ebook img

ANTARES constraints on a Galactic component of the IceCube cosmic neutrino flux PDF

0.34 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ANTARES constraints on a Galactic component of the IceCube cosmic neutrino flux

EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2015 5 1 0 2 ANTARES constraints on a Galactic component of the IceCube b e cosmic neutrino flux F 5 MaurizioSpurio1,2,a ] E 1DipartimentodiFisicaeAstronomiadell’UniversitàdiBologna-VialeBertiPichat6/2,40127Bologna(Italy) H 2IstitutoNazionalediFisicaNucleare-SezionediBologna-VialeBertiPichat6/2,40127Bologna(Italy) . h p Abstract. - The IceCube evidence for cosmic neutrinos has inspired a large number of hypothesis o ontheirorigin,mainlyduetothepoorprecisiononthemeasurementofthedirectionof tr showeringevents. ANorth/Southasymmetryinthepresentdatasetsuggeststhepres- s enceofapossibleGalacticcomponent. Thiscouldbeoriginatedeitherbysinglepoint- a like sources or from an extended Galactic region. Expected fluxes derived from these [ hypothesesarepresented.Somevalueshavebeenconstrainedfromthepresentavailable 2 upperlimitsfromtheANTARESneutrinotelescope. v 1 5 5 1 The IceCube cosmic neutrinos and a possible Galactic component 1 0 The recent IceCube (IC) evidence for extraterrestrial high-energy neutrinos [1, 2] opened new win- . 1 dows in the field of astroparticle physics [3]. With the present statistics, the High Energy Starting 0 Events (HESE) flux observed by IC is compatible with flavor ratios ν : ν : ν = 1 : 1 : 1, as ex- e µ τ 5 pectedfromchargedmesondecaysincosmicray(CR)acceleratorsandneutrinooscillationontheir 1 waytotheEarth. Thenon-observationofeventsbeyond2PeVsuggestsaneutrinofluxwithapower : v law Φ(E) ∝ E−Γ with hard spectral index, e.g. Γ (cid:39) 2.0, and an exponential cutoff, or an unbroken i X powerlawwithasofterspectrum,e.g. Γ(cid:39)2.3. r ThemajorityofHESEaredowngoing;astheICdetectorisattheSouthPole,thiscorrespondstoa a largerfluxfromtheSouthernsky,wheremostoftheGalacticplaneispresent. Table1(columnsfrom 2to5)reportsforHESEwithdepositedenergyE >60TeV[2]:thenumberofevents;theestimated dep background;thenumberofcosmicneutrinos(i.e. the signal);andthenumberofexpectedcosmicνs assumingthebest-fithypothesis. ValuesaregivenseparatelyfortheNorth/Southskyregions. Recently,ICpresentedanewsearchforneutrinosinteractingintheinstrumentedvolumeandwith energy between 1 TeV and 1 PeV, using 641 days of livetime [4]. Table 1 (columns from 6 to 10) reports,fortheeventsinthisnewsamplehavingE >25TeV,thesamequantitiesdefinedabovefor dep the HESE. No hypothesis test on HESE as reported in [2] yielded at present statistically significant evidence of clustering or correlations, in particular from the Galactic Center or the Galactic Plane. Thesamefortheneutrinosamplestudiedin[4]. InthedatapresentedinTable1,anexcessofdowngoing(Down)eventswithrespecttoexpectation seems however be present. The Northern sky, inducing upgoing (Up) events in IceCube, contains ae-mail:[email protected] EPJWebofConferences HESE[2] Data Bck n N Newνsample[4] Data Bck n N IC IC IC IC E >60TeV E−2 E >25TeV E−2.46 dep dep Up(North) 5 1.4 3.6 6.7 Up(sinδ>0.06) 11 5.3 5.7 12.1 Down(South) 15 1.3 13.7 11.5 Down(sinδ<−0.06) 29 4.8 24.2 15.0 All 20 2.7 17.3 18.2 All 43 11.7 31.3 29.1 Table1.Column2to5:numberofHESEwithE >60TeV(Data);numberofbackgroundevents(Bck); dep numbern ofsignalevents(Data-Bck);expectednumberN ofsignaleventsfromthebest-fit.Column7to IC IC 10:thesamequantitiesforsamplewithE >25TeVin[4].Quantitiesaregivenforupgoing(fromthe dep Northernhemisphere)anddowngoing(fromtheSouthernhemisphere)events,andforthewholesky(All). onlyasmallfractionoftheGalaxy. Forthisreason,letusassumethatthe3.6estimatedHESEfrom cosmic neutrinos (n ) arising from the Northern sky are all of extragalactic origin. Assuming a IC E−2.0 spectrum,asymmetriccontributionfromtheNorth/Southextragalacticsourcesandtakinginto account the different Aνi for events coming from the North and South hemispheres, then 6.2 events IC areexpectedfromtheSouth(theyreduceto5.8eventsforaE−2.5flux). Thisexcessof∼7.5eventsin theSouthernskycorrespondsto∼40%ofthetotalsignal. AnevenstrongerexcessfromtheSouthisderivedfromdatain[4],usingeventswith E > 25 dep TeV. Here, to the 5.7 signal events coming from the North with sinδ > 0.06 (assuming the same considerationsofabove)shouldcorrespond∼7.2eventsfromtheSouthwithsinδ < −0.06. As24.2 events are observed, more than 50% of the number of signal events in the whole sky seems to be produced by a non-isotropic cosmic component, likely of Galactic origin. A possible contribution fromtransientextragalacticobjectslocatedintheSouthernskycanbeconsideredaswell. TheaboveconclusionsarederivedforΓ = 2.0;howeversimilarresultsareobtainedusingsofter spectralindexes(i.e. Γ > 2.0)forthecosmicneutrinoflux. Thisisrelevantbecausedifferentmodels involvingGalactic,extragalacticorexoticoriginoftheICsignalexistintheliterature. Theneutrino fluxpredictedbyeachmodelhasapreferredvalue,usuallyrangingintheintervalΓ=2.0÷2.7. In the following, the effects of the hypothesis that a sizeable fraction of the cosmic neutrinos observed by IC is originated in our Galaxy is considered. Following the methods reported in [5], the neutrino flux from point-like or extended sources compatible with the above evaluated Galactic fractionoftheICsignalisderivedfordifferentvaluesofΓ. A signal originating from the Southern sky region can be observed by the ANTARES neutrino telescope[6], locatedintheMediterraneanSea. ExistingANTARESupperlimitsderivedunderthe hypothesisofaΓ=2.0neutrinospectrumareusedtoinferupperlimitsforΓ>2.0. TheANTARES expectedsensitivitiesforextendedsourcesareusedtodiscusstheconditionsunderwhichanIceCube hotspotcanbeobserved. 2 The ANTARES and IceCube effective areas Theneutrinoeffectiveareaatagivenenergy,A (E),isdefinedastheratiobetweentheneutrinoevent eff rateinadetector(units: s−1)andtheneutrinoflux(units: cm−2 s−1)atthatenergy. Theeffectivearea dependsontheflavorandcross-sectionofneutrinos,ontheirabsorptionprobabilityduringthepassage throughtheEarth,andondetector-dependentefficiencies. Detectorefficienciesarecorrelatedtoeach particular analysis, referring to the criteria used to trigger and to reconstruct the events, and to the cutsappliedtoreducethebackground. Afractionoftheirreduciblebackgroundduetoatmospheric neutrinos contaminates in any case the signal, with a percentage depending on the strength of cuts usedtodefineA (E). eff RICAP-14TheRomaInternationalConferenceonAstroparticlePhysics Figure1. Fullblackline:ANTARESν effectivearea[7].Theneutrinotrackisdeterminedwithamedianangle µ of(cid:46)0.4◦. Coloreddashedlines: IceCubeν ,ν andν effectiveareas[1]fromtheanalysisyieldingtheHESE. e µ τ ThebackgroundsduetoatmosphericmuonsandneutrinosislargelysuppressedabovefewtensofTeV. Figure1showstheANTARESeffectivearea(Aνµ ,fullblackline)fortheν flavorasderivedin ANT µ theanalysis[7]forthesearchforcosmicneutrinopointsourcesinthedeclinationbandcontainingthe GalacticCenter. Thered(Aνe),green(Aνµ)andblue(Aντ)linesrefertotheIceCubeanalysisona4π IC IC IC sryieldingtheHESE. Despite the fact that the ANTARES instrumented volume is much smaller than 1 km3, Fig. 1 shows that the ANTARES ν effective area is larger than Aνe, Aνµ and Aντ below ∼ 60 TeV. At the µ IC IC IC highestenergieswhereneutrinosweredetected,2PeV,Aνµ isafactoroftwolargerthanAνµ while IC ANT thetotalICeffectiveareaforHESE(Aνe +Aνµ +Aντ)isonly7.3timeslargerthanAνµ . IC IC IC ANT These values of the A of the two experiments are largely dominated by the different criteria eff hiddenintheanalysis. StrongcutsareusedintheICanalysistoselectahigh-puritysampleofdiffuse high-energycosmicneutrinoswithinteractionvertexinsidetheinstrumentedvolume. Theestimated angularresolutionis∼1◦forν and∼10◦−15◦forneutrinointeractionsproducingshowers(mainly µ from charged current interactions of ν ,ν ). The criteria used in the ANTARES analysis allow a e τ largercontaminationoflower-energyatmosphericneutrinos,butenabletoreconstructν eventswith µ superiorangularresolution,∼ 0.4◦. TheconsequenceisthatANTAREShasequivalent(orsuperior, dependingonthesignalspectralindex)capabilitytoextractasignalifthecosmicsourceislocatedin theSouthernsky,anditispoint-likeorconfinedinaregionseenwithinasmallsolidangle∆Ωbythe detector. 3 Normalization factors for different cosmic spectral indexes ThestandarddiffusiveshockaccelerationmodelyieldsaΓ=2.0spectralindexforprimaryCRs,and consequentlyforsecondaryγ-raysandneutrinos. However,mostγ-raysourcesobservedintheGeV andTeVrangeshowspectralindexeslargerthan2.0. Thereasonwhyγ-rayspectrafromsupernovae remnants are observed with spectral indexes Γ (cid:39) 2.2−2.3 remains unclear. A softer spectral index EPJWebofConferences units: (GeVcm−2s−1) Φp,Γ(fromHESE) ANTARES 0 Γ= n =1 n =2 n =3 n =4 n =5 90%C.L.limit p p p p p 2.0 6.910−9 1.410−8 2.110−8 2.810−8 3.510−8 4.010−8 2.2 9.010−8 1.810−7 2.710−7 3.610−7 - 3.210−7 2.3 3.310−7 6.610−7 9.910−7 - - 8.410−7 2.4 1.210−6 2.310−6 - - - 2.210−6 Table2.Column2to6:normalizationfactorsΦp,Γyieldingn =1,...,5HESEinIceCubevs.Γ.Thelast 0 p columnshowsthe90%C.L.upperlimitsforaΓ=2.0point-likesourcederivedfromANTARES[9].The valuesforΓ>2.0werederivedin[5].Thefirstvalueineachrowexcludedbytheselimitsisunderlined. (Γ(cid:39)2.4−2.5)isconsistentwiththetheoreticalmodelofCRinjectionbydiffusiveshockacceleration followedbyescapethroughtheGalacticmagneticfieldwithKolmogorovturbulence[8]. Thus, it is important to consider the normalization factors ΦD,Γ for the IC signal for different 0 models of cosmic fluxes EΓΦD,Γ(E) ≡ ΦD,Γ(E) (in units: GeV cm−2 s−1 sr−1. The D stands for 0 diffuse.) Thesamenumber N ofeventsfordifferentΦD,Γ(E)isobtainedusingtheeffectivearea IC A (E)≡[Aνe +Aνµ +Aντ]anddetectorlivetimeT: IC IC IC IC (cid:90) (cid:90) NIC =T · ΦD,Γ(E)·AIC(E)·dE·dΩ=4πT ·Φ0D,Γ· E−Γ·AIC(E)·dE =4πT ·Φ0D,Γ·DΓ. (1) TheintegralDΓ (thedetectorresponse)extendsovertheenergyrangewhere AIC(E)isnotnull,and iscomputednumerically. Letusassumethatn eventsoutofN areproducedbyapoint-likesourcewithgenericspectrum: p IC EΓΦp,Γ(E) = Φp,Γ (units: GeVcm−2s−1 .The pstandsfor point−like.) Thenormalizationfactor 0 Φp,Γnecessarytoproducen eventsisobtainedbyrequiringthat: 0 p (cid:90) (cid:90) np =T · Φp,Γ(E)·AIC(E)·dE =T ·Φ0p,Γ E−Γ·AIC(E)·dE =T ·Φ0p,Γ·DΓ (2) whereT, AIC(E)and, consequently, thedetectorresponseDΓ arethesameasinEq. (1). Then, the normalizationfactorforapoint-likesourcefluxofagivenspectralindexΓisgivenby: (cid:18) n (cid:19) Φp,Γ =4π· p ·ΦD,Γ. (3) 0 N 0 IC If a fraction n∆Ω of the IceCube signal is produced in a region of the Southern sky of angular extension ∆Ω (cid:28) 4π sr, and flux EΓΦD(cid:48),Γ(E) = ΦD(cid:48),Γ, the signal can be observed as an enhanced 0 diffuseflux. SimilarlytoEq. (3),usingthedetectorresponsederivedin(1),weobtain ΦD(cid:48),Γ =(cid:18)n∆Ω(cid:19)·(cid:18)4π(cid:19)·ΦD,Γ. (4) 0 N ∆Ω 0 IC 4 ANTARES constraints for the IC signal from the Southern sky Point-like sources. Table 2 reports the normalization factor Φp,Γ for a point-like source necessary 0 to produce n = 1÷5 HESE, as derived from Eq. (3). Four different values of Γ are considered. p RICAP-14TheRomaInternationalConferenceonAstroparticlePhysics units: (GeVcm−2s−1sr−1) ∆Ω ΦD(cid:48),Γ(fromHESE) ANTARES 0 (sr) Γ= n∆Ω =3 n∆Ω =4 n∆Ω =5 n∆Ω =6 sensitivity 0.06 2.0 3.510−7 4.610−7 5.810−7 7.010−7 3.110−7 2.2 4.510−6 6.010−6 7.510−6 9.010−6 3.610−6 2.3 1.710−5 2.210−5 2.810−5 3.310−5 1.110−5 2.4 5.910−5 7.810−5 9.810−5 1.210−4 3.410−5 Table3.Column3to6:NormalizationfactorsΦ0D(cid:48),Γforanenhanceddiffuseflux,obtainedassumingn∆Ω=3to 6HESEinacircularwindowof8◦(∆Ω=0.06sr).Inthelastcolumn,thevalueforΓ=2.0correspondstothe ANTARESsensitivitiesfromtheFBregions[11].ThesensitivitiesforΓ>2.0areobtainedin[5]. Point-likesourcesintheGalacticcentralregionweresearchedforbyANTARES[9]andupperlimits as a function of the source declination were derived assuming a spectral index Γ = 2.0. Following theproceduredefinedin[5],thethe90%C.L.upperlimitforapoint-likesourcehasbeentranslated toupperlimitsforsofterspectralindexes. TheANTARESresultsforΓ = 2.0intheGalacticCenter regionandthederivedvaluedforΓ =2.2,2.3and2.4arereportedinthelastcolumnofTable2. The ANTARES 90% C.L. upper limit excludes a single point-like source with Γ = 2.0 producing more than5HESE.Thederivedlimitexcludesasinglepoint-likesourceyieldingaclusterofmorethan2 eventsforΓ=2.3,whilethepresenceofaclustermadeoftwoormoreeventsisexcludedforΓ>2.3. Enhanceddiffuseflux. Table3(columnsfrom3to6)showsthenormalizationfactorsfromEq. (4), assumingn∆Ω =3÷6HESEwithinasolidangleregion∆Ω=2π(1−cosθ)correspondingtoacircular windowsofθ=8◦. TheANTARESstrategyforthestudyofanenhanceddiffusefluxisdifferentwith respecttothatforthesearchforpoint-likesources. Thislatterreliesmainlyonthepointingaccuracy of the telescope. The expected background due to atmospheric neutrinos within a circular windows ofθ (cid:46) 1◦ issmallandthisisnotanymoretrueforlargervaluesofθ. Astheenergyspectrumfroma cosmicsignal(eitherpoint-likeordiffuse)isexpectedtobeharderthanthatofatmosphericneutrinos, thesignalshouldexceedthebackgroundaboveacertainthresholdofthereconstructedenergy. Thus, thediscriminationbetweensignalandbackgroundneedstheuseoftheestimatedenergyoftheevent, similarlytothecaseofthesearchforadiffusefluxofhighenergyν [10]. µ ANTARES has used an Artificial Neural Network to estimate the energy of the muons entering thedetectorforstudyingtheFermibubbles(FB)[11]. ThereportedANTARESsensitivityinterms of an enhanced diffuse flux from the FB region, assuming a E2Φ(E) spectrum without cutoff up to thePeVenergiesis3.1×10−7GeVcm−2s−1sr−1. Intheanalysis,using806dayslivetime,16events werefound,withanexpectedbackgroundof11events. ForΓ = 2.0thebackgroundcorrespondsto 7.5events/(sr·y).Thederived90%C.L.upperlimitisE2ΦFB(E)=5.4×10−7GeVcm−2s−1sr−1.As thesensitivitydependsonthebackgroundrate,differentoptimizationsmustbededucedfordifferent spectralindexes;ingeneral,itcanbeassumedthatthebackgroundlevelslightlyincreasesforsofter spectralindexes[5]. ThesensitivitiesextrapolatedfromtheANTARESFBanalysisforΓ > 2.0are reportedinthelastcolumnofTable3. Accordingtothesevalues,adedicatedsearchforadirectional neutrino flux, for instance around the IC hot spot, would produce a positive result for any spectral indexesΓ≥2.0,if∆Ω≤0.06sr(orcircularwindowofθ <8◦)andn∆Ω >2. Forasignalspreadout onalargercircularwindow,theminimumsensitivitywouldcorrespondtoahighern∆Ω. Regionsoflargeangularsize(Fermibubbles,Galacticplane). Recentpredictionsoftheneutrino flux from the FB regions [12] allow to estimate the expected number of events for the IC detector EPJWebofConferences assuming the effective area of the HESE. By folding the predicted ν spectra with the ANTARES effectivearea,thenumberofν inducedeventsinANTARESwouldcorrespondto∼ 30%,50%and µ 100%oftheν +ν +ν HESEinthesamelivetime,forΓ=2.0,2.1and2.3,respectively. However, e µ τ thiscorrespondstoasmallerANTARESsensitivitywithrespecttoIC,duetothelargerbackground inducedbyatmosphericneutrinosfromthewideFBregion(∆Ω∼0.8sr). The excess of HESE events from the Galactic region could finally be produced by interaction during propagation of freshly injected CRs with spectral index Γ (cid:39) 2.4−2.5 [8]. The preliminary ANTARESupperlimitsfromtheGalacticplanearereportedin[13]. 5 Conclusions The ANTARES detector has sufficient sensitivity to test many models that explain a fraction of the HESEsampleinIceCubeintermsofaGalacticcomponent. Modelsinwhichmorethan2HESEare originatedfromapoint-likeandsteadysourceintheSouthernhemisphereareexcludedforspectral indexesΓ≥2.3.Thepossibilitythataclusteringofeventsisproducedinaregionofsmallangularsize (∆Ω(cid:39)0.1−0.2sr)in(ornear)theGalacticPlaneisunderinvestigationinANTARES.Asreportedin Table3,theestimatedANTARESsensitivityisbelowthesignallevel(allowingapositivedetection) foranyspectralindexesΓ≥2.0,if∆Ω≤0.06sr(i.e. acircularwindowofθ<8◦)andn∆Ω >2. Fora signalspreadoutonalargersolodangle,theminimumsensitivitywouldcorrespondtoahighern∆Ω. Forverylargeregions(theFB,theGalacticplane)thepresentsensitivitiesusingtheν channelalone µ areabovethemodelpredictions. Theinclusionofshoweringevents,witharelativelylooserangular precision,wouldsignificantlyincreasetheANTARESsensitivitiesforthestudyofextendedregions. Acknowledgments IwouldliketothankmanymembersoftheANTARESandKM3NeTCollaborationsforcomments andinparticularJ.BrunnerandA.Kouchner. References [1] M.G.Aartsenetal.[IceCubeColl.],Science342,1242856(2013) [2] M.G.Aartsenetal.[IceCubeColl.],Phys.Rev.Lett.113(2014)101101. [3] M.Spurio.ParticlesandAstrophysics.Springer(2014)ISBN978-3-319-08050-5. [4] M.G.Aartsenetal.[IceCubeColl.],Phys.Rev.D91,022001(2015);arXiv:1410.1749. [5] M.Spurio.Phys.Rev.D90(2014)10,103004 [6] M.Ageronetal.[ANTARESColl.],Nucl.Instrum.Meth.A656(2011)11. [7] S.Adrián-Martínezetal.[ANTARESColl.],TheAstrophysicalJournal,760(2012)53. [8] A.Neronov,D.Semikoz.arXiv:1412.1690[astro-ph.HE] [9] S.Adrián-Martínezetal.[ANTARESColl.],TheAstrophysicalJournalLetters,786:L5(2014). [10] J.A.Aguilaretal.[ANTARESColl.],Phys.Lett.B696,(2011)16. [11] S.Adrián-Martínezetal.[ANTARESColl.],Eur.Phys.J.C74(2014)2701. [12] C.Lunardinietal.,Phys.Rev.D90,023016(2014). [13] L.A.Fusco.Theseproceedings;E.Visser.Tobepubl.ontheproceed.ofECRS2014

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.