EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2015 5 1 0 2 ANTARES constraints on a Galactic component of the IceCube b e cosmic neutrino flux F 5 MaurizioSpurio1,2,a ] E 1DipartimentodiFisicaeAstronomiadell’UniversitàdiBologna-VialeBertiPichat6/2,40127Bologna(Italy) H 2IstitutoNazionalediFisicaNucleare-SezionediBologna-VialeBertiPichat6/2,40127Bologna(Italy) . h p Abstract. - The IceCube evidence for cosmic neutrinos has inspired a large number of hypothesis o ontheirorigin,mainlyduetothepoorprecisiononthemeasurementofthedirectionof tr showeringevents. ANorth/Southasymmetryinthepresentdatasetsuggeststhepres- s enceofapossibleGalacticcomponent. Thiscouldbeoriginatedeitherbysinglepoint- a like sources or from an extended Galactic region. Expected fluxes derived from these [ hypothesesarepresented.Somevalueshavebeenconstrainedfromthepresentavailable 2 upperlimitsfromtheANTARESneutrinotelescope. v 1 5 5 1 The IceCube cosmic neutrinos and a possible Galactic component 1 0 The recent IceCube (IC) evidence for extraterrestrial high-energy neutrinos [1, 2] opened new win- . 1 dows in the field of astroparticle physics [3]. With the present statistics, the High Energy Starting 0 Events (HESE) flux observed by IC is compatible with flavor ratios ν : ν : ν = 1 : 1 : 1, as ex- e µ τ 5 pectedfromchargedmesondecaysincosmicray(CR)acceleratorsandneutrinooscillationontheir 1 waytotheEarth. Thenon-observationofeventsbeyond2PeVsuggestsaneutrinofluxwithapower : v law Φ(E) ∝ E−Γ with hard spectral index, e.g. Γ (cid:39) 2.0, and an exponential cutoff, or an unbroken i X powerlawwithasofterspectrum,e.g. Γ(cid:39)2.3. r ThemajorityofHESEaredowngoing;astheICdetectorisattheSouthPole,thiscorrespondstoa a largerfluxfromtheSouthernsky,wheremostoftheGalacticplaneispresent. Table1(columnsfrom 2to5)reportsforHESEwithdepositedenergyE >60TeV[2]:thenumberofevents;theestimated dep background;thenumberofcosmicneutrinos(i.e. the signal);andthenumberofexpectedcosmicνs assumingthebest-fithypothesis. ValuesaregivenseparatelyfortheNorth/Southskyregions. Recently,ICpresentedanewsearchforneutrinosinteractingintheinstrumentedvolumeandwith energy between 1 TeV and 1 PeV, using 641 days of livetime [4]. Table 1 (columns from 6 to 10) reports,fortheeventsinthisnewsamplehavingE >25TeV,thesamequantitiesdefinedabovefor dep the HESE. No hypothesis test on HESE as reported in [2] yielded at present statistically significant evidence of clustering or correlations, in particular from the Galactic Center or the Galactic Plane. Thesamefortheneutrinosamplestudiedin[4]. InthedatapresentedinTable1,anexcessofdowngoing(Down)eventswithrespecttoexpectation seems however be present. The Northern sky, inducing upgoing (Up) events in IceCube, contains ae-mail:[email protected] EPJWebofConferences HESE[2] Data Bck n N Newνsample[4] Data Bck n N IC IC IC IC E >60TeV E−2 E >25TeV E−2.46 dep dep Up(North) 5 1.4 3.6 6.7 Up(sinδ>0.06) 11 5.3 5.7 12.1 Down(South) 15 1.3 13.7 11.5 Down(sinδ<−0.06) 29 4.8 24.2 15.0 All 20 2.7 17.3 18.2 All 43 11.7 31.3 29.1 Table1.Column2to5:numberofHESEwithE >60TeV(Data);numberofbackgroundevents(Bck); dep numbern ofsignalevents(Data-Bck);expectednumberN ofsignaleventsfromthebest-fit.Column7to IC IC 10:thesamequantitiesforsamplewithE >25TeVin[4].Quantitiesaregivenforupgoing(fromthe dep Northernhemisphere)anddowngoing(fromtheSouthernhemisphere)events,andforthewholesky(All). onlyasmallfractionoftheGalaxy. Forthisreason,letusassumethatthe3.6estimatedHESEfrom cosmic neutrinos (n ) arising from the Northern sky are all of extragalactic origin. Assuming a IC E−2.0 spectrum,asymmetriccontributionfromtheNorth/Southextragalacticsourcesandtakinginto account the different Aνi for events coming from the North and South hemispheres, then 6.2 events IC areexpectedfromtheSouth(theyreduceto5.8eventsforaE−2.5flux). Thisexcessof∼7.5eventsin theSouthernskycorrespondsto∼40%ofthetotalsignal. AnevenstrongerexcessfromtheSouthisderivedfromdatain[4],usingeventswith E > 25 dep TeV. Here, to the 5.7 signal events coming from the North with sinδ > 0.06 (assuming the same considerationsofabove)shouldcorrespond∼7.2eventsfromtheSouthwithsinδ < −0.06. As24.2 events are observed, more than 50% of the number of signal events in the whole sky seems to be produced by a non-isotropic cosmic component, likely of Galactic origin. A possible contribution fromtransientextragalacticobjectslocatedintheSouthernskycanbeconsideredaswell. TheaboveconclusionsarederivedforΓ = 2.0;howeversimilarresultsareobtainedusingsofter spectralindexes(i.e. Γ > 2.0)forthecosmicneutrinoflux. Thisisrelevantbecausedifferentmodels involvingGalactic,extragalacticorexoticoriginoftheICsignalexistintheliterature. Theneutrino fluxpredictedbyeachmodelhasapreferredvalue,usuallyrangingintheintervalΓ=2.0÷2.7. In the following, the effects of the hypothesis that a sizeable fraction of the cosmic neutrinos observed by IC is originated in our Galaxy is considered. Following the methods reported in [5], the neutrino flux from point-like or extended sources compatible with the above evaluated Galactic fractionoftheICsignalisderivedfordifferentvaluesofΓ. A signal originating from the Southern sky region can be observed by the ANTARES neutrino telescope[6], locatedintheMediterraneanSea. ExistingANTARESupperlimitsderivedunderthe hypothesisofaΓ=2.0neutrinospectrumareusedtoinferupperlimitsforΓ>2.0. TheANTARES expectedsensitivitiesforextendedsourcesareusedtodiscusstheconditionsunderwhichanIceCube hotspotcanbeobserved. 2 The ANTARES and IceCube effective areas Theneutrinoeffectiveareaatagivenenergy,A (E),isdefinedastheratiobetweentheneutrinoevent eff rateinadetector(units: s−1)andtheneutrinoflux(units: cm−2 s−1)atthatenergy. Theeffectivearea dependsontheflavorandcross-sectionofneutrinos,ontheirabsorptionprobabilityduringthepassage throughtheEarth,andondetector-dependentefficiencies. Detectorefficienciesarecorrelatedtoeach particular analysis, referring to the criteria used to trigger and to reconstruct the events, and to the cutsappliedtoreducethebackground. Afractionoftheirreduciblebackgroundduetoatmospheric neutrinos contaminates in any case the signal, with a percentage depending on the strength of cuts usedtodefineA (E). eff RICAP-14TheRomaInternationalConferenceonAstroparticlePhysics Figure1. Fullblackline:ANTARESν effectivearea[7].Theneutrinotrackisdeterminedwithamedianangle µ of(cid:46)0.4◦. Coloreddashedlines: IceCubeν ,ν andν effectiveareas[1]fromtheanalysisyieldingtheHESE. e µ τ ThebackgroundsduetoatmosphericmuonsandneutrinosislargelysuppressedabovefewtensofTeV. Figure1showstheANTARESeffectivearea(Aνµ ,fullblackline)fortheν flavorasderivedin ANT µ theanalysis[7]forthesearchforcosmicneutrinopointsourcesinthedeclinationbandcontainingthe GalacticCenter. Thered(Aνe),green(Aνµ)andblue(Aντ)linesrefertotheIceCubeanalysisona4π IC IC IC sryieldingtheHESE. Despite the fact that the ANTARES instrumented volume is much smaller than 1 km3, Fig. 1 shows that the ANTARES ν effective area is larger than Aνe, Aνµ and Aντ below ∼ 60 TeV. At the µ IC IC IC highestenergieswhereneutrinosweredetected,2PeV,Aνµ isafactoroftwolargerthanAνµ while IC ANT thetotalICeffectiveareaforHESE(Aνe +Aνµ +Aντ)isonly7.3timeslargerthanAνµ . IC IC IC ANT These values of the A of the two experiments are largely dominated by the different criteria eff hiddenintheanalysis. StrongcutsareusedintheICanalysistoselectahigh-puritysampleofdiffuse high-energycosmicneutrinoswithinteractionvertexinsidetheinstrumentedvolume. Theestimated angularresolutionis∼1◦forν and∼10◦−15◦forneutrinointeractionsproducingshowers(mainly µ from charged current interactions of ν ,ν ). The criteria used in the ANTARES analysis allow a e τ largercontaminationoflower-energyatmosphericneutrinos,butenabletoreconstructν eventswith µ superiorangularresolution,∼ 0.4◦. TheconsequenceisthatANTAREShasequivalent(orsuperior, dependingonthesignalspectralindex)capabilitytoextractasignalifthecosmicsourceislocatedin theSouthernsky,anditispoint-likeorconfinedinaregionseenwithinasmallsolidangle∆Ωbythe detector. 3 Normalization factors for different cosmic spectral indexes ThestandarddiffusiveshockaccelerationmodelyieldsaΓ=2.0spectralindexforprimaryCRs,and consequentlyforsecondaryγ-raysandneutrinos. However,mostγ-raysourcesobservedintheGeV andTeVrangeshowspectralindexeslargerthan2.0. Thereasonwhyγ-rayspectrafromsupernovae remnants are observed with spectral indexes Γ (cid:39) 2.2−2.3 remains unclear. A softer spectral index EPJWebofConferences units: (GeVcm−2s−1) Φp,Γ(fromHESE) ANTARES 0 Γ= n =1 n =2 n =3 n =4 n =5 90%C.L.limit p p p p p 2.0 6.910−9 1.410−8 2.110−8 2.810−8 3.510−8 4.010−8 2.2 9.010−8 1.810−7 2.710−7 3.610−7 - 3.210−7 2.3 3.310−7 6.610−7 9.910−7 - - 8.410−7 2.4 1.210−6 2.310−6 - - - 2.210−6 Table2.Column2to6:normalizationfactorsΦp,Γyieldingn =1,...,5HESEinIceCubevs.Γ.Thelast 0 p columnshowsthe90%C.L.upperlimitsforaΓ=2.0point-likesourcederivedfromANTARES[9].The valuesforΓ>2.0werederivedin[5].Thefirstvalueineachrowexcludedbytheselimitsisunderlined. (Γ(cid:39)2.4−2.5)isconsistentwiththetheoreticalmodelofCRinjectionbydiffusiveshockacceleration followedbyescapethroughtheGalacticmagneticfieldwithKolmogorovturbulence[8]. Thus, it is important to consider the normalization factors ΦD,Γ for the IC signal for different 0 models of cosmic fluxes EΓΦD,Γ(E) ≡ ΦD,Γ(E) (in units: GeV cm−2 s−1 sr−1. The D stands for 0 diffuse.) Thesamenumber N ofeventsfordifferentΦD,Γ(E)isobtainedusingtheeffectivearea IC A (E)≡[Aνe +Aνµ +Aντ]anddetectorlivetimeT: IC IC IC IC (cid:90) (cid:90) NIC =T · ΦD,Γ(E)·AIC(E)·dE·dΩ=4πT ·Φ0D,Γ· E−Γ·AIC(E)·dE =4πT ·Φ0D,Γ·DΓ. (1) TheintegralDΓ (thedetectorresponse)extendsovertheenergyrangewhere AIC(E)isnotnull,and iscomputednumerically. Letusassumethatn eventsoutofN areproducedbyapoint-likesourcewithgenericspectrum: p IC EΓΦp,Γ(E) = Φp,Γ (units: GeVcm−2s−1 .The pstandsfor point−like.) Thenormalizationfactor 0 Φp,Γnecessarytoproducen eventsisobtainedbyrequiringthat: 0 p (cid:90) (cid:90) np =T · Φp,Γ(E)·AIC(E)·dE =T ·Φ0p,Γ E−Γ·AIC(E)·dE =T ·Φ0p,Γ·DΓ (2) whereT, AIC(E)and, consequently, thedetectorresponseDΓ arethesameasinEq. (1). Then, the normalizationfactorforapoint-likesourcefluxofagivenspectralindexΓisgivenby: (cid:18) n (cid:19) Φp,Γ =4π· p ·ΦD,Γ. (3) 0 N 0 IC If a fraction n∆Ω of the IceCube signal is produced in a region of the Southern sky of angular extension ∆Ω (cid:28) 4π sr, and flux EΓΦD(cid:48),Γ(E) = ΦD(cid:48),Γ, the signal can be observed as an enhanced 0 diffuseflux. SimilarlytoEq. (3),usingthedetectorresponsederivedin(1),weobtain ΦD(cid:48),Γ =(cid:18)n∆Ω(cid:19)·(cid:18)4π(cid:19)·ΦD,Γ. (4) 0 N ∆Ω 0 IC 4 ANTARES constraints for the IC signal from the Southern sky Point-like sources. Table 2 reports the normalization factor Φp,Γ for a point-like source necessary 0 to produce n = 1÷5 HESE, as derived from Eq. (3). Four different values of Γ are considered. p RICAP-14TheRomaInternationalConferenceonAstroparticlePhysics units: (GeVcm−2s−1sr−1) ∆Ω ΦD(cid:48),Γ(fromHESE) ANTARES 0 (sr) Γ= n∆Ω =3 n∆Ω =4 n∆Ω =5 n∆Ω =6 sensitivity 0.06 2.0 3.510−7 4.610−7 5.810−7 7.010−7 3.110−7 2.2 4.510−6 6.010−6 7.510−6 9.010−6 3.610−6 2.3 1.710−5 2.210−5 2.810−5 3.310−5 1.110−5 2.4 5.910−5 7.810−5 9.810−5 1.210−4 3.410−5 Table3.Column3to6:NormalizationfactorsΦ0D(cid:48),Γforanenhanceddiffuseflux,obtainedassumingn∆Ω=3to 6HESEinacircularwindowof8◦(∆Ω=0.06sr).Inthelastcolumn,thevalueforΓ=2.0correspondstothe ANTARESsensitivitiesfromtheFBregions[11].ThesensitivitiesforΓ>2.0areobtainedin[5]. Point-likesourcesintheGalacticcentralregionweresearchedforbyANTARES[9]andupperlimits as a function of the source declination were derived assuming a spectral index Γ = 2.0. Following theproceduredefinedin[5],thethe90%C.L.upperlimitforapoint-likesourcehasbeentranslated toupperlimitsforsofterspectralindexes. TheANTARESresultsforΓ = 2.0intheGalacticCenter regionandthederivedvaluedforΓ =2.2,2.3and2.4arereportedinthelastcolumnofTable2. The ANTARES 90% C.L. upper limit excludes a single point-like source with Γ = 2.0 producing more than5HESE.Thederivedlimitexcludesasinglepoint-likesourceyieldingaclusterofmorethan2 eventsforΓ=2.3,whilethepresenceofaclustermadeoftwoormoreeventsisexcludedforΓ>2.3. Enhanceddiffuseflux. Table3(columnsfrom3to6)showsthenormalizationfactorsfromEq. (4), assumingn∆Ω =3÷6HESEwithinasolidangleregion∆Ω=2π(1−cosθ)correspondingtoacircular windowsofθ=8◦. TheANTARESstrategyforthestudyofanenhanceddiffusefluxisdifferentwith respecttothatforthesearchforpoint-likesources. Thislatterreliesmainlyonthepointingaccuracy of the telescope. The expected background due to atmospheric neutrinos within a circular windows ofθ (cid:46) 1◦ issmallandthisisnotanymoretrueforlargervaluesofθ. Astheenergyspectrumfroma cosmicsignal(eitherpoint-likeordiffuse)isexpectedtobeharderthanthatofatmosphericneutrinos, thesignalshouldexceedthebackgroundaboveacertainthresholdofthereconstructedenergy. Thus, thediscriminationbetweensignalandbackgroundneedstheuseoftheestimatedenergyoftheevent, similarlytothecaseofthesearchforadiffusefluxofhighenergyν [10]. µ ANTARES has used an Artificial Neural Network to estimate the energy of the muons entering thedetectorforstudyingtheFermibubbles(FB)[11]. ThereportedANTARESsensitivityinterms of an enhanced diffuse flux from the FB region, assuming a E2Φ(E) spectrum without cutoff up to thePeVenergiesis3.1×10−7GeVcm−2s−1sr−1. Intheanalysis,using806dayslivetime,16events werefound,withanexpectedbackgroundof11events. ForΓ = 2.0thebackgroundcorrespondsto 7.5events/(sr·y).Thederived90%C.L.upperlimitisE2ΦFB(E)=5.4×10−7GeVcm−2s−1sr−1.As thesensitivitydependsonthebackgroundrate,differentoptimizationsmustbededucedfordifferent spectralindexes;ingeneral,itcanbeassumedthatthebackgroundlevelslightlyincreasesforsofter spectralindexes[5]. ThesensitivitiesextrapolatedfromtheANTARESFBanalysisforΓ > 2.0are reportedinthelastcolumnofTable3. Accordingtothesevalues,adedicatedsearchforadirectional neutrino flux, for instance around the IC hot spot, would produce a positive result for any spectral indexesΓ≥2.0,if∆Ω≤0.06sr(orcircularwindowofθ <8◦)andn∆Ω >2. Forasignalspreadout onalargercircularwindow,theminimumsensitivitywouldcorrespondtoahighern∆Ω. Regionsoflargeangularsize(Fermibubbles,Galacticplane). Recentpredictionsoftheneutrino flux from the FB regions [12] allow to estimate the expected number of events for the IC detector EPJWebofConferences assuming the effective area of the HESE. By folding the predicted ν spectra with the ANTARES effectivearea,thenumberofν inducedeventsinANTARESwouldcorrespondto∼ 30%,50%and µ 100%oftheν +ν +ν HESEinthesamelivetime,forΓ=2.0,2.1and2.3,respectively. However, e µ τ thiscorrespondstoasmallerANTARESsensitivitywithrespecttoIC,duetothelargerbackground inducedbyatmosphericneutrinosfromthewideFBregion(∆Ω∼0.8sr). The excess of HESE events from the Galactic region could finally be produced by interaction during propagation of freshly injected CRs with spectral index Γ (cid:39) 2.4−2.5 [8]. The preliminary ANTARESupperlimitsfromtheGalacticplanearereportedin[13]. 5 Conclusions The ANTARES detector has sufficient sensitivity to test many models that explain a fraction of the HESEsampleinIceCubeintermsofaGalacticcomponent. Modelsinwhichmorethan2HESEare originatedfromapoint-likeandsteadysourceintheSouthernhemisphereareexcludedforspectral indexesΓ≥2.3.Thepossibilitythataclusteringofeventsisproducedinaregionofsmallangularsize (∆Ω(cid:39)0.1−0.2sr)in(ornear)theGalacticPlaneisunderinvestigationinANTARES.Asreportedin Table3,theestimatedANTARESsensitivityisbelowthesignallevel(allowingapositivedetection) foranyspectralindexesΓ≥2.0,if∆Ω≤0.06sr(i.e. acircularwindowofθ<8◦)andn∆Ω >2. Fora signalspreadoutonalargersolodangle,theminimumsensitivitywouldcorrespondtoahighern∆Ω. Forverylargeregions(theFB,theGalacticplane)thepresentsensitivitiesusingtheν channelalone µ areabovethemodelpredictions. Theinclusionofshoweringevents,witharelativelylooserangular precision,wouldsignificantlyincreasetheANTARESsensitivitiesforthestudyofextendedregions. Acknowledgments IwouldliketothankmanymembersoftheANTARESandKM3NeTCollaborationsforcomments andinparticularJ.BrunnerandA.Kouchner. References [1] M.G.Aartsenetal.[IceCubeColl.],Science342,1242856(2013) [2] M.G.Aartsenetal.[IceCubeColl.],Phys.Rev.Lett.113(2014)101101. [3] M.Spurio.ParticlesandAstrophysics.Springer(2014)ISBN978-3-319-08050-5. [4] M.G.Aartsenetal.[IceCubeColl.],Phys.Rev.D91,022001(2015);arXiv:1410.1749. [5] M.Spurio.Phys.Rev.D90(2014)10,103004 [6] M.Ageronetal.[ANTARESColl.],Nucl.Instrum.Meth.A656(2011)11. [7] S.Adrián-Martínezetal.[ANTARESColl.],TheAstrophysicalJournal,760(2012)53. [8] A.Neronov,D.Semikoz.arXiv:1412.1690[astro-ph.HE] [9] S.Adrián-Martínezetal.[ANTARESColl.],TheAstrophysicalJournalLetters,786:L5(2014). [10] J.A.Aguilaretal.[ANTARESColl.],Phys.Lett.B696,(2011)16. [11] S.Adrián-Martínezetal.[ANTARESColl.],Eur.Phys.J.C74(2014)2701. [12] C.Lunardinietal.,Phys.Rev.D90,023016(2014). [13] L.A.Fusco.Theseproceedings;E.Visser.Tobepubl.ontheproceed.ofECRS2014