ebook img

Antarctic Radio Frequency Albedo and Implications for Cosmic Ray Reconstruction PDF

0.93 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Antarctic Radio Frequency Albedo and Implications for Cosmic Ray Reconstruction

Antarctic Radio Frequency Albedo and Implications for Cosmic Ray Reconstruction 1 D.Z.Bessona,J.Stockhama,M.Sullivana,P.Allisonb,e,S.W.Barwickd,B.M.Baughmane,J.J.Beattye,K.Belovc,S.Bevanf, 2 W.R.Binnsg,C.Chenh,P.Chenh,J.M.Clemi,A.Connollye,D.DeMarcoi,P.F.Dowkonttg,M.DuVernoisb,D.Goldsteind,P. 3 W.Gorhamb,E.W.Grashorne,B.Hillb,S.Hooverc,k,l,M.Huangj,M.H.Israelg,A.Javaidi,J.Kowalskib,J.Learnedb,K.M. 4 Liewerj,S.Matsunob,B.C.Mercurioe,C.Mikib,M.Mottramf,J.Namd,h,C.J.Naudetj,R.J.Nicholf,K.Palladinoe,A. 5 Romero-Wolfb,j,L.Ruckmanb,D.Saltzbergc,D.Seckeli,R.Y.Shangh,M.Stockhama,G.S.Varnerb,A.G.Viereggc,m,andY. 6 Wangh 7 8 aDepartmentofPhysicsandAstronomy,UniversityofKansas,Lawrence,Kansas66045,USA 9 bDept.ofPhysicsandAstronomy,UniversityofHawaiiatManoa,Honolulu,HI96822. 10 cDept.ofPhysicsandAstronomy,UniversityofCalifornia,LosAngeles,CA90095. 11 dDepartmentofPhysics,UniversityofCalifornia,Irvine,California92697,USA 12 eDepartmentofPhysics,OhioStateUniversity,Columbus,Ohio43210,USA 13 fDepartmentofPhysicsandAstronomy,UniversityCollegeLondon,London,UnitedKingdom 14 gDepartmentofPhysics,WashingtonUniversityinSt.Louis,Missouri63130,USA 15 hDepartmentofPhysics,NationalTaiwanUniversity,Taipei,Taiwan10617 16 iDepartmentofPhysics,UniversityofDelaware,Newark,Delaware19716,USA 17 jJetPropulsionLaboratory,Pasadena,California91109,USA 18 kKavliInstituteforCosmologicalPhysics,UniversityofChicago,5640SouthEllisAvenue,Chicago,IL60637 319 lEnricoFermiInstitute,UniversityofChicago,5640SouthEllisAvenue,Chicago,IL60637 120 mHarvard-SmithsonianCenterforAstrophysics,Cambridge,Massachusetts02138,USA 0 2 n a Abstract J21 8 From an elevation of ∼38 km, the balloon-borne ANtarctic Impulsive Transient Antenna (ANITA) is designed to detect the up- 22 1 coming radio frequency (RF) signal resulting from a sub-surface neutrino-nucleon collision. Although no neutrinos have been 23 discovered thus far, ANITA is nevertheless the only experiment to self-trigger on radio frequency emissions from cosmic-ray ]24 M inducedatmosphericairshowers. Inthemajorityofthosecases,down-comingRFsignalsareobservedviatheirreflectionfrom 25 theAntarcticicesheetandbackuptotheANITAinterferometer. Estimatingtheenergyscaleoftheincidentcosmicraystherefore I26 . requiresanestimateofthefractionalpowerreflectedattheair-iceinterface.Similarly,inferringtheenergyofneutrinosinteracting h27 in-icefromobservationsoftheupwards-directedsignalrefractingouttoANITAalsorequiresconsiderationofsignalcoherence p28 -29 acrosstheinterface. BycomparingthedirectSolarRFsignalintensitymeasuredwithANITAtothesurface-reflectedSolarsignal o intensity, as a function of incident elevation angle relative to the surface θ, we estimate the power reflection coefficients R(θ). r30 i i t WefindgeneralconsistencybetweenouraveragemeasurementsandthevaluesofR(θ)expectedfromtheFresnelequations[1], s31 i a32 separatelyforhorizontal-vs. vertical-polarizations(“HPol”and“VPol”,respectively). [ Keywords: radioglaciology,interferometry,cosmicrays 33 1 v 3 1. Introduction 234 4 1.1. TheANITAExperiment 435 . Initiatedin2003, theAntarcticImpulsiveTransientAntenna(ANITA)isaballoon-borneantennaarrayprimarilydesignedto 136 detect radio wave pulses caused by neutrino collisions with ice[2]. The basic instrument consists of a suite of 40 quad-ridged 037 338 hornantennas,optimizedoverthefrequencyrange200-1200MHz,withseparateoutputsforverticallyvs. horizontally-polarized 1 incident radio frequency signals, mounted to a high-altitude balloon. From an elevation of ∼38 km, the payload observes the 39 v:40 Antarctic continent in a circumpolar trajectory. Two one-month long missions (ANITA-I; Dec. 2006-Jan. 2007 and ANITA-II; i Dec. 2008-Jan. 2009) have yielded world’s-best limits to the flux of Ultra-High Energy (“UHE”, corresponding to energies in X41 excessof1019 eV)neutrinosintheenergyrangetowhichANITAissensitive[4,5]. Nevertheless,model-dependentcalculations 42 r ofsurfaceeffectsshowconsiderablevariationinthefractionofsignalpoweremergingfromwithinthedenseicetargetmedium a43 andacrosstheinterfacetothereceiver;thisisalsotrueforexperimentsseekingtomeasureneutrinointeractionswithinthelunar 44 regolith[6, 7, 8, 9]. An interferometric analysis of the ANITA-I data sample provided a statistically large (16 events) sample 45 of radio frequency signals attributed to the geomagnetic + Askaryan radiation associated with cosmic-ray induced extensive air 46 showers[12](EAS);thoseeventsmarkedthefirstself-triggereddetectionofEASviatheirradioemissions. 47 TheanalysisdescribedbelowisbasedonANITA-IIdata. AfterlaunchingfromMcMurdoStationinDecember,2008,ANITA- 48 IIwasaloftforaperiodof31dayswithatypicalinstantaneousdutycycleexceeding95%. Althoughtheexternalexperimental 49 conditions(livetimeandflightpath)weremorefavorableforANITA-IIthanforANITA-I,thesampleofdetectedextensiveair- 50 shower(EAS)eventswassomewhatsmallerforANITA-II,primarilyowingtoamodificationtothetriggerthatfavoredneutrino 51 detection, but, as realizedexpost facto, dis-favoredEAS detection[10]. TheANITA-IIIlaunch, scheduledforDecember, 2013, 52 is expected to result in an improvement by a factor of ∼100 in the number of detected air shower events relative to ANITA-I. 53 Correspondingly,wehavesoughttodeterminethesurfacereflectivityinadvanceofthatupcomingANITA-IIImission. 54 PreprintsubmittedtoAstroparticlePhysics January21,2013 1.2. ANITADataAcquisitionandSignalReceptionChain 55 TheANITAdetectorisdesignedtoefficientlycollectradiosignalovera1GHzbandwidth,withelectronicsandtriggerconfig- 56 uredtoproducetheminimumpossibleenergythreshold. Thefront-endSeaveyquad-ridgeantennasprovidethefirstelementin 57 theANITAradiowavesignalprocessingchain. ThesehornantennashaveseparateVPolvs. HPolsignalpolarizationreadouts, 58 andeachhasafield-of-viewofapproximately25◦half-width-half-maximum(FWHM)inbothazimuthangle(φ)andzenithangle 59 (θ). Following the Seavey antennas, high- and low-pass filtering restricts the system bandpass to 200–1200 MHz, after which 60 signalsaresplitintoa‘trigger’pathconsistingofaheirarchyoftriggerconditions(“levels”)anda‘digitization’path. Ifalllevels 61 ofthethree-tiered,heirarchicaltriggeraresatisfied,thedigitizedsignals,consistingof256voltagessampledforeachantennaat 62 2.6GSa/s,arethenstoredtodisk. DuringtypicalANITA-IIdata-takingconditions,datawerewrittenatarateofapproximately 63 10Hz. Theoverwhelmingmajorityofthesetriggersareduetoupwardexcursionsofthethermalradiophotosphere. 64 1.3. ANITAinterferometry 65 Beginningwiththeeighty100-nsdurationvoltagewaveformswhicharetakenduringanANITAeventtrigger(40antennas×2 66 polarizationsperantenna),familiarradiointerferometrytechniquesareusedtoidentifylocalizedradiosources. Todeterminethe 67 directionofanexternalimpulsivesource,thefullsolidangleisfirstdividedintoanN ×N grid(typically,180×360)inelevation 68 θ φ andazimuth,respectively. Next,aninter-channelcross-correlationsumiscalculatedforeachpointinthegrid,byshiftingcross- 69 correlatedwaveformsbytherelativepropagationtimedelaysthatwouldbeincurred,channel-by-channel,foraputativesourceat 70 that(θ,φ)gridpoint.Formally,thecross-correlationC,fortwochannelsiand jcanbewrittenasthedotproductofthevoltagetime 71 seriesforchanneliV(t)andthevoltagetimeseriesforchanneljV (t),shiftedbythecalculatedtimedelayδtS(θ,φ)corresponding 72 i j ij totheputativesourceS at(θ,φ),fortheNsamplesinthedotproduct(equaltothenumberofsamplesinthewaveformminusthe 73 numberoftimesamplescorrespondingtothetimeshiftδt ). Tominimizesensitivitytochannel-dependentgainvariations, this 74 ij cross-correlationcoefficientisnormalizedrelativetothermsvoltagesinthetwochannelsσ(V)andσ(V ): 75 i j (cid:88)N (cid:113) c = VS(t )VS(t +δtS)/ σ(V)σ(V ) (1) ij i n j n ij i j n=1 Inthelimitofastrongsourcewhichdominatesthe100-nswaveform,thecross-correlationriseslinearlywithsignalvoltageVS, 76 since σ(V) ∼ VS. In the limit of a very weak source, σ(V) is largely independent of VS and the cross-correlation increases 77 quadraticallywithsignalvoltage. Thehighsignal-to-noise(SNR)eventsthatcomprisetheANITAEASsamplecorrespondtothe 78 formercase. TheSolarsignaldescribedbelowcorrespondstothelattercase, andtherefore, inthecaseofsignalsfromtheSun, 79 thecross-correlationcoefficientscaleswiththeradiopowerreceived. Thetotalcross-correlationCiscalculatedbysummingover 80 all independent (i, j) pairs. The polar and azimuthal angles of a putative source are then assigned to that grid pixel giving the 81 highest total cross-correlation C. More extensive details on the construction of the ANITAinterferometric map can be found in 82 theliterature[11]. 83 An obvious design goal of ANITA is to localize sources with the best-possible pointing resolution. Unlike source vertexing 84 algorithms using hit-time assignments from threshold-crossings, interferometry is particularly suited for continuous-wave (CW) 85 sources. As illustrated by Monte Carlo simulations (Fig. 1), the interferometric reconstruction resolution improves, roughly 86 linearly,withthefrequencyofthesource. Alternately,theangularsizeoftheinterferometricimageprovidesinformationonthe 87 sourcefrequencycontent,withwiderimagesimplyingpowerspectraweightedpreferentiallytolowerfrequencies. 88 Adisconetransmitter,buriedapproximately100mintotheicesheetataremotesitenearTaylorDome,hasbeenusedtoassess 89 theinteferometricsourcereconstructionresolutionforsignalswithbroadfrequencycontent. Forthattransmitter,weobtainvalues 90 of0.25degreesinelevationand0.56degreesinazimuthfortheANITA-IIflight. Forcomparison,theintrinsicSolarradiosource 91 sizeisoforder1degreeinthesky. 92 1.4. ANITARadioAirShowerObservations 93 A maximum likelihood analysis of the 16 ANITA-I EAS detections implied a mean energy of 1.5±0.4(stat)+2.0(sys)×1019 94 −0.3 eV for the cosmic ray primary[12], with the highest primary estimated at an energy approximately equal to the GZK-scale[13] 95 of ∼ 6 × 1019eV. Agreement in the spectral characteristics between the two cosmic rays incident in the six degree elevation 96 rangebetweenpayloadhorizontalθP=0andtheEarth’shorizonatθP = −6◦,comparedtothe14cosmicraysobservedviatheir 97 reflections,indicatethatsurfaceroughnesseffectsarenotlarge,albeitwithverylimitedstatistics. Thatsamplewassupplemented 98 with an additional four reflected events observed with ANITA-II. Interestingly, two of the ANITA-II events featured reflection 99 pointsconsistentwithseaice, forwhichthedielectriccontrastrelativetotheair, andthereforethefractionalreflectedpower, is 100 expectedtobelargercomparedtoreflectionsfromsheetice. Usingthecoordinateconventiontobefollowedlaterinthispaperfor 101 comparingintensitymeasurementstoexpectationsfromtheFresnelequations,withthesignalangleofincidenceθ definedrelative 102 i toatangentonthesurface, theincidenceanglesfortheANITAradio-reflectedEASsampleisshowninFigure2. Fromsimple 103 solid angle considerations (dΩ ∼ cosθdθ), we expect the acceptance to decrease with elevation angle. Additionally, since the 104 antennasarecantedat-10degreesrelativetothepayloadhorizontal,largevaluesofθareincreasinglyexperimentallysuppressed. 105 Correspondingly,theobservedEASsampleisprimarilydetectedintheangularrangeθ(cid:46)25degrees. 106 2 Figure1:Interferometricmapforsimulated200,400,600,and800MHzcontinuous-wavesourceat(θSP,φS=0,0). Figure2:Elevationangleθi,relativetothehorizon,forthe14ANITA-I,and4ANITA-IIcosmicrayeventsobservedviatheirradioemissions.Indicateddistances areestimated. 3 2. SurfaceRoughness,GeneralConsiderations 107 AccordingtotheRayleighcriterion,themagnitudeofvariationinsurfaceheighth,asmeasuredalongthelineoftheincoming 108 radar must satisfy the condition hcos(φ) < 0.125 (φ here denotes the “look angle”) for the surface to be considered ’smooth’. 109 L Inthelimitofperfectsmoothness(h → 0,correspondingto“specularreflection”),theFresnelequationsprescribethefractional 110 reflectedsignalintensity,asafunctionofincidenceangleθ. Deviationsfromsmoothnessresultinaθ-dependentredistribution 111 i i of the reflected signal power. Depending on the geometry of the surface features, the wavelength, and the dielectric constrast 112 acrossasurface,surfaceroughnesscantranslateintoeitheranenhancement,orreductioninthemagnitudeofreflectedpower,and 113 correspondinglyananti-correlatedreductionorenhancementintheamountofpowertransmittedacrossthesurface. 114 3. AntarcticSurfaceReflectivity 115 3.1. VisibleFrequencies 116 The polar albedo is one of the crucial inputs to climate models, given its importance in determining the thermal equilibrium 117 between Earth and Sun. Since the Solar power spectrum peaks in the visible, measurements of Solar reflectivity have typically 118 focusedonthe3900-6600Åregime[14]. Atsuchscales,sastrugieffectsdominate,asafunctionoflookangleφ relativetothe 119 L sastrugialignment. Long-termstudies(particularlyatSouthPoleStation)haveestablishedperiodicvariationsintheSolaralbedo 120 inthevisiblewavelengthinterval,over∼5yeartimescales[15].Suchmeasurementscanalsobeusedasaproxyforwinddirection 121 measurements[16],totheextentthatalbedoobservationsprobewind-blownsastrugiorientation. 122 3.2. PriorMeasurementsatLowerFrequencies 123 The Earth has, to date, been extensively mapped in the Ku-band (12-18 GHz)[17, 18] and also in the lower-frequency C- 124 band(2–4GHz),mostrecently,andmostcomprehensivelybytheCanadian-basedRADARSATsatellites. Theserelativelyhigh 125 frequencies,andcorrespondinglysmallwavelengthscomparedtothetypicalscaleofsurfacefeaturesprobenotonlypure‘surface’ 126 features,butalsosub-surfacevolumetricscatteringdueto,e.g.,buriedsastrugi. Theabsolute(/relative)RADARSATsignalreturn 127 strength calibration of 2 dB(/1 dB) is sufficient to map the backscattering power across the Antarctic continent (Fig. 3), which 128 exhibits variations of order 20 dB. Those results are qualitatively consistent with the Envisat satellite Ku-band backscatter[19], 129 albeitwithsomelargedeviations,particularlyaroundtheRossIceShelf. 130 The Envisat C-band backscattering results generally follow the trend shown in Figure 4, but with the C-band backscattering 131 strengthoverWestAntarcticareducedby∼2-5dB;thebackscatteringsignalinEastAntarcticaisingeneralagreementwiththe 132 Ku-bandscatteringtowithin2-3dB. Figure 3: RADARSAT Ku-band backscattering coefficient σ0. Maximumcontrastcorrespondstoavariationofalmost20dBin measuredreflectedpower[17]. Nocorrectionshavebeenmadefor lookangleeffects. Figure4:EvisatKu-bandbackscatteringcoefficient[19],inunitsof dB.Nocorrectionshavebeenmadeforlookangleeffects. 133 Comparable data are not readily available at the higher frequencies of interest to the ANITA mission, although the precision 134 of three-dimensional satellite maps of the entire Antarctic continent, such as those provided by LandSat, is now approaching 135 dekameterscales.ProposalsarenowunderconsiderationtoconvertphotographicimagescollectedduringtraversesoftheAntarctic 136 interiorintosurfaceroughnessmaps,althoughthosewouldalsosampleonlyaverylimitedfractionoftheAntarcticterrain. 137 Using the dedicated Taylor Dome discone transmitter, a previous ANITA-I study found reasonable agreement between the 138 measuredradiofrequencysignalstrengthatthegondolaandtheexpectationfromSnell’sLaw,knowingtherelativegeometryof 139 ANITA-I and the Taylor Dome calibration pulser (Figure 5), albeit over a very limited angular range. That study indicates that 140 4 2 Figure5: MeasuredANITA-Icalibrationpulserreceivedsignalvoltage(datapoints),comparedtosignalvoltageswithoutinclusionofFresnelfactors(labeled “a/r”and“A0/r”),andwithinclusionofestimatedFresneltransmissioncoefficientacrossice-airinterface((A0/r)*Fresnel). surface roughness effects within that range, and in that portion of the continent, are not large. A direct measurement of surface 141 heightvariation[2]attheTaylorDomecalibrationpulsersite,aswellasstudiesoflocalradio-frequencypropagationthroughthe 142 surface[3],alsoimpliedonlymodestsurfaceroughnessRFeffects,forthatonegeographicallylimitedsite. 143 4. InterferometryAppliedtoSolarImaging 144 Absentburstsorflares,theSunconvenientlyprovidestheANITAmissionanuninterrupted,unpolarized,(relatively)constant 145 powercalibrationsource. However, sincetheSolaremissionsintheANITAbandpassaretypicallysub-thresholdrelativetothe 146 ANITAtriggerrequirements, theSolarimageisonlyclearlyvisibleafteraddingmanyinterferometricimagesinanheliocentric 147 coordinatesystem. Forourcurrentanalysis,weadd∼103−104events,excludingtriggerscontaininghighsignal-to-noisesources 148 toelucidatetheSolarsignal. 149 Toillustratetheexpectedsignals,Figures6and7showsimulatedinterferometricmaps,forwhichasinglepointsource,with 150 a flat frequency spectrum, has been modeled at the indicated elevation angle. Although reflection effects are absent from these 151 maps,weneverthelessobservesomefringingcharacteristicofANITAinterferograms,andresultingfromregularlateralorvertical 152 spacing of the ANITA horn receiver antennas. We note that for a source at a payload elevation θP, fringing tends to produce 153 S an enhancement at an elevation angle typically a few degrees below −θP and therefore contributes some contamination to our 154 S measured reflection power, with a magnitude that grows with θP, requiring a small correction to our raw, extracted reflection 155 S signals. 156 Fig. 8showstheimageoftheSunbothinverticalandhorizontalpolarizationsindata,afterco-adding10000events,acquired 157 over a time of approximately 20 minutes. During that time, the Sun typically moves 0.5 degrees in the sky. As the Sun has no 158 intrinsicpolarization,weexpectapproximatelyequalsourceintensitiesineachpolarization,consistentwithobservation. Wenote 159 the presence of fringe effects in the interferometric map; such background effects are additionally complicated by the celestial 160 proxmityofthegalacticcentertotheSunitself. OverthecourseoftheANITA-IIflight,SagittariusA*isapproximately5degrees 161 higher in elevation relative to the Sun, and within 25 degrees in azimuth, crossing the Solar azimuth roughly midway into the 162 flight. 163 4.1. Cross-checkofmeasurementprocedure 164 We have conducted cross-checks to verify the numerical veracity of the interferometric technique, as applied to the Sun, as 165 follows. 166 4.1.1. VariationofSolarsignalstrengthwithtime 167 ForastationarysummerobserveratlatitudesbelowtheAntarcticcircle,theSunisexpectedtotraceasinusoidacrossthesky 168 overadiurnalperiod. Weobserveanobvious24-hourcycleofSolarsourceintensity(Figure9),astrackedforan8-dayperiodof 169 theflightfollowingtheballoon’slaunchfromMcMurdoStation. 170 4.1.2. AntennaGainvs. Elevation 171 Overthecourseofatypicalone-monthDec.-Jan. Long-DurationBalloon(LDB)Antarcticmission,theSun’selevationinthe 172 sky,relativetothepayload“horizontal”θ ,variesbetween10and40degrees,andthereforeallowsanin-flightdetermination 173 payload ofthepolarbeampatternfortheANITAdual-polarizationquad-ridgedhornantennas. Figure10overlaysthedependenceofthe 174 peak interferometric Solar power (defined as the magnitude of the highest-amplitude pixel in the Solar interferometric map) on 175 5 Figure6: Interferometricmapforsimulatedsourceat10,15,and Figure7:Interferometricmapforsimulatedsourceat25,30,and35 20degreepayloadelevations, andprojectionsontoelevationaxis degreepayloadelevations(left),andprojectionsontoelevationaxis (right).Colorscalehasunitsof(Voltage)2. (right).Colorscalehasunitsof(Voltage)2. Figure8: Interferograms(top,VPolandbottom,HPol)formedbytrackingthelocationoftheSunfor10000events. Normalizationisidenticalforbothtopand bottomplots. Forthisplot,weusepayloadcoordinates,forwhichthehorizontalplaneisdefinedas0◦,withelevationanglestowardsthezenith/(nadir)defined aspositive/(negative). InterferogramsarestackedtoaccountforboththemotionoftheSun,aswellasthetranslationalmotionoftheANITAgondolaacrossthe Earth’ssurfaceandtherotationalmotionsofANITArelativetoitsverticalandhorizontalaxes.HorizontalfringesmoreevidentinVPolareconsistentwitheffects duetothewarm/coldice/airdiscontinuityatthehorizon,indicatedbysolidblacklineatθP=−6degrees. 6 Figure9:Solarsignalstrengthasafunctionofnumberofhoursintoflight.Normalizationisidenticalforbothtopandbottomplots. Solar elevation, compared with the expectation from a simple Gaussian parametrization of the Seavey horn beam pattern. We 176 observe that the Solar interferometric map can be used, in-flight, to calibrate the off-axis beam pattern to an accuracy of a few 177 degrees. 178 4.1.3. SolarPowerasafunctionofFrequency 179 Figure 11 shows the absolute spectral power measured at two terrestrial observatories[20, 21], averaged over the time period 180 comprisedbytheANITA-IImission. OverlaidonthatgraphisthedirectSolarpower,asmeasuredinterferometricallybyANITA- 181 II.Weobservereasonableagreementintheshapeofthetwospectra. 182 5. MeasurementofSurfaceRadioReflectivityR 183 5.1. Geometry 184 As indicated in Figure 2, the typical displacement between the ANITA balloon and the surface reflection point is of order 185 hundreds of km. For a sub-sample of data spaced out over the duration of the ANITA-II flight, Fig. 12 shows the latitude and 186 longitudeofboththegondolaandalsotheicesurfacereflectionlocationontheicesurfacecalculatedusingtheknowngondolaand 187 Solarpositionsatthetimeofeacheventtrigger,andtakingintoaccountEarthcurvatureeffects. TheANITAflightpathsamples 188 theinterioricesheet,aswellasshelficeandsomeseaiceatlatitudeslowerthantheRossIceShelf. 189 5.2. QuantitativeTechnique 190 SimilartoFigure8,wecancreateanenhancedradiofrequencyreflectedSolarimagebyaddingmanyevents.However,whereas 191 Figure8isobtainedbycorrectingeachinterferogram,event-by-event,forboththeballoonmotionaswellasthecelestialmotion 192 of the Sun to maintain coherence of the direct Solar image, proper accounting of the reflection requires correcting for balloon 193 motion as well as the motion of the Solar reflection point across the ice surface. Although the location of the Solar reflection 194 onthesurfaceisobviouslycloselycorrelatedtothedirectSolarmotioninazimuth,andalsocloselyanti-correlatedtothedirect 195 Solarmotioninelevation,correctionsduetolocalEarthcurvature,surfaceelevationandtheviewinganglerelativetothesurface 196 caneasilysmearthereflectionimagebyanamountexceedingtheintrinsicexpectedSolarbeamspotsize(∼1degree)andmust 197 thereforebecarefullytrackedasthereflectionimagesarestacked. Wenotethatlarge-scalevariationsinsurfaceslopegradientsin 198 Antarcticatypicallyoccuroverhundredsofkm,andconstitute,atmost,a0.1degreesmearingfortheanalysispresentedbelow. 199 For this analysis, to determine the relative reflected:direct observed signal strength, we fit the direct and reflected peaks to 200 Gaussianfunctions,andtaketheintegralunderourGaussiansignalparametrizationasourprimaryestimateofthesignalpower. 201 Figures13and14showthefitstotheone-dimensionalprojectionsofthereflection-stackedinterferometricmapscorrespondingto 202 Fig.8,fromwhichweextractsignalestimates. Forsimplicity,wehavecenteredtheSolarimageinthecenterofthegraphsshown. 203 As a cross-check, we have also performed a second, independent analysis, which uses the maximum amplitude pixel in the 204 interferometricmap,inthevicinityoftheknownSolar,orreflectedlocationinthesky,asameasureofthesignalintensity. This 205 technique works well for cases of high signal to noise, which is true for the HPol reflected signal, but becomes decreasingly 206 7 Figure 11: Solar intensities measured at two Solar observatories inLearmonth, Australia(opencircles)andTrieste, Italy(crosses) comparedtothefrequencybandedSolarintensitiesretrievedfrom theinterferograms(Hpol,opentrianglesandVpol,opensquares). TheTriestedataarecorrectedforlatitudeoftheobservations. The ANITA data are obtained from interferograms filtered into five bands (200-400 MHz, 400-600 MHz, 600-800 MHz, 800-1000 Figure10:Parametrizedantennagainofvaryingbeamwidth(lines) MHz,1000-1200MHz);pointsareplacedatthecenterfrequency compared to relative Solar intensities extracted from Hpol (top) ofeachband. Foreachband,weusethesamesampleof8000co- and Vpol (bottom) interferograms. Color scale indicates number addedeventtriggers. Normalizationshavebeensettobeapproxi- ofeventsobservedatagivenpointingraph. matelyequalat200MHz. Figure12:IllustrationoftypicalgeometryofANITA-IIgondolarelativetosurfacereflectionpoint.ANITA-IIlocationssampledduringflightareshownforsingle events.Redpointscorrespondtoballoonlocation;eachassociatedlinepointstothereflectionlocationontheicesurface. 8 Figure 13: Sample fit to projection of HPol, Sun-centered Solar Figure14: SamplefitofprojectionofVPol,Sun-centeredinterfer- interferometricmapontoelevationaxis,aftercutting±10degrees ometricmapontoelevationaxis,aftercutting±10degreesaround around φ = 0. Fit includes two Gaussian-shaped signals, corre- φ = 0. FitincludestwoGaussian-shapedsignals, corresponding spondingtodirectSolarsignalandreflectedsurfacereflection,plus todirectSolarsignalandreflectedsurfacereflection,plussecond- second-orderpolynomialtoapproximatenon-zerobackgroundun- orderpolynomialtoapproximatenon-zerobackgroundunderGaus- derGaussiansignals. siansignals. reliabile for low signal-to-noise; correspondingly, we have only applied this cross-check to the HPol case. Fig. 15 displays the 207 averageratioRoftheSolarradioreflectionpowerrelativetothedirectSolarimage,forbothverticalaswellashorizontalantenna 208 polarizations,includingallantennagaincorrections,asafunctionofthereflectionangleoftheSolarimageofftheEarth’ssurface, 209 relativetotheballoon. AlsoshowninFig. 15aretheexpectedFresnelreflectionpowercoefficients,assumingspecularreflection 210 off the Antarctic surface, and taking the index of refraction of the surface snow to be n = 1.35. We note that the gain 211 surface correctionsatlargeincidenceanglebecomequitelargeforthedirectSolarsignal,asindicatedinFigure16. 212 WealsonotethattheverticalspreadofpointsrelativetotheFresnelexpectationinFigure15isapproximatelyafactorofthree 213 largerthantheverticalspreadofpointsshowninFigure10,indicatingthatthesystematicerrorsforextractingthesignalamplitude 214 oftheweakersurfacereflectionareconsiderablylargerthanthesignalestimationuncertaintiesinherentintheinterferometricmaps 215 themselves. 216 5.3. Interpretation 217 Overall,weobservereasonableagreementbetweentheexperimentalpointsandtheexpectationforspecularreflection.However, 218 we observe an apparent excess, most pronounced for VPol, of the received signal relative to the expectation from the Fresnel 219 equations, at higher angles. In particular, we do not observe the predicted signal dimunition (approaching zero signal strength) 220 attheBrewsterangle, whichcanbeattributedtosomecombinationofa)theresultofsurfaceroughnesseffects, whichresultin 221 non-zero signal at the Brewster angle, b) under-accounting of the effects of fringing, c) the asymmetry in the ANITA-II event 222 trigger,whichtendstofavorthermalexcursionsofVPoloverHPol,andd)anunder-accountingofthecross-polarizationisolation 223 between VPol and HPol. Such cross-polarization effects are, in principle, accounted for in Figure 15, but with the assumption 224 thatthecross-polarizationisconstantasafunctionoffrequencyandoff-boresightangle. Ourresultssuggestthatisolationmaybe 225 pooreratlargeoff-boresightanglesandincreasingwithfrequency. 226 Rigoroussimulationofsurfaceeffectsisbeyondthescopeofthiscurrentwork,requiringmoreextensivedatasamplesonthe 227 centimeter-scale and shape of the surface features, as well as a cpu-intensive integration across the Antarctic surface. We here 228 noteonlythatasimple-mindedtwo-dimensionalmodelcomprisinganaveragesurfaceslopeof0.2radianswithaGaussianpower 229 spectrumcan,atleast,reproducetheessentialfeaturesofourVPolobservation,favoringaslightdeficitofsignalatlowincident 230 anglesrelativetothebaselineexpectation,andanexcessatlargerincidenceangles(Fig. 17). 231 5.4. Cross-check: Comparisonofreflectedintensityoverseaicevs. shelfice 232 Thereflectedsignalsignalstrengthataninterfacedependsonthedielectriccontrastbetweentheairandthereflectinglayer.The 233 Solarimagereflectedoffseaice,havingrelativelyhighersaltcontent,shouldbebrighterthantheSolarimagereflectedoffsheet 234 ice. As illustrated in Figure 18, we correspondingly note the largest enhancement in the reflected signal strength in the coastal 235 regionbeyondtheRossIceShelf,consistentwithexpectation. 236 9 Figure15:RatioofANITA-IImeasuredreflectedSolarpowertodirectly-receivedSolarpower,asafunctionofincidentelevationangle,forbothHPolandVPol antennas.OverlaidarealsocalculatedvaluesasobtainedfromdirectapplicationoftheFresnelequationstocalculatetheexpectedreflectedsignalpowerR. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.