Antarctic Meteorology Astudy with Automatic WeatherStations Carleen Reijmer Cover: Aerialphotograph of the Heimefrontfjellaand Automatic Weather Stations 5(photo’sbytheauthor)and4(photobyDanZwartz). Back: drawingcourtesyof Pinguinxl,http://www.pinguinxl.nl/ Antarctic Meteorology Astudy with Automatic WeatherStations Antarctische Meteorologie Eenstudiemetautomatischeweerstations (meteensamenvattinginhetNederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van deRectorMagnificus,Prof. Dr. W.H.Gispen,ingevolgehetbesluitvanhetCollege voor Promoties in het openbaar te verdedigenop maandag24 september2001des middagste12.45uur. door Catharina Helena Reijmer geborenop21Januari1974,tePannerden. Promotor: Prof. Dr. J.Oerlemans faculteitNatuur-enSterrenkunde,UniversiteitUtrecht This thesis is a contribution to the ”EuropeanProject for Ice Coring in Antarctica” (EPICA), a joint ESF (European Science Foundation) / EC scientific programme, fundedbytheEuropeanCommissionundertheEnvironmentandClimateProgram- me (1994-1998)contract ENV4-CT95-0074and by national contributions from Bel- gium,Denmark,France,Germany,Italy,theNetherlands,Norway,Sweden,Switzer- landandtheUnitedKingdom.AdditionalsupportwasprovidedbytheNetherlands AntarcticResearchProgramme(NARP)whichiscoordinatedbyNetherlandsEarth andLifeSciencesFoundation(ALW)oftheNetherlandsOrganizationforScientific Research(NWO). ISBN:90-393-2802-1 Contents Summary iii 1 Introduction 1 1.1 Background:climatechanges . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 TheEuropeanProjectforIceCoringinAntarctica . . . . . . . . . . . . 4 1.3 TheAutomaticWeatherStations . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Trajectorystudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 SurfacealbedomeasurementsoversnowandblueiceinTMbands2and4 inDronningMaudLand,Antarctica 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Experimentalsetupandmeteorologicalconditions . . . . . . . . . . . . 18 2.3 Narrowandbroadbandalbedoofblueiceandsnow . . . . . . . . . . . 19 2.4 Bidirectionalreflectanceofblueiceandsnow . . . . . . . . . . . . . . . 27 2.5 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 The annual cycle of meteorological variables and surface energy balance onBerknerIsland,Antarctica 35 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Locationandexperimentalset-up . . . . . . . . . . . . . . . . . . . . . . 36 3.3 Meteorologicalconditions . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4 Thesurfaceenergybalance . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5 Summaryandconcludingremarks . . . . . . . . . . . . . . . . . . . . . 52 4 MeteorologicalconditionsinDronningMaudLand,EastAntarctica 55 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2 Locationandexperimentalset-up . . . . . . . . . . . . . . . . . . . . . . 56 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Summaryandconcludingremarks . . . . . . . . . . . . . . . . . . . . . 75 ii CONTENTS 5 ThetemporalandspatialvariabilityofthesurfaceenergybalanceinDron- ningMaudLand,EastAntarctica 77 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.2 Locationandexperimentalset-up . . . . . . . . . . . . . . . . . . . . . . 79 5.3 Prevailingmeteorologicalconditions . . . . . . . . . . . . . . . . . . . . 80 5.4 Modeldescriptionandvalidation . . . . . . . . . . . . . . . . . . . . . . 83 5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.7 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6 MoisturesourcesofprecipitationinWesternDronningMaudLand,Antarc- tica 99 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2 TheAutomaticWeatherStations . . . . . . . . . . . . . . . . . . . . . . 101 6.3 Thetrajectorymodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.4 Modelandmeasurementcomparison . . . . . . . . . . . . . . . . . . . 103 6.5 Trajectoriesin1998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.6 Casestudy: amajorsnowfalleventinMay1998 . . . . . . . . . . . . . 111 6.7 Summaryandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7 Air parcel trajectories to five deep drilling locations on Antarctica, based ontheERA-15dataset 119 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.2 Thetrajectorymodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.3 Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.4 Resultsoftrajectorycalculations . . . . . . . . . . . . . . . . . . . . . . 127 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Bibliography 139 Samenvatting 149 Dankwoord 155 Listofpublications 157 CurriculumVitae 159 Summary Thisthesischieflyaddressesa)theuseofAutomaticWeatherStations(AWS)inde- termining the near-surfaceclimate and heat budget of Antarctica and, specifically, DronningMaudLand(DML),andb)thedeterminationofsourceregionsofAntarc- ticmoisturewiththeaidofatrajectorymodelandanatmosphericmodel. Thepri- marymotivationbehindthisinterestisthedrillingoftwoicecoresintheAntarctic ice sheet within the framework of the European Project for Ice Coring in Antarc- tica(EPICA).Athoroughknowledgeofthemeteorologicalconditions willincrease ourunderstandingoftheprocessesthatinfluencethesurfacemassbalanceandheat budget. In Chapter 2, ground-basedobservations of broadband, narrowband, and bidi- rectionalreflectanceareusedtostudythealbedoofblueiceandsnow. Duringsum- mer, surface albedo plays an important role in the amount of heat exchanged be- tweenthesurfaceandtheatmosphere.Themainobjectiveofthestudyistoimprove the methods used to derivesurfacealbedo from satellite measurements andarrive atabetterunderstandingoftheprocessesinfluencingthemagnitudeofthealbedo. Chapters3,4and5describethe dataobtainedfromten AWSinAntarcticaand how they wereused to determine the local surfaceenergy budget. The AWSwere placedontwotransectsperpendiculartothecoastlineinDMLandoneonBerkner Island. As expected, mainly the strength of the katabatically forced flow, in com- binationwith the geostrophic flow, determinesthe near-surfaceconditions atthese locations. Thekatabaticflowvariesinstrengthdependingonthemagnitudeofsur- faceslopeandtemperatureinversion, andisnotactiveonBerknerIsland,astation onatopographicdome. InDML,thestrengthofthekatabaticflowvaries,resulting inmaximumwind speedsandpotentialtemperaturesatthesiteswith thesteepest slopes, at the edge of the Antarctic plateau. The annual mean wind speed varies between 4 ms , near the coast and on the plateau, to 7 ms , on the edge of the (cid:1)(cid:1) (cid:1)(cid:1) plateau. The annual mean potential temperature varies between -18 C and -1 C. Æ Æ The annual mean temperature ranges from -16 C in the coastal area, where occa- Æ sional melt occurs, to -46 C on the Antarctic plateau. Owing to the low temper- Æ atures, the specific humidity is very low. Accumulation is highest in the coastal regions and decreases with increasing elevation and distance from the coast, from 400mmwaterequivalentperyear(w.e. yr )nearthecoastto 30mmw.e.yr (cid:1)(cid:1) (cid:1)(cid:1) (cid:1)ontheplateau. (cid:1) iv Summary TheAWSdata,togetherwithamodelbasedonMonin-Obukhov similaritythe- ory, areusedto calculatethe surfaceenergybudgetforthe measuring period. The strengthofthekatabaticflowlargelydeterminesnotonlythenear-surfacemeteoro- logical conditions but also the surface energy budget. The annual average energy gainatthesurfacefromthedownwardsensibleheatfluxvariesbetween 3Wm (cid:1)(cid:2) to25Wm ,withthehighestvaluesatthesiteswiththehighest winds(cid:1)peedsand (cid:1)(cid:2) potentialtemperatures. Thenegativenetradiativefluxlargelybalancesthesensible heat flux and ranges from 2Wm to 28Wm . The averagelatent heat flux is (cid:1)(cid:2) (cid:1)(cid:2) generally small and negati(cid:1)ve ( -1 Wm ), indicating mass loss through sublima- (cid:1)(cid:2) tion. Theannualsubsurfaceflu(cid:1)xesaresmall( -0.2Wm ). (cid:1)(cid:2) InChapters6and7,moisturesourcesofs(cid:1)now fallingatfivedeep-drillingloca- tionsinAntarctica(Byrd,DML05,DomeC,DomeFandVostok)aredefined,based on five-day backward air parcel trajectories calculated from data of the European CentreforMediumRange WeatherForecasts. Basedon model precipitation, adis- tinctionismadebetweencaseswithandwithoutsnowfallatthepointofarrival.Of thesnowfalltrajectoriesendingatDML05in1998,40-80%originateintheAtlantic Ocean between 40 and 60 S, within four days before arrival. Evaporation along Æ these trajectories is largest during the first half. A case study for May 1998shows thatduringsnowfallexceptionallyhightemperaturesandwindspeedsprevailinthe atmosphericboundarylayer. ThetrajectoriesfromtheECMWFRe-analysisProject (ERA-15)covera15-yearperiodandshowthattheoceansclosesttothefivedrilling sitescontributemost ofthemoisture. Thelatitudebandcontributingmost ( 30%) ofthetotalannualprecipitationisat50-60 S,theareajustnorthoftheseaice(cid:1)edge. Æ Thecalculatedtrajectoriesshow seasonaldependency,resultingin aseasonalcycle inthemoisturesources,whichisfurtherenhancedbyaseasonalcycleintheamount ofprecipitation. Chapter 1 Introduction 1.1 Background: climate changes In the history of the Earth, the climate has changed considerably numerous times (Dansgaardetal.,1993;GreenlandIce-coreProject(GRIP)Members,1993;Petitetal., 1999). The variability in the Earth’s climate system is causedby naturalvariations infactorssuchassolarinsolation,oceancurrentsandatmosphericcompositiondue to,forexample,volcaniceruptions. Duringthelastcentury,climatehasbeenaddi- tionallyinfluencedbyanthropogenicsources,e.g.,CO andmethaneemissionsfrom fossilfuelburning.Thesensitivityoftheclimatesystem(cid:2) tochangesin,e.g.,insolation oratmosphericconstituents,differsperregion.Climatestudieshaveshownthatthe polarregionsaremoresensitivetoclimaticchangesthanotherregionsowingtothe albedo feedback mechanism (Oerlemans and Bintanja, 1995). Viewed in this light, theAntarcticandGreenlandicesheetsareinterestingregionstostudy,alsobecause of their potential contribution to sea level rise. The Greenlandice sheet represents a potential sea level rise of 7 m and complete melting of the Antarctic ice sheet wouldraisethesealevelby (cid:1)60m.Incomparison,thefreshwaterstoredinglaciers andsmallicecapsrepresent(cid:1)sapotentialsealevelriseof 0.5m(IPCC,1995). Notonlythe(changing)conditionsonthesurfaceofth(cid:1)eGreenlandandAntarctic icesheetsyieldvaluableinformation,theiceitselfalsocontainsawealthofhistoric climate information. Data pertaining to past climate and state of the local atmo- sphere,suchastemperature,chemicalcompositionandatmosphericcirculation,are storedintheice.Owingtotheconsiderablethicknessoftheice(3000to4000m)and the low accumulation rate, the length of the recordsthat can be obtained is on the orderof150to500kyr.Theserecordsincludeseveralglacial-interglacialcycles(Petit etal.,1999).Togainaccesstotheseclimaterecords,severaldeepicecoreshavebeen drilledintheAntarcticandGreenlandicesheet, e.g.,Vostok, Byrd,DomeF,Taylor dome (Antarctica),GreenlandIce CoreProject (GRIP and North GRIP) andGreen- land Ice Sheet Project (GISPII) (see for example Greenland Ice-core Project (GRIP) Members(1993);Dome-F Ice CoreResearch Group (1998b);Petit et al. (1999);Mul- vaney et al. (2000)). These ice cores have provided insight in the climate at these 2 Chapter1.Introduction -410 a ‰) -420 s ( -430 s ce -440 x m e -450 u -460 uteri -470 De -480 -490 300 b 280 v) m 260 p p (2 240 O C 220 200 180 0 50 100 150 200 250 300 350 400 Age (kyr BP) Figure1.1. Timeseriesof(a)deuteriumexcessand(b)CO intheVostokicecore,Antarctica (Petitetal.,1999).CO ispresentedinpartspermillionvolu(cid:1)me(ppmv). (cid:1) locations over the past 150 to 400 kyr, through the isotope composition of the ice itself, the presenceof other elements in the ice, and the composition of airbubbles enclosed in the ice. Figure 1.1 presents an example of records obtained from the Vostokicecore,Antarctica.Deuteriumexcessisoftenusedasaproxyforairtemper- atureandrepresentsalocalsignal. CO isstoredintheairbubblesandmarksglobal variationsinatmosphericcomposition(cid:2). Theinterpretationoftheobtainedrecordsis,however,notstraightforward. The climatic record is of little value unless the age of the ice is known as a function of depth. Counting annuallayersis themost exactmethodof determiningthe ageof theice. Whentheannuallayersaretoothinandthedatesofvolcanicashhorizons not well known or no volcanic horizons are present, dating the ice relies on com- parison with other dated climate recordsand ice flow modelling (Patterson, 1994). Thisintroducesadditionaluncertaintiesandcanresultincompletelydifferentinter- pretations of ice core records(Mulvaney et al., 2000). A further problem is how to relatetheobtainedrecordsof, e.g.,isotope content (e.g.,hydrogenandoxygen iso- topes)andgascomposition(suchasCO andCH )tothestateoftheatmosphereat agivenpointintime. Theclimaterecord(cid:2)edinice(cid:3)coresismainlydeterminedbythe localsnowfallconditionsandbytheoriginoftheairandmoisture.Theconditionsin whichsnowfalloccursneednotrepresentthemeanconditionsatthatpoint(Noone andSimmonds,1998;Nooneetal.,1999).Severalfactors,suchaschangesinseason- alityofsnowfallandchangesinmoisturesourceregions(Jouzeletal.,1997;Werner etal.,2000),maybiastheicecorerecord. Thestable-isotoperatiosofhydrogen( D)andoxygen( O)intheiceareexam- (cid:1)(cid:4) plesofhow icerecordsarerelatedto climÆatesignalsandaÆreoftenusedasaproxy for temperature (Petit et al., 1999). In Antarcticice core records, temperatureis of-
Description: