ThePennsylvaniaStateUniversity TheGraduateSchool CollegeofEngineering ANTHROPOMETRY-BASEDSUSTAINABLEDESIGN FORMULTIPLEGLOBALPOPULATIONS ADissertationin MechanicalEngineering by GopalNadadur ©2012GopalNadadur SubmittedinPartialFulfillment oftheRequirements fortheDegreeof DoctorofPhilosophy August2012 ThedissertationofGopalNadadurwasreviewedandapproved*bythefollowing: MatthewB.Parkinson AssociateProfessorofEngineeringDesign,MechanicalandIndustrialEngineering DissertationAdvisor ChairofCommittee TimothyW.Simpson ProfessorofMechanicalandIndustrialEngineering ArvindRangaswamy AnchelProfessorofMarketing LingRothrock AssociateProfessorofIndustrialandManufacturingEngineering JeremyJ.Michalek AssociateProfessorofMechanicalEngineeringandEngineering&PublicPolicy SpecialMember CarnegieMellonUniversity KarenA.Thole ProfessorofMechanicalEngineering DepartmentHeadofMechanicalandNuclearEngineering *SignaturesareonfileintheGraduateSchool ii ABSTRACT This dissertation research had the broad objective of enabling more widespread applicationoftheprinciplesofanthropometry-(i.e.,bodydimension-)baseddesign. The more specific goals were: a) to allow for the use of easily- and widely- available body dimensionalinformationintheformofdescriptivestatistics(means,standarddeviations, and/or by-percentile values of anthropometry), b) to more objectively compare the variation of relevant body measures across the populations of interest, c) to utilize observations from these comparisons in guiding the selection of appropriate strategies for top-down global product design, and d) to implement virtual fitting techniques and providespecificdesignrecommendationswithintheframeworkoftheselectedstrategy. The anthropometry-based global design (AGD) methodology was formulated to satisfy these goals. It consists of three phases. Phase A focuses on anthropometry synthesis using the existing regression-based approach and the newly-developed percentile combinations datasets (PCD) method. The main strength of the PCD method is in its ability to use descriptive statistics as inputs in accurately “reverse engineering” the underlying anthropometric database. The ability to synthesize such comprehensive databases enables better utilization of numerous papers and reports that provide descriptive statistical information for a variety of populations; this allows for more thorough,multivariateanthropometricanalysesthroughtheuseofdetaileddata. Phase B of the AGD methodology involves the application of the newly-developed anthropometry range metric (ARM) in assessing anthropometric variation across the populationsofinterest. Thisvariationisstudiedforeachrelevantbodymeasurebetween the 1st and 99th percentiles, and results in the categorization of the body measure into regions of low, medium, and high variability. Guidelines are then proposed for the selection of the most suitable technique—sizing, adjustability-allocation, etc.—for the iii satisfactionoftheusagerequirementsrelatedtothatbodymeasure. Theguidelinesalso include suggestions on when to consider incorporating components related to the body measure into a platform, when to build them into modules, and when to offer them as uniquevariants. Theselectionoftheaforementionedtechniquesisbasedontheglobalproductdesign strategy that is chosen as the overarching framework for the top-down design of the newproductline. Threestrategiesareproposedinthisresearch. Non-platformeddesign involves the creation of a separate design for each group of target markets or user populations. Static platform design entails the development of the product line around a common platform that remains unchanged across the populations of interest. Flexible platform design is aimed at making the platform itself adaptable to the requirements of differentpopulationgroups;thiscapabilityalsoallowsforeasiermodificationstosatisfy temporalchangesinrequirements. PhaseCoftheAGDmethodologyinvolvestheapplicationofthetechniquesselected in Phase B. This yields design recommendations that are likely to achieve the desired performanceobjectivesforthepopulationsofinterest. The proposed methodology is then demonstrated in two case studies, the first of which involves the design of a wheelchair for populations that are largely from the developing world. The second case study is an exploration into three sustainability benefits—increasing raw material allocation efficiency, lengthening the lifetimes of certain kinds of products, and better considering some ethical ramifications of design decision—that could accrue from the application of the AGD method for multiple user populations. iii TABLE OF CONTENTS LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii CHAPTER I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. ANTHROPOMETRYANDERGONOMICSINHUMANDEVELOPMENT 6 2.1 StoneAge(–4,000B.C.) . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 CopperandBronzeAges(4,000B.C.-1,000B.C.) . . . . . . . . . . . 8 2.3 IronAge(1,000B.C.-400A.D.) . . . . . . . . . . . . . . . . . . . . . 10 2.4 MiddleAges(400A.D.-1500A.D.) . . . . . . . . . . . . . . . . . . . 12 2.5 TransitionalAge(1100s-1700s) . . . . . . . . . . . . . . . . . . . . . 15 2.6 ModernToolAge(1800s-Present) . . . . . . . . . . . . . . . . . . . 16 2.7 ConclusionandResearchMotivation . . . . . . . . . . . . . . . . . . 18 III. DESIGNINGFORGLOBALPOPULATIONS . . . . . . . . . . . . . . . . 20 3.1 GlobalVariabilityinProductRequirements . . . . . . . . . . . . . . 21 3.2 GlobalDesignStrategies . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 StrategyI:Non-platformeddesign . . . . . . . . . . . . . . 24 3.2.2 StrategyII:Staticplatformdesign . . . . . . . . . . . . . . 28 3.2.3 StrategyIII:Flexibleplatformdesign . . . . . . . . . . . . . 31 3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 IV. DESIGNINGFORANTHROPOMETRICVARIABILITY . . . . . . . . . . 37 4.1 SourcesofAnthropometricInformation . . . . . . . . . . . . . . . . 37 4.2 AnthropometricVariability: TheAnthropometryRangeMetric . . . 39 4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 V. SYNTHESIZINGANTHROPOMETRICDATA . . . . . . . . . . . . . . . 48 5.1 ExistingAnthropometrySynthesisMethods . . . . . . . . . . . . . . 48 5.2 ThePercentileCombinationsDatasetsMethod . . . . . . . . . . . . 55 5.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 iv 5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3 VirtualFitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 VI. THEANTHROPOMETRY-BASEDGLOBALDESIGNMETHOD . . . . 76 6.1 PhaseA:ObtainingAnthropometricData . . . . . . . . . . . . . . . 77 6.2 PhaseB:AssessingAnthropometricVariability . . . . . . . . . . . . 81 6.3 PhaseC:ImplementingaDesignStrategy . . . . . . . . . . . . . . . 86 6.3.1 StrategyI:Non-platformeddesign . . . . . . . . . . . . . . 86 6.3.2 StrategyII:Staticplatformdesign . . . . . . . . . . . . . . 87 6.3.3 StrategyIII:Flexibleplatformdesign . . . . . . . . . . . . . 89 6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 VII. CASESTUDY:WHEELCHAIRFORGLOBALPOPULATIONS . . . . . . 93 7.1 Wheelchairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.1.1 Wheelchair-specificConsiderations . . . . . . . . . . . . . 95 7.1.2 WheelchairUserAnthropometry . . . . . . . . . . . . . . . 96 7.2 WhirlwindWheelchairInternational . . . . . . . . . . . . . . . . . . 98 7.2.1 RoughRider2010 . . . . . . . . . . . . . . . . . . . . . . . . 100 7.3 PhaseA:ObtainingAnthropometricData . . . . . . . . . . . . . . . 102 7.4 PhaseB:AssessingAnthropometricVariability . . . . . . . . . . . . 104 7.5 PhaseC:ImplementingaDesignStrategy . . . . . . . . . . . . . . . 106 7.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 VIII. CASESTUDY:PRODUCTSUSTAINABILITYTHROUGHANTHROPOMETRY- BASEDGLOBALDESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.1 SustainableDevelopment . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.1.1 SustainabilityinProductDesign . . . . . . . . . . . . . . . 113 8.1.2 SustainabilityBenefitsofAnthropometry-basedDesign . . 114 8.2 CaseStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.3 StepI:Reducingrawmaterialconsumption . . . . . . . . . . . . . . 119 8.3.1 Casestudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 8.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 8.4 StepII:Increasingusagelifetimesofproducts . . . . . . . . . . . . . 123 8.4.1 Casestudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 8.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.5 StepIII:Consideringethicalconsequences . . . . . . . . . . . . . . . 127 8.5.1 Casestudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 8.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.6 ConclusionandOpenQuestions . . . . . . . . . . . . . . . . . . . . . 130 8.6.1 Question1: Howcanotherhumanvariability-relatedfac- torsbeconsidered? . . . . . . . . . . . . . . . . . . . . . . . 131 8.6.2 Question2: Howcantheentirelifecycleoftheproductbe takenintoaccount? . . . . . . . . . . . . . . . . . . . . . . . 131 8.6.3 Question 3: How can the intricacies of the Profit criterion bemorethoroughlyexplored? . . . . . . . . . . . . . . . . 132 IX. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.1 MainContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 v 9.2 OpenQuestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 vi LIST OF TABLES 4.1 The availabilities of the 24 body measures for the 9 national user popula- tions. Also shown is the age range of the surveyed population that is the basisforthesummarystatistics. . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1 AcomparisonofmaleandfemalestatureandBMIforthreerace/ethnicity groupingsintheU.S.Civilian(NHANES2003-06)population: Non-Hispanic blacks(B),Hispanics(H),andNon-Hispanicwhites(W). . . . . . . . . . . 52 5.2 AcomparisonoffemaleANSUR(A),CAESAR(C),andU.S.Civilian(weighted NHANES2003-06,N)anthropometryatcertaincrucialpercentiles. Lengths areinmm,BMIisadimensionlessnumber. . . . . . . . . . . . . . . . . . . 53 5.3 A comparison of male ANSUR (A), CAESAR (C), and NHANES 2003-06 (N) anthropometry at certain crucial percentiles. Lengths are in mm, BMI isadimensionlessnumber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4 A comparison of ANSUR (ANS) and actual (Act) and synthesized (Syn) femaleJapaneseanthropometryatthekeypercentilesutilizedintheirsyn- thesis. Weightisinkg,BMIisunit-less,andallotherunitsareinmm. . . . 68 5.5 A comparison of ANSUR (ANS) and actual (Act) and synthesized (Syn) male Japanese anthropometry at the key percentiles utilized in their syn- thesis. Weightisinkg,BMIisunit-less,andallotherunitsareinmm. . . . 69 5.6 A comparison of the mean and standard deviations of the anthropomet- ric proportionality constants calculated for female ANSUR and the actual andsynthesizedfemaleJapanesepopulations. Alsoincludedarethemean proportionalityconstantscalculatedfromtheMeasureofManvalues[193]. 70 5.7 Acomparisonofthemeanandstandarddeviationsoftheanthropometric proportionality constants calculated for male ANSUR and the actual and synthesized male Japanese populations. Also included are the mean pro- portionalityconstantscalculatedfromtheMeasureofManvalues[193]. . . 70 6.1 The availabilities of the 8 required body measures for the 6 national user populations. Thesizeofeachpopulationisalsoshown. . . . . . . . . . . . 79 6.2 TheproposedguidelinesfortheselectionofanappropriateDfHVmethod for the satisfaction of the performance objectives related to each relevant body dimension. These guidelines, when used in conjunction with the ARM assessments, can help implement the anthropometry-based aspects oftheglobalproductdesignstrategy,whichischosenafterconsideringall theuser-,business-,andregulation-relatedfactorsinvolved(Section3.2). . 82 vii 7.1 Specifications for the Whirlwind RoughRider 2010 wheelchair. The four designattributesofinterestinthecasestudyareshowninboldertext. . . . 101 7.2 TheRoughRider2010designrecommendationsthatresultedfromPhaseC oftheAGDmethod. Thepopulationsaredividedintothethreegroupsof interest. Therequiredsizesofseatwidthandseatdeptharespecified,asis thenecessaryrangeofseatheightadjustability. Sinceitremainsunchanged for all seven populations, seat height is recommended as a static product platform for the wheelchair. Note that with the current RoughRider 2010 design, accommodation achieved for the populations are: 92% (Brazil), 60%(U.S.),90%(China),91%(Korea),96%(Japan),72%(India),46%(Kenya).108 8.1 The evolution of the design decision through the three stages of the case study. Thepopulationsexaminedare: Brazil(B),India(I),China(C),Kenya (K),theNetherlands(N),currentU.S.(c-U.S.),andfutureU.S.(f-U.S.). The finaldesignspecificationsareexpectedtoachieve90%accommodationfor even the future female U.S. population, which is shown to be dispropor- tionatelydisaccommodated. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 viii LIST OF FIGURES 1.1 Themajoreconomicregionsoftheworld. . . . . . . . . . . . . . . . . . . . 2 1.2 The development of this dissertation research, starting with the motiva- tions driving the effort and to the main contribution: the anthropometry- basedglobaldesignmethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 ExamplesofStoneAgeimplements. Source: www.clipart-history.com . . . 8 2.2 Ahieroglyphicillustratingfurniture-makinginAncientEgypt. Alsoshown areastoolandachairfromtheCopperandBronzeAges[99].. . . . . . . . 9 2.3 Examplesofasurgeon’stoolsinAncientGreek[77]. . . . . . . . . . . . . . 11 2.4 BenchseatsinancientGreektheaters[189]. . . . . . . . . . . . . . . . . . . 12 2.5 Examples of the function-based variation of the ergonomic design of An- cientGreekliquidstoragevessels[189]. . . . . . . . . . . . . . . . . . . . . . 12 2.6 AnillustrationofanergonomicworkenvironmentinAncientChina[41]. . 13 2.7 Mongol horseback archers [191], a typical Mongol bow [125] and saddle [126]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.8 An example of the sketches made by Leonardo da Vinci based on his dis- sectionsofhumancadavers[42]. . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.9 Maslow’shierarchyofhumanneeds[117;118]. . . . . . . . . . . . . . . . . 19 3.1 The trifecta of user-, business-, and regulation- related concerns in global productdesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 The three design strategies for global product design. Also included are examples of products that have been designed with each strategy and to satisfyvariationsinthethreesetsofrequirements. . . . . . . . . . . . . . . 25 3.3 Classification of non-platformed designs based on the nature of the oper- ating environment, the objectives to be achieved, and the changeability of systemvariables[53]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 All-in-oneuniversalplugadapter[Amazon]. . . . . . . . . . . . . . . . . . 26 3.5 TheapplicationofStrategyI(non-platformeddesign)intheexampleofthe AdidasJabulanisoccerballusedinthe2010WorldCup. Alsoshownisthe Grip’n’Grooveprofileoftheball[PopularScience]. . . . . . . . . . . . . . . 27 3.6 TheapplicationofStrategyII(staticplatformdesign)intheexampleofthe left- and right- hand drive vehicle cockpits (top and bottom, respectively) ofthe2011CitroenC4GrandPicasso. Source: OfficialCitroenwebsitesfor Switzerland(http://citroen.ch)andtheU.K.(http://www.citroen.co.uk). 31 ix
Description: