfirst h t modifiedwiththeFBDPreagentatasurface-exposedtyrosineresidue(s),introducinganaldehydetagontotheantibody.Inthesecondstep,chemoselective tp conjugationofthealdehydewithoxyamineisperformed,resultingintheintroductionoftheaplavirocmoietyontothesurfaceoftheantibody. :/ / jv i. a s testedinduplicatewells.Thehighestconcentrationofaplaviroctestedwas ofHer2;however,meanfluorescenceintensitywasconsiderably m . 100nM. higherfortrastuzumab-aplavirocboundtoTZM-blcellsthanfor o r g theparentantibody,indicatingthattheCCR5bindingactivityof / RESULTS aplavirocwasmaintainedfollowingconjugation. o n Model trastuzumab-aplaviroc conjugate. In order to indepen- Theanti-HIV-1activityoftrastuzumab-aplavirocwasassessed A dentlyassesstheactivityofaplavirocconjugatedtoacarrierIgG byneutralizationassayswithasingleroundofinfectiouspseudo- p r without anti-HIV-1 activity, trastuzumab, an anti-Her2 mono- virus. Trastuzumab-aplaviroc neutralized HIV-1 strains JR-FL il 9 clonalantibody(MAb),wasusedasamodelhumanIgGforchem- andYU2with50%inhibitoryconcentrations(IC50s)of2.3nM , 2 icalmodificationandtesting.Bioconjugationconditionswerese- and 4.9 nM, respectively; unmodified trastuzumab showed no 0 lected on the basis of our previous study (30) and were further 1 neutralizingactivity(Fig.2B).ThepotentCCR5bindingantibody 3 optimizedhere(forfulloptimizationdetails,seethetablesinsec- 2D7neutralizedHIV-1strainsJR-FLandYU2withIC sof0.2 b tionS3inthesupplementalmaterial).Thetwo-stepconjugation nMand0.1nM,respectively.ToensuretheCCR5-based50mecha- y K methodology involved modification of the IgG with FBDP (4- nismoftrastuzumab-aplaviroc,itwasalsotestedforneutraliza- re formylbenzene diazonium hexafluorophosphate) followed by s tionofCXCR4-tropicHIVHXB2andwasfoundtobeinactive g ligationoftheantibodytoaplaviroc-oxyamine(Fig.1).Thetras- e (seethesupplementalmaterial). tuzumab-aplavirocconjugatewassubjectedtoextensivepurifica- L tion,includinggelfiltrationandproteinApurification,toensure ModificationoftheantibodyoccurredprimarilyatTyr319in ib completeremovalofunreactedaplaviroc. theCH2regionoftheheavychain.Becausetheinvivohalf-lives rar (t )ofantibodiesaremediatedprimarilybycontactsintheC 2 y Characterizationoftrastuzumab-aplavirocbymatrix-assisted 1/2 H , regionoftheIgGwiththeneonatalFcreceptorFcRn,weevaluated T laser desorption ionization–time of flight (MALDI-TOF) mass h spectrometryrevealedtheincorporationofanaverageof1apla- thehalf-livesoftheparentandtheconjugateinmice.Thetrastu- e zumab-aplavirocconjugatehadpharmacokineticpropertiessim- S virocmoietyperIgGmolecule(seethesupplementalmaterial). c Tryptic digestion and MS-MS characterization of the trastu- ilar to those of the unmodified parent antibody (Fig. 2C). The rip zumab-aplavirocindicatedthatthediazoniummodificationoc- half-lifeoftrastuzumabinathymicnudemicewas115h,whereas p the half-life of the trastuzumab-aplaviroc conjugate was 168 h. s curredpreferentiallyattheconservedsurface-exposedtyrosinein R theFcdomainatposition319byKabatnumbering.Someminor Thehalf-lifeofaplavirocinmiceis30min(33).Therefore,con- e jugationofaplavirocwithtrastuzumabdramaticallyextendedthe s modificationwasalsoobservedintheheavychainofFab(seethe e half-life of aplaviroc in vivo and did not negatively impact the a supplemental material). This observation is in agreement with r c previous studies that demonstrated preferential diazene forma- half-lifeofthescaffoldantibody. h tionwiththemostaccessibletyrosines(22,31,32).Whentrastu- Conjugationofaplaviroctobroadlyneutralizingmonoclo- In zumabthatwasnotmodifiedwithFBDPwasincubatedwithapla- nalantibodiesandCD4-IgG.BNmAbsb12,2G12,PG9,andPG16 st viroc-oxyamine,noconjugationofaplaviroc-oxyamineoccurred, and the immunoadhesin protein CD4-IgG were conjugated with itu t asshownbyMALDI-TOFmassspectrometry.Thissamplehadno aplaviroc, and the conjugates were characterized by MALDI-TOF e activityintheHIVneutralizationassays,indicatingthatthepuri- massspectrometry.Weobservedtheincorporationof0.5to2apla- fication protocol used removed unconjugated aplaviroc-oxy- virocmoietiesperproteinmolecule(Table1).Trypticdigestionand amine. MS-MSanalysisofconjugatesindicatedthattheheavy-chaincon- Flow cytometry demonstrated that trastuzumab-aplaviroc stantregionTyr319wastheprimarysiteofchemicalmodificationin bound to Her2-positive A431 cells and, to a lesser extent, to eachBNmAb,althoughminormodificationsiteswerealsoidentified CCR5-positiveTZM-blcells(Fig.2A).Theparentantibody,tras- (seethesupplementalmaterial).Nomodificationswereobservedin tuzumab,alsoboundtoTZM-blcells,duetolow-levelexpression theFvregionsoftheantibodies. May2013 Volume87 Number9 jvi.asm.org 4987 Gavrilyuketal. D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n A FIG 2Evaluation of the model antibody conjugate trastuzumab-aplaviroc. (A) Flow cytometry analysis of binding to CCR5-positive TZM-bl cells and p CCR5-negativeA431cells.ThepotentCCR5bindingantibody(Ab)2D7servedasapositivecontrolinTZM-blcellassays.MFI,meanfluorescenceintensity.(B) r NeutralizationofHIV-1JR-FLandYU2bytrastuzumabandthetrastuzumab-aplavirocconjugate.(C)Pharmacokineticprofilesoftrastuzumabandthe il 9 trastuzumab-aplavirocconjugateinathymicmice(4miceperexperimentalgroup).Allexperimentaldatarepresenttwoormoreindependentexperiments , performedintriplicate.Errorbarsrepresentstandarddeviations. 2 0 1 3 b HIV-1 neutralization studies showed that the potencies of isolate, PG9 and PG16 were inactive except as aplaviroc conju- y K BNmAbconjugatesagainstHIV-1isolatesJR-FLandYU2were gates.CD4-IgGpotentlyneutralizesbothJR-FLandYU2.Conju- r e significantlyhigherthanthoseoftheunconjugatedparentalanti- gationofaplaviroctoCD4-IgGdidnothaveanotableeffectonthe s bodiesortheCD4fusionprotein(Table1;Fig.3).Improvements neutralizationoftheseviruses,sincetheimmunoadhesinprotein g e in potency over the parent antibody ranged from (cid:5)3-fold for itselfcanneutralizeJR-FLandYU2morepotentlythanaplaviroc L 2G12-aplaviroc against the JR-FL isolate to (cid:6)400-fold for b12- alone. To determine whether aplaviroc conjugation can have a ib r aplavirocagainsttheYU2isolate.Differencesbetweenconjugates positiveeffectontheactivityofthisprotein,weadditionallyas- a r y and parent antibodies were smallest for the most potent of the sayedthecladeAvariant92RW020.5,astrainrelativelyresistant , parental antibodies. In the neutralization assay with the JR-FL toneutralizationbyCD4-IgG.Againstthisstrain,theconjugation T h resultedina20-foldimprovementintheIC .CD4-IgGneutral- e 50 S izedthe92RWpseudoviruswithanIC of10nM,whereasCD4- 50 c TABLE1NeutralizationofHIV-1JR-FLandYU2byaplaviroc- IgG–aplavirocneutralizedthisisolatewithanIC50of0.5nM.Sig- rip conjugatedBNmAbsandCD4-Ig nificantly,noevidenceofenhancedinfectionwasnotedwithany p s Avgno.of conjugatedproteinstudied. R IC (nM)for: aplavirocmoieties 50 We also studied the neutralization activity of a 1:1 molar e s Antibodya perIgGmolecule JR-FL YU2 mixtureofaplavirocandPG9againstHIV-1strainsJR-FLand e a b12-apl 0.5 0.1 0.1 YU2,andweobservedapotencyequaltothatofaplaviroc.The r c b12 0 0.3 46.7 invitroassay,however,doesnotallowustoassessthepotential h 2G12-apl 2 0.3 25.5 clinicalbenefitoftheextendedhalf-lifeoftheantibody-apla- In 2G12 0 0.8 (cid:6)100 virocconjugaterelativetothe1:1mixtureoftwoagents(vide st PG9-apl 1 11.6 1.2 infra). itu PG9 0 (cid:6)100 22.6 NeutralizationofHIV-1strainsbyPG9-aplaviroc.ThePG9 te PG16-apl 2 5.9 0.4 conjugatewaschosenformorein-depthstudybecausetheparent PG16 0 (cid:6)100 1.5 antibody,PG9,isrepresentativeofarecentlydescribedgroupof CD4-IgG–apl 1 0.6 0.6 BNmAbsthatdemonstratetremendousbreadthofneutralization CD4-IgG 0 0.6 0.7 Aplaviroc 0.95 0.86 activity.ELISAstudiesofPG9andPG9-aplavirocperformedus- 2D7(positivecontrol) 0 0.2 0.1 inggp120fromHIVstrain16055,acladeCvirus,indicatednoloss DEN3(negativecontrol) 0 (cid:6)1,000 (cid:6)1,000 ofbindingactivityforPG9followingconjugation.Theneutraliz- aapl,aplaviroc. ing ability of PG9-aplaviroc was assessed against a panel of 117 4988 jvi.asm.org JournalofVirology Potent,BroadlyActiveBispecificAnti-HIVAntibodies D o w n lo a d e d f r o m h t t p : / / jv i. a s m . o r g / o n A p r FIG3 EvaluationoftheneutralizationabilitiesofantibodyconjugatesagainstHIV-1strainsJR-FLandYU2andoftheCD4-IgG2–aplavirocconjugateagainst il 9 HIV-1strainsJR-FL,YU2,and92RW.HIV-1JR-FLisresistanttoneutralizationbyparentantibodiesPG9andPG16.Thebottomrightgraphshowsresultsfor , controlsonly:2D7,positive-controlMAb;DEN3,negative-controlMAb;aplaviroc,small-moleculepositivecontrol. 2 0 1 3 b pseudoviruses representing major circulating HIV-1 subtypes neutralizedbyPG9-aplavirocwithameanIC of6(cid:1)g/ml(Table y 50 (Table2;seealsosectionS5inthesupplementalmaterial).PG9 3).PG9-aplavirocneutralizedall117ofthesubtypeswithIC s K 50 r neutralized101ofthe117virusestestedwithIC sbelow50(cid:1)g/ below17(cid:1)g/mlandwithameanIC 28(cid:1)g/ml(seethesupple- e 50 50 s ml. The 16 viruses that were not well neutralized by PG9 were mentalmaterial).PG9-aplavirocneutralized94.9%ofthe117vi- g e L ib r TABLE2Summaryofneutralizationdataforapanelof117HIV-1strains a r y , T h e S c r ip p s R e s e a r c h I n s t it u t e aAplavirocneutralizationwithIC sof(cid:7)100nMandIC sof(cid:7)100nM. 50 80 May2013 Volume87 Number9 jvi.asm.org 4989 Gavrilyuketal. TABLE3SummaryofthepseudovirusesneutralizedbyPG9-aplaviroc TABLE4SummaryofthepseudovirusesneutralizedbyPG9-aplaviroc withIC sof(cid:7)50 (cid:1)g/mlthatarenotneutralizedbyPG9(IC s,(cid:6)50 withIC sof(cid:7)50 (cid:1)g/mlthatarenotneutralizedbyPG9(IC s,(cid:6)50 50 50 80 80 (cid:1)g/ml) (cid:1)g/ml) IC titerinTZM-blcells IC titerinTZM-blcells 50 80 ((cid:1)g/ml)c ((cid:1)g/ml)c VirusIDa Cladeb PG9 PG9-aplaviroc VirusIDa Cladeb PG9 PG9-aplaviroc QH0692.42 B (cid:6)50 10.817 WEAU_d15_410_5017 B(T/F) (cid:6)50 19.772 D 1054_07_TC4_1499 B(T/F) (cid:6)50 6.916 HIV-16845-2.22 C (cid:6)50 18.415 o 6244_13_B5_4576 B(T/F) (cid:6)50 7.674 620345.c01 CRF01_AE (cid:6)50 14.409 w 62357_14_D3_4589 B(T/F) (cid:6)50 4.305 0815.v3.c3 ACD (cid:6)50 7.406 nlo ZM214M.PL15 C (cid:6)50 2.136 6480.v4.c25 CD (cid:6)50 8.097 a Ce1086_B2 C(T/F) (cid:6)50 1.183 6952.v1.c20 CD (cid:6)50 11.544 de Ce2010_F5 C(T/F) (cid:6)50 11.145 6811.v7.c18 CD (cid:6)50 24.897 d 246FC1G C(T/F) (cid:6)50 1.262 X2088_c9 G (cid:6)50 30.361 fr o 7030102001E5(Rev-) C(T/F) (cid:6)50 6.763 3016.v5.c45 D (cid:6)50 1.571 m CNE30 BC (cid:6)50 9.645 191821_E6_1 D(T/F) (cid:6)50 0.976 h T251-18 CRF02_AG (cid:6)50 16.982 246FC1G C(T/F) (cid:6)50 3.500 tt X2088_c9 G (cid:6)50 10.453 7030102001E5(Rev-) C(T/F) (cid:6)50 29.579 p: / 6480.v4.c25 CD (cid:6)50 1.476 CNE30 BC (cid:6)50 41.902 /jv 6952.v1.c20 CD (cid:6)50 1.666 Ce1086_B2 C(T/F) (cid:6)50 4.069 i. a 6811.v7.c18 CD (cid:6)50 5.080 ZM214M.PL15 C (cid:6)50 18.933 s 0815.v3.c3 ACD (cid:6)50 1.399 PVO.4 B (cid:6)50 8.239 m . aID,identification. TRO.11 B (cid:6)50 35.584 or bT/F,transmitted/foundervirus. RHPA4259.7 B (cid:6)50 7.092 g/ cThePG9dataarehistoricaldataforthis117-viruspanelbridgedforthecurrent THRO4156.18 B (cid:6)50 20.071 o etixteprerinimTeZnMtw-bitlhcaelslsetiso5f.r9e2p1re(cid:1)sge/nmtalt,iavnedvitrhuesems.eFaonr(cid:8)PGst9a-nadpalardvirdoecv,iathtieonmiesd6ia.1n8I1C(cid:8)50 16025444__0173__TB5C_44_5174699 BB((TT//FF)) (cid:6)(cid:6)5500 3268..069440 n Ap 4.703(cid:1)g/ml. 62357_14_D3_4589 B(T/F) (cid:6)50 17.254 ril aID,identification. 9 , ruseswithIC80sof(cid:7)50 (cid:1)g/ml;for22ofthepseudovirusstrains bcTTh/Fe,PtGra9ndsmataittaerde/hfoisutonrdicearlvdiartuasf.orthis117-viruspanelbridgedforthecurrent 20 1 naneutitbroadlizye,dPGby9,thweaPsGab9o-avpela5v0ir(cid:1)ocg/cmonlj(uTgaabtele,t4h)e.IUCn8l0ikoeftthheeppaarreenntt eTxZpMer-imblecnetllwsiisth17a.8se3t4o(cid:1)fgre/mprle,saenndtatthiveemvieraunse(cid:8)s.FstoarnPdaGr9d-dapevlaivatirioonc,itsh1e7m.6e5d5i(cid:8)an1IC2.8106t0iterin 3 b antibody,theconjugateneutralizedallcladeBandCviruses,includ- (cid:1)g/ml. y K ingtransmitted/founderviruses.CladeCispredominantinSouthern r bolictoxicity.Bothoftheselimitationsmightbeaddressedbythe e andEastAfrica,India,andNepalandisresponsibleforabouthalfof s developmentofaHAARTequivalentbasedonproteindrugs.For g worldwideinfections.CladeBisthemajorcauseofinfectioninthe e Americas,Europe,Japan,andAustralia.Thus,conjugationtoaplavi- example, antibodies have long in vivo half-lives. Native human L IgG1hasat of23daysinhumans,andengineeredvariantsof ib rocsignificantlyimprovedthebreadthofneutralizationability. 1/2 r a The PG9-aplaviroc conjugate demonstrated a dramatic im- r y provementovertheparentantibodyinthemaximumpercentage , TABLE5SummaryofMPIsaforPG9andPG9-aplaviroc T ofinhibition(MPI)acrossthe117-viruspanel(Table5;seealso h e thesupplementalmaterial).PG9issensitivetotheglycosylation No.ofviruses S profile of a virus and cannot completely neutralize certain viral No.of neutralizedwithan c strainsevenathighantibodyconcentrations(34).ThePG9-apla- viruses MPIof100% AvgMPI rip viroc conjugate did not display this glycan sensitivity and was Cladeb tested PG9 PG9-aplaviroc PG9 PG9-aplaviroc ps foundtobemorepotentthannativePG9whenMPIswerecom- A 8 3 6 97 99 R pared.PG9andPG9-aplavirocneutralized40and84ofthe117 e A(T/F) 3 3 3 100 100 s viralisolatestestedatMPIsof(cid:6)99.5%,respectively. B 12 1 4 77 95 ea B(T/F) 9 0 2 63 94 rc DISCUSSION C 16 7 12 88 99 h The success of HAART is predicated on the fact that although C(T/F) 15 10 13 76 97 In s HIV-1isahypermutatingvirus,atherapyconsistingofacombi- DandD(T/F) 5 1 3 83 99 t nationofinhibitorstargetingthreeviralenzymes—reversetrans- G 7 1 4 85 98 itu t AC 4 1 3 98 100 e criptase,protease,andintegrase—presentsastringentbarrierto AG 9 3 7 92 97 viralreplication.HAARToftenreducesviralreplicationtounde- AE 10 5 7 96 99 tectablelevelsinpatients.HAARTdoesnot,however,presentan AE(T/F) 4 0 2 93 100 insurmountable barrier to viral replication, and drug resistance ACD 2 0 0 29 84 canevolverapidlywhenpatientcomplianceispoor.Twokeyfac- BC 8 5 6 89 98 torsthatcontributetodrugcompliancefailurearefrequencyof CD 5 0 2 47 97 administration, which has been reduced to once daily for some aMPIsof(cid:6)99.5%wereroundedupto100%bytheanalysissoftware. HAARTregimens,andadversesideeffects,oftendrivenbymeta- bT/F,transmitted/foundervirus. 4990 jvi.asm.org JournalofVirology Potent,BroadlyActiveBispecificAnti-HIVAntibodies theFcregionsofantibodiespromiset sof(cid:6)6months(35, 36). rocderivativesthatareamenabletolinkagetoproteinsorlong- 1/2 ThemetabolicliabilityofHIV-1small-moleculedrugsisapartic- livedcarriershavenotyetbeendescribed. ular challenge, because the drugs are dosed chronically at very Wepreparedaplavirocconjugateswiththebroadlyneutral- highcompoundloadinglevelsduetotheirshortpharmacokinetic izing antibodies b12, 2G12, PG9, PG16, and CD4-IgG. The profiles.Themetabolismofantibodiesdoesnotcreatenewactive incorporationofaplavirocsignificantlyimprovedtheneutral- metabolites. ization abilities of BNmAbs for strains resistant to or weakly Both the high genetic variability and the diversity of HIV-1 neutralized by the parent antibodies. The antiviral activity of pose challenges to the creation of a HAART therapy based on PG9-aplaviroc was analyzed against a panel of 117 different D o protein therapeutic agents such as antibodies. The extracellular viralstrains.Theconjugateneutralizedtheactivitiesof100%of w targets on which this approach focuses are the HIV-1 envelope viralstrainswithIC50slowerthan50(cid:1)g/ml.Tothebestofour nlo andthehostcellreceptorsCD4,CCR5,andCXCR4.Despitethe knowledge, none of the currently known BNmAbs neutralize a highgeneticvariabilityandpreexistingdiversityoftheHIVenve- allofthese117cross-cladepseudoviruseswithIC50slowerthan de lopeprotein,anumberofBNmAbsthatpossessexceptionalanti- 50 (cid:1)g/ml. Notably, compared to parent PG9-aplaviroc had d f HIV-1activityandbreadthhavebeencharacterized(1–8).Target- lower IC50s against 13 out of 32 tested transmitted/founder ro ing the host cell receptors CD4, CCR5, and CXCR4 has the virusesofdifferentcladesandwasmorepotentthananyofthe m advantageofgeneticstabilitybutcouldhavedeleteriouseffectsif parentmoleculesaloneagainst10oftheseviruses(seethesup- h t the therapeutic agent negatively impacts the host cells. Certain plementalmaterial).PG9-aplavirocalsodisplayedMPIssignif- tp : tshtuedraiepseuantidcaapnptiebaordtioespotasrsgesestipnrgomCDis4ingansdafeCtyCpRr5ofiarlees;inhocwlinevicearl, icanTthlyeimmepdrioanveIdCo50veorftthhoesPeGo9f-tahpelapvairreonctcaonntjiubgoadtey.against the //jvi. panelwas2.76nM,whereasthatoftheparentantibody,PG9,was a noneareapproveddrugs(37–39). s 0.77 nM. On a panel of 76 of 117 viruses, PG9-aplaviroc had m The road to an approved drug cocktail is long and requires . higherIC sthanthenakedPG9antibody(seesectionS5inthe o independenttestingandapprovalofeachspecies.Oneapproach 50 r supplementalmaterial),withmedianIC sof0.674nMforPG9 g tostreamliningthisprocessistoconstructsingleentitiesthatpos- 50 / and1.737nMforPG9-aplaviroc.Notably,aplavirocitselfwasnot o sessmultipleactivities.Thefirststeptowardthisgoalisthecre- n verypotentonthissetoftheviruses,withamedianIC of4.6nM. ation of bispecific-antibody therapeutic agents. To address this 50 A Wehypothesizethatduringtheneutralizationassaythereiscom- p challenge,modifiedantibodyformats(e.g.,knobsintoholes[40], r IgG-scFv[41],andDVD-Ig[21])havebeencreatedusingprotein petitionbetweenbindingtoCCR5andbindingtotheHIV-1en- il 9 velope, and thus, the conjugate is not always used in the most , engineeringmethods.Oftentheseapproachessufferfromprotein 2 instability and low expression yields, although the recently de- efficientneutralizationpathway.Sincethesetwomechanismsof 0 neutralizationareincompetitionwhentheconjugateisassayed 1 scribedpeptidefusionapproachovercomesmanyoftheseprob- 3 againstvirusesthatareverysensitivetoPG9neutralization,some b lems(42).Theapproachusedhereinvolveschemicalconjugation reductioninpotencyagainsttheseisolatesisexpected. y of a peptide or small molecule to a monoclonal antibody that K CombiningpotentmoleculesthatpreventHIVentrythrough r possessesadesiredspecificity.Theconjugationisperformedusing e differentmechanismsintoasinglemultifunctionalmoleculemay s amethodologythatallowsboththeMAbandtheprogramming g createaninsurmountableevolutionarychallengelimitingthede- e agenttobindtheirrespectivetargets. velopmentofresistance.Thishypothesisissupportedbyarecent L HereweconjugatedtheCCR5-specificdrugaplaviroctosev- reportbyZhouetal.showingthatHIVescapemutantsselectedby ib r eralbroadlyneutralizingantibodiesandCD4-IgG.Aplavirocwas a exposure to entry inhibitors were much more sensitive to BN- r withdrawnfromclinicalstudyfollowingtheobservationofidio- y mAbsthantheoriginalvirus(44).Thechemicalapproachtothe , syncratic hepatotoxicity in phase IIb clinical trials (43). In hu- T synthesisofmultispecificBNmAbsdescribedherewillallowready h mans,aplavirochasahalf-lifeofapproximately3h,makinghigh access to various combinations of neutralizing antibodies and e dosesanunavoidablerequirement.Wehypothesizedthatinthe S host-protectingsmall-moleculedrugsthatbindtothereceptors c contextofanantibodyconjugate,thehalf-lifeofaplavirocwould crucialforHIVentry(CCR5,CXCR4,CD4).Intelligentdesignof rip be considerably extended. To test this, we prepared a trastu- thelinkerarchitecturewillallowthepreparationoftri-andtetras- p s zumab-aplavirocconjugatethroughatyrosine-selectivereaction. pecificantibodyconjugates. R The plasma half-life of the trastuzumab-aplaviroc conjugate in e s micewassignificantlylonger(168h)thanthatofaplavirocalone ACKNOWLEDGMENTS e a (30min).Ithasbeenshownpreviouslythatchemicalprogram- r This work was supported by NIH grants AI095038 (C.F.B.), AI33292 c ming of an antibody resulted in a 1,000-fold reduction of the h (D.R.B.),AI100663(D.R.B.),andIAVI(D.R.B.). amountofasmallmoleculerequiredfortherapeuticeffect(17). WethankB.Hahn,F.McCutchan,G.Shaw,D.Montefiori,M.Thom- In Reductionoftheeffectivedosewilllikelymitigatethemetabolic son,J.Overbaugh,R.Swanstrom,L.Morris,J.Kim,L.Zhang,D.Ellens- stit toxicityobservedwithanti-HIVdrugssuchasaplaviroc,although berger,andC.WilliamsonforcontributingtheHIV-1envelopeplasmids u t thisremainstobedemonstrated.Thetrastuzumab-aplaviroccon- usedintheextendedneutralizationpanel. e jugatewasabletorecognizetheCCR5receptoronthesurfacesof CCR5-expressing cells and efficiently blocked HIV entry at low REFERENCES nanomolar concentrations. Thus, attributes of both the parent 1. BinleyJM,WrinT,KorberB,ZwickMB,WangM,ChappeyC,Stiegler antibodyandthesmallmoleculeweremaintainedinthecontext G,KunertR,Zolla-PaznerS,KatingerH,PetropoulosCJ,BurtonDR. 2004. Comprehensive cross-clade neutralization analysis of a panel of of the conjugate. Success with aplaviroc suggests that clinically anti-humanimmunodeficiencyvirustype1monoclonalantibodies.J.Vi- approved CCR5 inhibitors, such as maraviroc, can potentially rol.78:13232–13252. benefitfromevaluationasBNmAbconjugates.However,maravi- 2. DiskinR,ScheidJF,MarcovecchioPM,WestAP,Jr,KleinF,GaoH, May2013 Volume87 Number9 jvi.asm.org 4991 Gavrilyuketal. GnanapragasamPN,AbadirA,SeamanMS,NussenzweigMC,Bjork- 17. PopkovM,RaderC,GonzalezB,SinhaSC,BarbasCF,III.2006.Small manPJ.2011.IncreasingthepotencyandbreadthofanHIVantibodyby molecule drug activity in melanoma models may be dramatically en- usingstructure-basedrationaldesign.Science334:1289–1293. hancedwithanantibodyeffector.Int.J.Cancer119:1194–1207. 3. FalkowskaE,RamosA,FengY,ZhouT,MoquinS,WalkerLM,WuX, 18. Rader C, Sinha SC, Popkov M, Lerner RA, Barbas CF, III. 2003. SeamanMS,WrinT,KwongPD,WyattRT,MascolaJR,PoignardP, Chemically programmed monoclonal antibodies for cancer therapy: BurtonDR.2012.PGV04,anHIV-1gp120CD4bindingsiteantibody,is adaptorimmunotherapybasedonacovalentantibodycatalyst.Proc.Natl. broadandpotentinneutralizationbutdoesnotinduceconformational Acad.Sci.U.S.A.100:5396–5400. changescharacteristicofCD4.J.Virol.86:4394–4403. 19. WuellnerU,GavrilyukJI,BarbasCF,III.2010.Expandingtheconcept 4. ScheidJF,MouquetH,UeberheideB,DiskinR,KleinF,OliveiraTY, of chemically programmable antibodies to RNA aptamers: chemically D PietzschJ,FenyoD,AbadirA,VelinzonK,HurleyA,MyungS,Boulad programmed biotherapeutics. Angew. Chem. Int. Ed. Engl. 49:5934– o F,PoignardP,BurtonDR,PereyraF,HoDD,WalkerBD,SeamanMS, 5937. w BjorkmanPJ,ChaitBT,NussenzweigMC.2011.Sequenceandstruc- 20. DoppalapudiVR,TryderN,LiLN,AjaT,GriffithD,LiaoFF,RoxasG, n turalconvergenceofbroadandpotentHIVantibodiesthatmimicCD4 Ramprasad MP, Bradshaw C, Barbas CF, III. 2007. Chemically pro- lo a binding.Science333:1633–1637. grammedantibodies:endothelinreceptortargetingCovX-Bodies.Bioorg. d 5. WalkerLM,HuberM,DooresKJ,FalkowskaE,PejchalR,JulienJP, Med.Chem.Lett.17:501–506. e d WangSK,RamosA,Chan-HuiPY,MoyleM,MitchamJL,Hammond 21. Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A, Bose S, f PW,OlsenOA,PhungP,FlingS,WongCH,PhogatS,WrinT,Simek McCarthy D, Zhu RR, Santora L, Davis-Taber R, Kunes Y, Fung E, ro MD,KoffWC,WilsonIA,BurtonDR,PoignardP.2011.Broadneu- SchwartzA,SakorafasP,GuJ,TarcsaE,MurtazaA,GhayurT.2007. m tralizationcoverageofHIVbymultiplehighlypotentantibodies.Nature Simultaneoustargetingofmultiplediseasemediatorsbyadual-variable- h 477:466–470. domainimmunoglobulin.Nat.Biotechnol.25:1290–1297. tt p 6. WalkerLM,PhogatSK,Chan-HuiPY,WagnerD,PhungP,GossJL, 22. KovacsEW,HookerJM,RomaniniDW,HolderPG,BerryKE,Francis : / Wrin T, Simek MD, Fling S, Mitcham JL, Lehrman JK, Priddy FH, MB.2007.Dual-surface-modifiedbacteriophageMS2asanidealscaffold /jv OlsenOA,FreySM,HammondPW,KaminskyS,ZambT,MoyleM, foraviralcapsid-baseddrugdeliverysystem.Bioconjug.Chem.18:1140– i. KoffWC,PoignardP,BurtonDR.2009.Broadandpotentneutralizing 1147. a s antibodiesfromanAfricandonorrevealanewHIV-1vaccinetarget.Sci- 23. ChenW,ZhanP,DeClercqE,LiuX.2012.Recentprogressinsmall m ence326:285–289. molecule CCR5 antagonists as potential HIV-1 entry inhibitors. Curr. . o 7. WuX,YangZY,LiY,HogerkorpCM,SchiefWR,SeamanMS,Zhou Pharm.Des.18:100–112. r g T,SchmidtSD,WuL,XuL,LongoNS,McKeeK,O’DellS,LouderMK, 24. LiuT,WengZ,DongX,HuY.2010.Recentadvancesinthedevelop- / WycuffDL,FengY,NasonM,Doria-RoseN,ConnorsM,KwongPD, mentofsmall-moleculeCCR5inhibitorsforHIV.MiniRev.Med.Chem. o n RoedererM,WyattRT,NabelGJ,MascolaJR.2010.Rationaldesignof 10:1277–1292. A envelopeidentifiesbroadlyneutralizinghumanmonoclonalantibodiesto 25. DorrP,WestbyM,DobbsS,GriffinP,IrvineB,MacartneyM,MoriJ, p HIV-1.Science329:856–861. RickettG,Smith-BurchnellC,NapierC,WebsterR,ArmourD,Price r 8. WuX,ZhouT,ZhuJ,ZhangB,GeorgievI,WangC,ChenX,Longo D,StammenB,WoodA,PerrosM.2005.Maraviroc(UK-427,857),a il 9 NS,LouderM,McKeeK,O’DellS,PerfettoS,SchmidtSD,ShiW,Wu potent, orally bioavailable, and selective small-molecule inhibitor of , 2 L, Yang Y, Yang ZY, Yang Z, Zhang Z, Bonsignori M, Crump JA, chemokinereceptorCCR5withbroad-spectrumanti-humanimmunode- 0 Kapiga SH, Sam NE, Haynes BF, Simek M, Burton DR, Koff WC, ficiencyvirustype1activity.Antimicrob.AgentsChemother.49:4721– 1 Doria-Rose NA, Connors M, Mullikin JC, Nabel GJ, Roederer M, 4732. 3 ShapiroL,KwongPD,MascolaJR.2011.FocusedevolutionofHIV-1 26. HuntJS,RomanelliF.2009.Maraviroc,aCCR5coreceptorantagonist b y neutralizingantibodiesrevealedbystructuresanddeepsequencing.Sci- thatblocksentryofhumanimmunodeficiencyvirustype1.Pharmaco- K ence333:1593–1602. therapy29:295–304. r e 9. Hessell AJ, Hangartner L, Hunter M, Havenith CE, Beurskens FJ, 27. KromdijkW,HuitemaAD,MulderJW.2010.TreatmentofHIVinfec- s BakkerJM,LaniganCM,LanducciG,ForthalDN,ParrenPW,Marx tionwiththeCCR5antagonistmaraviroc.ExpertOpin.Pharmacother. g e PA,BurtonDR.2007.Fcreceptorbutnotcomplementbindingisimpor- 11:1215–1223. L tantinantibodyprotectionagainstHIV.Nature449:101–104. 28. LorenzenT.2010.Profileofmaraviroc:aCCR5antagonistintheman- ib 10. ParrenPW,MarxPA,HessellAJ,LuckayA,HarouseJ,Cheng-Mayer agement of treatment-experienced HIV patients. HIV AIDS (Auckl.) r a C, Moore JP, Burton DR. 2001. Antibody protects macaques against 2:151–156. r y vaginalchallengewithapathogenicR5simian/humanimmunodeficiency 29. GavrilyukJ,UeharaH,OtsuboN,HessellA,BurtonDR,BarbasCF, , virusatserumlevelsgivingcompleteneutralizationinvitro.J.Virol.75: III.2010.PotentinhibitionofHIV-1entrywithachemicallyprogrammed T 8340–8347. antibodyaidedbyanefficientorganocatalyticsynthesis.Chembiochem h e 11. Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. 2012. 11:2113–2118. S Antibody-based protection against HIV infection by vectored immu- 30. Gavrilyuk J, Ban H, Nagano M, Hakamata W, Barbas CF, III. 2012. c noprophylaxis.Nature481:81–84. Formylbenzene diazonium hexafluorophosphate reagent for tyrosine- rip 12. JohnsonPR,SchneppBC,ZhangJ,ConnellMJ,GreeneSM,YusteE, selectivemodificationofproteinsandtheintroductionofabioorthogonal p DesrosiersRC,ClarkKR.2009.Vector-mediatedgenetransferengenders aldehyde.Bioconjug.Chem.23:2321–2328. s long-livedneutralizingactivityandprotectionagainstSIVinfectionin 31. HookerJM,KovacsEW,FrancisMB.2004.Interiorsurfacemodification R e monkeys.Nat.Med.15:901–906. ofbacteriophageMS2.J.Am.Chem.Soc.126:3718–3719. s 13. Saphire EO, Parren PW, Barbas CF, III, Burton DR, Wilson IA. 32. SchlickTL,DingZ,KovacsEW,FrancisMB.2005.Dual-surfacemod- e a 2001. Crystallization and preliminary structure determination of an ificationofthetobaccomosaicvirus.J.Am.Chem.Soc.127:3718–3723. r intacthumanimmunoglobulin,b12:anantibodythatbroadlyneutral- 33. NakataH,MaedaK,MiyakawaT,ShibayamaS,MatsuoM,TakaokaY, ch izesprimaryisolatesofHIV-1.ActaCrystallogr.DBiol.Crystallogr. ItoM,KoyanagiY,MitsuyaH.2005.Potentanti-R5humanimmuno- I 57:168–171. deficiencyvirustype1effectsofaCCR5antagonist,AK602/ONO4128/ n s 14. ZwickMB,BonnycastleLL,MenendezA,IrvingMB,BarbasCF, III, GW873140,inanovelhumanperipheralbloodmononuclearcellnon- tit ParrenPW,BurtonDR,ScottJK.2001.Identificationandcharacteriza- obesediabetic-SCID,interleukin-2receptorgamma-chain-knocked-out u t tionofapeptidethatspecificallybindsthehuman,broadlyneutralizing AIDSmousemodel.J.Virol.79:2087–2096. e anti-humanimmunodeficiencyvirustype1antibodyb12.J.Virol.75: 34. DooresKJ,BurtonDR.2010.Variableloopglycandependencyofthe 6692–6699. broadandpotentHIV-1-neutralizingantibodiesPG9andPG16.J.Virol. 15. Gavrilyuk JI, Wuellner U, Barbas CF, III. 2009. Beta-lactam-based 84:10510–10521. approach for the chemical programming of aldolase antibody 38C2. 35. HintonPR,XiongJM,JohlfsMG,TangMT,KellerS,TsurushitaN. Bioorg.Med.Chem.Lett.19:1421–1424. 2006.AnengineeredhumanIgG1antibodywithlongerserumhalf-life.J. 16. Gavrilyuk JI, Wuellner U, Salahuddin S, Goswami RK, Sinha SC, Immunol.176:346–356. BarbasCF,III.2009.Anefficientchemicalapproachtobispecificanti- 36. IgawaT,TsunodaH,KuramochiT,SampeiZ,IshiiS,HattoriK.2011. bodiesandantibodiesofhighvalency.Bioorg.Med.Chem.Lett.19:3716– Engineering the variable region of therapeutic IgG antibodies. MAbs 3720. 3:243–252. 4992 jvi.asm.org JournalofVirology Potent,BroadlyActiveBispecificAnti-HIVAntibodies 37. Bruno CJ, Jacobson JM. 2010. Ibalizumab: an anti-CD4 monoclonal 42. LaFleurDW,AbramyanD,KanakarajP,SmithRG,ShahRR,WangG, antibodyforthetreatmentofHIV-1infection.J.Antimicrob.Chemother. YaoX-T,KankanalaS,BoydE,ZaritskayaL,NamV,PufferBA,Buasen 65:1839–1841. P,KaithamanaS,BurnetteAF,KrishnamurthyR,PatelD,RoschkeVV, 38. Song R, Franco D, Kao CY, Yu F, Huang Y, Ho DD. 2010. Epitope Kiener P, Hilbert DM, Barbas CF, III. 2013. Monoclonal antibody mapping of ibalizumab, a humanized anti-CD4 monoclonal antibody therapeuticswithuptofivespecificities:functionalenhancementthrough withanti-HIV-1activityininfectedpatients.J.Virol.84:6935–6942. fusionoftarget-specificpeptides.mAbs5:208–218. 39. TenorioAR.2011.ThemonoclonalCCR5antibodyPRO-140:theprom- 43. Nichols WG, Steel HM, Bonny T, Adkison K, Curtis L, Millard J, iseofonce-weeklyHIVtherapy.Curr.HIV/AIDSRep.8:1–3. KabeyaK,ClumeckN.2008.Hepatotoxicityobservedinclinicaltrials 40. RidgwayJB,PrestaLG,CarterP.1996.‘Knobs-into-holes’engineering of aplaviroc (GW873140). Antimicrob. Agents Chemother. 52:858– D ofantibodyCH3domainsforheavychainheterodimerization.Protein 865. o Eng.9:617–621. 44. Zhou N, Fan L, Ho HT, Nowicka-Sans B, Sun Y, Zhu Y, Hu Y, w 41. Bostrom J, Yu SF, Kan D, Appleton BA, Lee CV, Billeci K, Man W, McAuliffeB,RoseB,FangH,WangT,KadowJ,KrystalM,Alexander n PealeF,RossS,WiesmannC,FuhG. 2009.Variantsoftheantibody L,ColonnoR,LinPF.2010.IncreasedsensitivityofHIVvariantsselected lo a herceptinthatinteractwithHER2andVEGFattheantigenbindingsite. byattachmentinhibitorstobroadlyneutralizingantibodies.Virology402: d Science323:1610–1614. 256–261. e d f r o m h t t p : / / jv i. a s m . o r g / o n A p r il 9 , 2 0 1 3 b y K r e s g e L ib r a r y , T h e S c r ip p s R e s e a r c h I n s t it u t e May2013 Volume87 Number9 jvi.asm.org 4993
Description: