Antenna System for Tracking of Unmanned Aerial Vehicle Lars-Eirik Dalbakk Electronics System Design and Innovation Submission date: June 2014 Supervisor: Egil Eide, IET Norwegian University of Science and Technology Department of Electronics and Telecommunications Summary Targettrackingisacriticalpartofanymobilecommunicationsystemwithadirectivere- ceiverantenna. Somepopulartrackingmethodsusethedetectedphasedifferencebetween signalsreceivedbyseveralantennastofindthesignal’sdirectionofarrival. Themeasured direction of arrival is used to adjust the directive antenna’s radiation pattern towards the transmitter. Thus,theradiolinkbetweenthereceiverandthetransmitteriskeptoptimalat alltimes. Thisthesispresentsthedesignandimplementationofatrackingsystem,thatisbasedon thephasedifferencebetweenaQPSKmodulatedsignalreceivedattwodistinctantennas. The objective of the tracking system were to improve the existing radio link at Andøya Rocket Range, and have a range of 20 km. For this system, the direction of arrival was measuredbetween60◦and120◦angleofarrival,allowingamaximumestimateddirection ofarrivalerrorof2◦. ThetrackingalgorithmwasimplementedinNILabVIEW,withtwo universalsoftwareradioperipheralsasreceivers. Accuracy measurements of the tracking system were taken in an anechoic chamber, for differentpowerspecifications. Withareceivedpowerof-45.9dBmandhigher,themea- sureddirectionofarrivalerrorvariedbetween0◦to2◦,fulfillingtheaccuracyrequirement. Atareceivedpowerof-56dBm,theerrorwasbetween2◦to7◦.Althoughitdidnotfulfill theaccuracyrequirement,theestimationwasstillwithinthehalfpowerbeamwidthofthe directive receiver antenna. Thus it was defined as the lower power limit for a function- ing tracking system. Assuming that there are no interference or loss due to reflections in the channel, the maximum range of the tracking system is 680 m. Hence, the range requirementof20kmarenotfulfilled. i Sammendrag Ma˚lfølgingerenviktigdelavethvertmobiltkommunikasjonssystemsombrukerdirektive antenner. Noenpopulærema˚lfølgingsmetoderma˚lerfaseforskjellenmellometsignalsom ermottattavtoellerflereantenner. Dersomfaseforskjellenerkjent,kanankomstvinkelen tilsignaletberegnes. Fora˚oppna˚optimalradiolinkmellomsender-ogmottakerantennen, ma˚ stra˚lingsdiagrammet til mottakerantennen rette seg inn etter den beregnede ankom- stvinkelen. Denne oppgaven presenterer et design av et ma˚lfølgingssystem, og hvordan det er im- plementert. Ma˚lfølgingssystemet er basert pa˚ a˚ finne faseforskjellen mellom et QPSK modulert signal som er mottatt av to antenner. Hensikten med ma˚lfølgingssystemet er a˚ forbedreeneksisterenderadiolinkpa˚ Andøyarakettskytefelt,slikatdetkanhaenrekke- viddepa˚20km.Ankomstvinkelentilsignaletblema˚ltietomra˚depa˚60◦til120◦,hvor90◦ errettpa˚mottakerantennene.Detblestiltkravomatnøyaktighetentilma˚lfølgingssystemet skulleværeinnenfor2◦. Ma˚lfølgingsalgoritmenbleimplementertiNILabVIEW,medto USRPersommottakere. Systemetsnøyaktighetblema˚ltforforskjelligmottatteffektietekkofrittrom. Ma˚lefeilen var pa˚ mellom 0◦ til 2◦ med mottatt effekt pa˚ -45.9 dBm og høyere. Men med en mot- tatteffektpa˚ -56dBmvarma˚lefeilenmellom2◦ til7◦. Selvomma˚lingeneikkevarhelt innenforkravet,vardefremdelesinnenfor3-dB-ba˚ndbreddentilmottakerantennenikom- munikasjonssystemet. Derfor ble -56 dBm mottatt effekt definert som minimumskravet for at ma˚lfølgingssystemet skulle fungere. Hvis det antas at det ikke er noe tap i signal- styrkepa˚ grunnavinterferensellerrefleksjoner,sa˚ errekkeviddentilsystemet680meter. Deravbleikkekravetomrekkeviddepa˚ 20kminnfridd. ii Preface Thisthesisissubmittedinfulfillmentoftherequirementsforthedegreeofmasterofsci- ence (MSc) at the Department of Electronics and Telecommunications, Norwegian Uni- versityofScienceandTechnlogy(NTNU).TheworkwascarriedoutintheperiodJanuary 2014toJune2014,underthesupervisionofAdjunctAssociateProfessorEgilEide. Acknowledgment IwouldliketothankmysupervisorEgilEide,forgivingmetheopportunitytoworkwith antennasandcommunicationsystems,andforprovidingmewithinsighttoproblemsen- counteredinthethesis. IwouldalsoliketothankSeniorEngineerTerjeMathiesen,forhelpingmefindtheright equipment,andforassistingmewithmeasurementsintheanechoicchamber. Andlastbut not least, I would like to thank my fellow students and friends for valuable input during thisperiod. IwouldespeciallyliketothankMathiasTømmerformanyenlighteningcon- versatons. Trondheim,Norway,June2014 Lars-EirikDalbakk iii iv Table of Contents Summary i Sammendrag ii Preface iii TableofContents vi ListofTables vii ListofFigures xi Abbreviations xii 1 Introduction 1 1.1 StructureoftheReport . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 TheoreticalBackground 5 2.1 TheMobileRadioChannel . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 FreeSpacePropagation. . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 MultipathFading . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 PlaneEarthLossModel . . . . . . . . . . . . . . . . . . . . . . 8 2.2 SystemSensitivityLimit . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 EarthBulge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 PhaseMeasurementErrorduetoNoise. . . . . . . . . . . . . . . . . . . 12 3 TrackingMethods 15 3.1 DirectionofArrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Delay-And-SumMethod . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 CarrierRecoverybyCostasLoop. . . . . . . . . . . . . . . . . . . . . . 17 v 4 SystemDesign 19 4.1 ReceiverandTransmitterSystem . . . . . . . . . . . . . . . . . . . . . . 19 4.2 SignalPropagationandLinkBudget . . . . . . . . . . . . . . . . . . . . 22 5 SoftwareDevelopment 29 5.1 EquipmentandTools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 SoftwareDesignSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3 ChoiceofTrackingMethod . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.4 LabVIEWCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4.1 CodeOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4.2 CodeImplementation . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4.3 CodeVerification . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6 TrackingSystemMeasurements 43 6.1 MeasurementSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2 MeasurementsandResults . . . . . . . . . . . . . . . . . . . . . . . . . 47 7 Discussion 57 8 Conclusion 61 8.1 RecommendationsforFurtherWork . . . . . . . . . . . . . . . . . . . . 62 Bibliography 63 Appendix 65 vi List of Tables 4.1 Radiolinkspecifications . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Link budget for the radio link with the 18 dBi reflector antenna as the receivingelement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3 Themostimportantpropertiesoftheradiolinkstothemainreceiveran- tenna,andthetrackingantennainrealenvironment. . . . . . . . . . . . . 27 5.1 Softwaredevelopmentequipment. . . . . . . . . . . . . . . . . . . . . . 32 5.2 Measuredphasedifferenceofthesignalsindegrees . . . . . . . . . . . . 41 6.1 Linkbudgetfortrackingantennasintheanechoicchamber . . . . . . . . 46 6.2 MeasuredDOAofthesignalsindegreesasafunctionofreceivedpower attheUSRPterminals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 8.1 Linkbudgetfortrackingantennasinrealconditions,with1Wtransmitted power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 8.2 Linkbudgetfortrackingantennasinreflection-andinterferencefreecon- ditions,with1Wtransmittedpower . . . . . . . . . . . . . . . . . . . . 71 8.3 Newlinkbudgetfortrackingantennasinreflection-andinterferencefree conditions,with1Wtransmittedpower . . . . . . . . . . . . . . . . . . 72 8.4 SNRcalculationsforsignalswithdifferentreceivedpower. . . . . . . . . 73 vii viii
Description: