ebook img

ANSYS Mechanical APDL Theory Reference PDF

988 Pages·2013·20.43 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ANSYS Mechanical APDL Theory Reference

ANSYS Mechanical APDL Theory Reference ANSYS, Inc. Release 15.0 Southpointe November 2013 275 Technology Drive Canonsburg, PA 15317 ANSYS, Inc. is [email protected] certified to ISO 9001:2008. http://www.ansys.com (T) 724-746-3304 (F) 724-514-9494 Copyright and Trademark Information © 2013 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited. ANSYS, ANSYS Workbench, Ansoft, AUTODYN, EKM, Engineering Knowledge Manager, CFX, FLUENT, HFSS and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. ICEM CFD is a trademark used by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product, service and feature names or trademarks are the property of their respective owners. Disclaimer Notice THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFID- ENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS.The software products and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions.The software products and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions of that software license agreement. ANSYS, Inc. is certified to ISO 9001:2008. U.S. Government Rights For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use, duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc. software license agreement and FAR 12.212 (for non-DOD licenses). Third-Party Software See the legal information in the product help files for the complete Legal Notice for ANSYS proprietary software and third-party software. If you are unable to access the Legal Notice, please contact ANSYS, Inc. Published in the U.S.A. Edited by: Peter Kohnke, Ph.D. Table of Contents 1. Introduction............................................................................................................................................ 1 1.1. Purpose of the Theory Reference....................................................................................................... 1 1.2. Understanding Theory Reference Notation........................................................................................ 2 1.3. Applicable Products.......................................................................................................................... 3 2. Structures................................................................................................................................................ 5 2.1. Structural Fundamentals................................................................................................................... 5 2.1.1. Stress-Strain Relationships........................................................................................................ 5 2.1.2. Orthotropic Material Transformation for Axisymmetric Models.................................................. 9 2.1.3.Temperature-Dependent Coefficient of Thermal Expansion..................................................... 10 2.2. Derivation of Structural Matrices..................................................................................................... 12 2.3. Structural Strain and Stress Evaluations........................................................................................... 15 2.3.1. Integration Point Strains and Stresses..................................................................................... 15 2.3.2. Surface Stresses..................................................................................................................... 16 2.3.3. Shell Element Output............................................................................................................. 16 2.4. Combined Stresses and Strains........................................................................................................ 18 2.4.1. Combined Strains................................................................................................................... 18 2.4.2. Combined Stresses................................................................................................................. 19 2.4.3. Failure Criteria........................................................................................................................ 20 2.4.3.1. Maximum Strain Failure Criteria..................................................................................... 20 2.4.3.2. Maximum Stress Failure Criteria..................................................................................... 22 2.4.3.3.Tsai-Wu Failure Criteria................................................................................................... 23 2.4.3.4. Physical Failure Criteria.................................................................................................. 24 2.4.3.4.1. Hashin Fiber Failure Criterion................................................................................ 24 2.4.3.4.2. Hashin Matrix Failure Criterion.............................................................................. 24 2.4.3.4.3. Puck Fiber Failure Criterion ([401])......................................................................... 24 2.4.3.4.4. Puck Matrix Failure Criterion ([401])....................................................................... 24 2.4.3.4.5. LaRc03 Fiber Failure Criterion ([402])...................................................................... 25 2.4.3.4.6. LaRc03 Matrix Failure Criterion ([402]).................................................................... 26 2.4.3.4.7. LaRc04 Fiber Failure Criterion ([403])...................................................................... 26 2.4.3.4.8. LaRc04 Matrix Failure Criterion ([403]).................................................................... 27 3. Structures with Geometric Nonlinearities............................................................................................ 29 3.1. Understanding Geometric Nonlinearities......................................................................................... 29 3.2. Large Strain.................................................................................................................................... 29 3.2.1.Theory .................................................................................................................................. 30 3.2.2. Implementation..................................................................................................................... 31 3.2.3. Definition of Thermal Strains.................................................................................................. 33 3.2.4. Element Formulation.............................................................................................................. 34 3.2.5. Applicable Input .................................................................................................................... 35 3.2.6. Applicable Output.................................................................................................................. 35 3.3. Large Rotation................................................................................................................................ 35 3.3.1.Theory ................................................................................................................................... 35 3.3.2. Implementation..................................................................................................................... 36 3.3.3. Element Transformation......................................................................................................... 36 3.3.4. Deformational Displacements................................................................................................ 37 3.3.5. Updating Rotations................................................................................................................ 39 3.3.6. Applicable Input .................................................................................................................... 39 3.3.7. Applicable Output.................................................................................................................. 39 3.3.8. Consistent Tangent Stiffness Matrix and Finite Rotation........................................................... 39 3.4. Stress Stiffening.............................................................................................................................. 41 3.4.1. Overview and Usage.............................................................................................................. 41 Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. iii Theory Reference 3.4.2.Theory ................................................................................................................................... 41 3.4.3. Implementation..................................................................................................................... 44 3.4.4. Pressure Load Stiffness........................................................................................................... 46 3.4.5. Applicable Input .................................................................................................................... 47 3.4.6. Applicable Output.................................................................................................................. 47 3.5. Spin Softening................................................................................................................................ 47 3.6. General Element Formulations........................................................................................................ 50 3.6.1. Fundamental Equations ......................................................................................................... 51 3.6.2. Classical Pure Displacement Formulation................................................................................ 52 3.6.3. Mixed u-P Formulations.......................................................................................................... 54 3.6.4. u-P Formulation I.................................................................................................................... 56 3.6.5. u-P Formulation II................................................................................................................... 58 3.6.6. u-P Formulation III.................................................................................................................. 59 3.6.7.Volumetric Constraint Equations in u-P Formulations.............................................................. 59 3.7. Constraints and Lagrange Multiplier Method................................................................................... 60 4. Structures with Material Nonlinearities................................................................................................ 63 4.1. Understanding Material Nonlinearities............................................................................................ 63 4.2. Rate-Independent Plasticity............................................................................................................ 64 4.2.1.Theory ................................................................................................................................... 65 4.2.2.Yield Criterion........................................................................................................................ 65 4.2.3. Flow Rule............................................................................................................................... 68 4.2.4. Hardening Rule...................................................................................................................... 68 4.2.5. Plastic Strain Increment.......................................................................................................... 70 4.2.6. Implementation..................................................................................................................... 72 4.2.7. Elastoplastic Stress-Strain Matrix............................................................................................. 73 4.2.8. Specialization for Hardening................................................................................................... 74 4.2.9. Specification for Nonlinear Isotropic Hardening...................................................................... 75 4.2.10. Specialization for Bilinear Kinematic Hardening.................................................................... 76 4.2.11. Specialization for Multilinear Kinematic Hardening............................................................... 78 4.2.12. Specialization for Nonlinear Kinematic Hardening................................................................. 80 4.2.13. Specialization for Anisotropic Plasticity................................................................................. 81 4.2.14. Hill Potential Theory............................................................................................................. 81 4.2.15. Generalized Hill Potential Theory.......................................................................................... 83 4.2.16. Specialization for Drucker-Prager.......................................................................................... 87 4.2.16.1. Classic Drucker-Prager Model....................................................................................... 87 4.2.16.2. Extended Drucker-Prager Model.................................................................................. 89 4.2.17. Extended Drucker-Prager Cap Model.................................................................................... 90 4.2.17.1. Shear Failure Envelope Function.................................................................................. 91 4.2.17.2. Compaction Cap Function........................................................................................... 92 4.2.17.3. Expansion Cap Function.............................................................................................. 92 4.2.17.4. Lode Angle Function.................................................................................................... 93 4.2.17.5. Hardening Functions................................................................................................... 94 4.2.18. Gurson's Model.................................................................................................................... 96 4.2.19. Gurson Plasticity with Isotropic/Chaboche Kinematic Hardening......................................... 100 4.2.20. Cast Iron Material Model..................................................................................................... 101 4.3. Rate-Dependent Plasticity (Including Creep and Viscoplasticity)..................................................... 105 4.3.1. Creep................................................................................................................................... 105 4.3.1.1. Definition and Limitations............................................................................................ 106 4.3.1.2. Calculation of Creep.................................................................................................... 106 4.3.1.3.Time Step Size............................................................................................................. 108 4.3.2. Rate-Dependent Plasticity ................................................................................................... 108 4.3.2.1. Perzyna Option............................................................................................................ 109 Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information iv of ANSYS, Inc. and its subsidiaries and affiliates. Theory Reference 4.3.2.2. Peirce Option............................................................................................................... 109 4.3.2.3. Exponential Visco-Hardening (EVH) Option.................................................................. 109 4.3.2.4. Anand Viscoplasticity Option....................................................................................... 109 4.3.3. Extended Drucker-Prager (EDP) Creep Model........................................................................ 112 4.3.3.1. EDP Inelastic Strain Rate Decomposition...................................................................... 113 4.3.3.2. EDP Yielding and Hardening Conditions....................................................................... 114 4.3.3.3. EDP Creep Measurements............................................................................................ 114 4.3.3.4. EDP Equivalent Creep Stress......................................................................................... 115 4.3.3.5. EDP Elastic Creep and Stress Projection........................................................................ 116 4.3.4. Cap Creep Model.................................................................................................................. 117 4.3.4.1. Assumptions and Restrictions...................................................................................... 118 4.3.4.2. Functions and Potentials.............................................................................................. 118 4.3.4.3. Cap Zones................................................................................................................... 118 4.3.4.4. Equivalent Creep Stress................................................................................................ 119 4.3.4.4.1. Equivalent Creep Stress in the Compaction Zone................................................. 120 4.3.4.5. Elastic Creep and Stress Projection............................................................................... 121 4.3.4.6. Commands Used for Cap Creep ................................................................................... 121 4.4. Gasket Material............................................................................................................................. 121 4.4.1. Stress and Deformation........................................................................................................ 122 4.4.2. Material Definition ............................................................................................................... 122 4.4.3.Thermal Deformation........................................................................................................... 123 4.5. Nonlinear Elasticity....................................................................................................................... 123 4.5.1. Overview and Guidelines for Use.......................................................................................... 123 4.6. Hyperelasticity.............................................................................................................................. 124 4.6.1. Finite Strain Elasticity............................................................................................................ 125 4.6.2. Deviatoric-Volumetric Multiplicative Split............................................................................. 127 4.6.3. Isotropic Hyperelasticity....................................................................................................... 127 4.6.3.1.Arruda-Boyce Model ..................................................................................................... 127 4.6.3.2.Blatz-Ko Model............................................................................................................. 128 4.6.3.3.Extended Tube Model.................................................................................................... 128 4.6.3.4.Gent Model.................................................................................................................. 128 4.6.3.5.Mooney-Rivlin.............................................................................................................. 129 4.6.3.6.Neo-Hookean............................................................................................................... 130 4.6.3.7.Ogden Compressible Foam Model.................................................................................. 130 4.6.3.8.Ogden Potential ........................................................................................................... 131 4.6.3.9.Polynomial Form.......................................................................................................... 131 4.6.3.10.Yeoh Model................................................................................................................ 132 4.6.4. Anisotropic Hyperelasticity................................................................................................... 132 4.6.5. USER Subroutine.................................................................................................................. 133 4.6.6. Output Quantities................................................................................................................ 134 4.6.7. Hyperelasticity Material Curve Fitting.................................................................................... 134 4.6.7.1. Uniaxial Tension (Equivalently, Equibiaxial Compression).............................................. 137 4.6.7.2. Equibiaxial Tension (Equivalently, Uniaxial Compression).............................................. 138 4.6.7.3. Pure Shear................................................................................................................... 138 4.6.7.4.Volumetric Deformation .............................................................................................. 139 4.6.7.5. Least Squares Fit Analysis............................................................................................. 140 4.6.8. Experimental Response Functions ........................................................................................ 140 4.6.9. Material Stability Check........................................................................................................ 142 4.7. Bergstrom-Boyce .......................................................................................................................... 142 4.8. Mullins Effect ............................................................................................................................... 144 4.8.1.The Pseudo-elastic Model..................................................................................................... 145 4.9.Viscoelasticity............................................................................................................................... 146 Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. v Theory Reference 4.9.1. Small Strain Viscoelasticity.................................................................................................... 146 4.9.2. Constitutive Equations......................................................................................................... 146 4.9.3. Numerical Integration .......................................................................................................... 148 4.9.4.Thermorheological Simplicity............................................................................................... 149 4.9.5. Large-Deformation Viscoelasticity......................................................................................... 150 4.9.6.Visco-Hypoelasticity............................................................................................................. 150 4.9.7. Large-Strain Visco-Hyperelasticity......................................................................................... 151 4.9.8. Large-Strain Visco-Anisotropic Hyperelasticity....................................................................... 153 4.9.9. Shift Functions..................................................................................................................... 153 4.9.9.1.Williams-Landel-Ferry Shift Function............................................................................ 153 4.9.9.2.Tool-Narayanaswamy Shift Function............................................................................. 153 4.9.9.3.Tool-Narayanaswamy Shift Function with Fictive Temperature...................................... 153 4.9.9.4. User-Defined Shift Function......................................................................................... 154 4.10. Concrete..................................................................................................................................... 155 4.10.1.The Domain (Compression - Compression - Compression)................................................... 156 4.10.2.The Domain (Tension - Compression - Compression)........................................................... 159 4.10.3.The Domain (Tension - Tension - Compression)................................................................... 160 4.10.4.The Domain (Tension - Tension - Tension)............................................................................ 160 4.11. Swelling...................................................................................................................................... 162 4.12. Cohesive Zone Material (CZM) Model.......................................................................................... 162 4.12.1. Interface Elements.............................................................................................................. 163 4.12.1.1. Material Model - Exponential Behavior....................................................................... 163 4.12.1.2. Material Model - Bilinear Behavior.............................................................................. 165 4.12.1.3.Viscous Regularization............................................................................................... 169 4.12.2. Contact Elements............................................................................................................... 169 4.12.2.1. Material Model - Bilinear Behavior.............................................................................. 169 4.13. Fluid Material Models.................................................................................................................. 174 4.13.1. Liquid ................................................................................................................................ 174 4.13.2. Gas .................................................................................................................................... 175 4.13.3. Pressure-Volume Data ........................................................................................................ 176 5. Electromagnetics ................................................................................................................................ 177 5.1. Electromagnetic Field Fundamentals............................................................................................. 177 5.1.1. Magnetic Scalar Potential..................................................................................................... 180 5.1.2. Solution Strategies............................................................................................................... 180 5.1.2.1. RSP Strategy................................................................................................................ 182 5.1.2.2. DSP Strategy................................................................................................................ 182 5.1.2.3. GSP Strategy................................................................................................................ 183 5.1.3. Magnetic Vector Potential..................................................................................................... 184 5.1.4. Limitation of the Node-Based Vector Potential...................................................................... 185 5.1.5. Edge-Based Magnetic Vector Potential ................................................................................. 187 5.1.6. Harmonic Analysis Using Complex Formalism....................................................................... 187 5.1.7. Nonlinear Time-Harmonic Magnetic Analysis........................................................................ 189 5.1.8. Electric Scalar Potential......................................................................................................... 190 5.1.8.1. Quasistatic Electric Analysis......................................................................................... 191 5.1.8.2. Electrostatic Analysis................................................................................................... 192 5.2. Derivation of Electromagnetic Matrices......................................................................................... 193 5.2.1. Magnetic Scalar Potential..................................................................................................... 193 5.2.1.1. Degrees of freedom..................................................................................................... 193 5.2.1.2. Coefficient Matrix........................................................................................................ 193 5.2.1.3. Applied Loads ............................................................................................................. 193 5.2.2. Magnetic Vector Potential..................................................................................................... 194 5.2.2.1. Degrees of Freedom.................................................................................................... 194 Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information vi of ANSYS, Inc. and its subsidiaries and affiliates. Theory Reference 5.2.2.2. Coefficient Matrices..................................................................................................... 194 5.2.2.3. Applied Loads ............................................................................................................. 195 5.2.3. Edge-Based Magnetic Vector Potential.................................................................................. 196 5.2.4. Electric Scalar Potential......................................................................................................... 199 5.2.4.1. Quasistatic Electric Analysis......................................................................................... 199 5.2.4.2. Electrostatic Analysis................................................................................................... 200 5.3. Electromagnetic Field Evaluations................................................................................................. 200 5.3.1. Magnetic Scalar Potential Results.......................................................................................... 200 5.3.2. Magnetic Vector Potential Results......................................................................................... 201 5.3.3. Edge-Based Magnetic Vector Potential.................................................................................. 202 5.3.4. Magnetic Forces................................................................................................................... 203 5.3.4.1. Lorentz forces.............................................................................................................. 203 5.3.4.2. Maxwell Forces............................................................................................................ 204 5.3.4.2.1. Surface Integral Method...................................................................................... 204 5.3.4.2.2.Volumetric Integral Method ................................................................................ 205 5.3.4.3.Virtual Work Forces...................................................................................................... 205 5.3.4.3.1. Element Shape Method....................................................................................... 206 5.3.4.3.2. Nodal Perturbation Method................................................................................ 206 5.3.5. Joule Heat in a Magnetic Analysis......................................................................................... 207 5.3.6. Electric Scalar Potential Results............................................................................................. 207 5.3.6.1. Quasistatic Electric Analysis......................................................................................... 207 5.3.6.2. Electrostatic Analysis ................................................................................................... 209 5.3.7. Electrostatic Forces............................................................................................................... 209 5.4. Stranded Coil Analyses.................................................................................................................. 210 5.4.1. Governing Equations............................................................................................................ 210 5.4.2. A-VOLT-EMF Formulation...................................................................................................... 211 5.4.3. A-CURR Formulation............................................................................................................. 213 5.5. Inductance, Flux and Energy Computation..................................................................................... 214 5.5.1. Differential Inductance Definition......................................................................................... 214 5.5.2. Review of Inductance Computation Methods........................................................................ 215 5.5.3. Inductance Computation Method Used................................................................................ 216 5.5.4.Transformer and Motion Induced Voltages............................................................................ 216 5.5.5. Absolute Flux Computation.................................................................................................. 217 5.5.6. Inductance Computations.................................................................................................... 217 5.5.7. Absolute Energy Computation.............................................................................................. 218 5.6. Electromagnetic Particle Tracing.................................................................................................... 219 5.7. Capacitance Computation............................................................................................................. 220 5.8. Conductance Computation........................................................................................................... 222 5.9. Hall Effect..................................................................................................................................... 224 6. Heat Flow............................................................................................................................................. 227 6.1. Heat Flow Fundamentals............................................................................................................... 227 6.1.1. Conduction and Convection................................................................................................. 227 6.1.2. Radiation ............................................................................................................................. 230 6.1.2.1.View Factors................................................................................................................ 231 6.1.2.2. Radiation Usage .......................................................................................................... 234 6.2. Derivation of Heat Flow Matrices................................................................................................... 235 6.3. Heat Flow Evaluations................................................................................................................... 236 6.3.1. Integration Point Output...................................................................................................... 236 6.3.2. Surface Output..................................................................................................................... 237 6.4. Radiation Matrix Method............................................................................................................... 237 6.4.1.View Factor Calculation (2-D): Radiation Matrix Method......................................................... 238 6.4.1.1. Non-Hidden Method ................................................................................................... 238 Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. vii Theory Reference 6.4.1.2. Hidden Method........................................................................................................... 239 6.4.2.View Factors of Axisymmetric Bodies.................................................................................... 240 6.4.3. Space Node.......................................................................................................................... 241 6.5. Radiosity Solution Method............................................................................................................ 241 6.5.1.View Factor Calculation (3-D): Hemicube Method.................................................................. 243 7. Fluid Flow............................................................................................................................................ 245 7.1. Squeeze Film Theory..................................................................................................................... 245 7.1.1. Flow Between Flat Surfaces.................................................................................................. 245 7.1.2. Flow in Channels.................................................................................................................. 249 7.2. Slide Film Theory........................................................................................................................... 250 8. Acoustics ............................................................................................................................................. 253 8.1. Acoustic Fundamentals................................................................................................................. 253 8.1.1. Governing Equations............................................................................................................ 253 8.1.2. Finite Element Formulation of the Wave Equation................................................................. 255 8.2. Derivation of Acoustic Matrices..................................................................................................... 256 8.3. Propagation, Radiation, and Scattering of Acoustic Pressure Waves................................................. 257 8.3.1. Acoustic Boundary Conditions.............................................................................................. 257 8.3.2. Absorbing Boundary Condition (ABC)................................................................................... 259 8.3.3. Perfectly Matched Layers (PML)............................................................................................ 262 8.3.4. Acoustic Excitation Sources.................................................................................................. 264 8.3.4.1. Specified Pressure or Normal Velocity on the Domain Boundary................................... 264 8.3.4.2. Mass Source in the Wave Equation ............................................................................... 264 8.3.4.3. Analytic Wave Sources................................................................................................. 265 8.3.5. Sophisticated Acoustic Media............................................................................................... 268 8.3.5.1. Non-uniform Acoustic Media....................................................................................... 269 8.3.5.2. Equivalent Fluid of Perforated Materials....................................................................... 269 8.3.5.2.1. Johnson-Chapoux-Allard Model.......................................................................... 269 8.3.5.2.2. Delany-Bazley and Miki Models........................................................................... 271 8.3.5.2.3. Complex Media Properties.................................................................................. 272 8.3.5.3. Impedance Sheet Approximation................................................................................. 273 8.3.5.4.Viscous-Thermal Media................................................................................................ 273 8.3.5.4.1. Boundary Layer Impedance (BLI) Model............................................................... 273 8.3.5.4.2. Low Reduced Frequency (LRF) Model.................................................................. 274 8.4. Acoustic Fluid-Structural Interaction (FSI)...................................................................................... 276 8.4.1. Coupled Acoustic Fluid-Structural System with an Unsymmetric Matrix Equation................... 276 8.4.2. Coupled Acoustic Fluid-Structural System with Symmetric Matrix Equation for Full Harmonic Analysis........................................................................................................................................ 278 8.4.3. Coupled Acoustic Fluid-Structural System with Symmetric Matrix Equation for Lossless Modal Analysis........................................................................................................................................ 279 8.5. Pure Scattered Pressure Formulation............................................................................................. 280 8.6. Acoustic Output Quantities........................................................................................................... 282 8.7.Transfer Admittance Matrix........................................................................................................... 285 8.7.1.Transfer Admittance Matrix Connected to Acoustic Domains................................................. 286 8.7.2.Transfer Admittance Matrix Connected to the Structural and Acoustic Domain...................... 286 9. Diffusion.............................................................................................................................................. 289 9.1. Diffusion Fundamentals................................................................................................................ 289 9.2. Normalized Concentration Approach............................................................................................ 290 9.3. Derivation of Diffusion Matrices.................................................................................................... 290 9.4. Diffusion Analysis Results.............................................................................................................. 291 10. Coupling............................................................................................................................................ 293 10.1. Coupled Effects........................................................................................................................... 293 10.1.1. Elements............................................................................................................................ 293 Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information viii of ANSYS, Inc. and its subsidiaries and affiliates. Theory Reference 10.1.1.1. Advantages ............................................................................................................... 294 10.1.1.2. Disadvantages........................................................................................................... 294 10.1.2. Coupling Methods.............................................................................................................. 294 10.1.2.1.Thermal-Structural Analysis........................................................................................ 296 10.1.2.2. Magneto-Structural Analysis (Vector Potential)........................................................... 297 10.1.2.3. Magneto-Structural Analysis (Scalar Potential)............................................................ 297 10.1.2.4. Electromagnetic Analysis........................................................................................... 298 10.1.2.5. Stranded Coil Analysis................................................................................................ 298 10.1.2.6. Electro-Thermo-Structural Analysis ............................................................................ 299 10.1.2.7. Electro-Magneto-Thermo-Structural Analysis ............................................................. 299 10.1.2.8. Electro-Magneto-Thermal Analysis............................................................................. 300 10.1.2.9. Piezoelectric Analysis................................................................................................. 300 10.1.2.10. Electroelastic Analysis.............................................................................................. 301 10.1.2.11.Thermo-Piezoelectric Analysis.................................................................................. 301 10.1.2.12. Piezoresistive Analysis.............................................................................................. 302 10.1.2.13.Thermo-Pressure Analysis......................................................................................... 303 10.1.2.14. Acoustic-Structural Analysis..................................................................................... 303 10.1.2.15.Thermo-Electric Analysis.......................................................................................... 303 10.1.2.16. Magnetic-Thermal Analysis...................................................................................... 304 10.1.2.17. Circuit-Magnetic Analysis......................................................................................... 304 10.1.2.18. Structural-Diffusion Analysis .................................................................................... 304 10.1.2.19.Thermal-Diffusion Analysis....................................................................................... 305 10.1.2.20. Structural-Thermal-Diffusion Analysis....................................................................... 305 10.2.Thermoelasticity ......................................................................................................................... 309 10.3.Thermoplasticity......................................................................................................................... 312 10.4. Piezoelectrics.............................................................................................................................. 313 10.5. Electroelasticity........................................................................................................................... 317 10.6. Piezoresistivity............................................................................................................................ 318 10.7.Thermoelectrics .......................................................................................................................... 319 10.8. Review of Coupled Electromechanical Methods........................................................................... 321 10.9. Porous Media Flow...................................................................................................................... 322 10.10. Structural-Diffusion Coupling.................................................................................................... 323 11. Shape Functions................................................................................................................................ 327 11.1. Understanding Shape Function Labels......................................................................................... 327 11.2. 2-D Lines .................................................................................................................................... 328 11.2.1. 2-D Lines without RDOF...................................................................................................... 329 11.2.2. 2-D Lines with RDOF........................................................................................................... 329 11.3. 3-D Lines .................................................................................................................................... 329 11.3.1. 3-D 2-Node Lines (Not Combining Translations and Rotations)............................................. 329 11.3.2. 3-D 2-Node Lines (Combining Translations and Rotations)................................................... 330 11.3.3. 3-D 3-Node Lines................................................................................................................ 330 11.3.4. 3-D 4-Node Lines................................................................................................................ 331 11.4. Axisymmetric Shells.................................................................................................................... 331 11.4.1. Axisymmetric Shell without ESF.......................................................................................... 331 11.5. Axisymmetric Harmonic Shells and General Axisymmetric Surfaces.............................................. 332 11.5.1. Axisymmetric Harmonic Shells............................................................................................ 332 11.5.1.1. Axisymmetric Harmonic Shells without ESF................................................................ 332 11.5.1.2. Axisymmetric Harmonic Shells with ESF..................................................................... 333 11.5.2. General Axisymmetric Surfaces........................................................................................... 333 11.6. 3-D Shells.................................................................................................................................... 335 11.6.1. 3-D 3-Node Triangular Shells without RDOF (CST)................................................................ 336 11.6.2. 3-D 6-Node Triangular Shells without RDOF (LST)................................................................ 336 Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. ix Theory Reference 11.6.3. 3-D 3-Node Triangular Shells with RDOF but without SD...................................................... 337 11.6.4. 3-D 4-Node Quadrilateral Shells without RDOF and without ESF (Q4)................................... 337 11.6.5. 3-D 4-Node Quadrilateral Shells without RDOF but with ESF (QM6)...................................... 338 11.6.6. 3-D 8-Node Quadrilateral Shells without RDOF.................................................................... 338 11.6.7. 3-D 4-Node Quadrilateral Shells with RDOF but without SD and without ESF....................... 339 11.6.8. 3-D 4-Node Quadrilateral Shells with RDOF but without SD and with ESF............................. 339 11.7. 2-D and Axisymmetric Solids....................................................................................................... 339 11.7.1. 2-D and Axisymmetric 3-Node Triangular Solids (CST)......................................................... 340 11.7.2. 2-D and Axisymmetric 6-Node Triangular Solids (LST).......................................................... 340 11.7.3. 2-D and Axisymmetric 4-node Quadrilateral Solid without ESF (Q4)..................................... 341 11.7.4. 2-D and Axisymmetric 4-node Quadrilateral Solids with ESF (QM6)...................................... 341 11.7.5. 2-D and Axisymmetric 8-Node Quadrilateral Solids (Q8)...................................................... 342 11.7.6. 2-D and Axisymmetric 4-Node Quadrilateral Infinite Solids.................................................. 343 11.7.6.1. Lagrangian Isoparametric Shape Functions................................................................ 343 11.7.6.2. Mapping Functions.................................................................................................... 343 11.7.7. 2-D and Axisymmetric 8-Node Quadrilateral Infinite Solids.................................................. 344 11.7.7.1. Lagrangian Isoparametric Shape Functions................................................................ 344 11.7.7.2. Mapping Functions.................................................................................................... 344 11.8. Axisymmetric Harmonic Solids.................................................................................................... 344 11.8.1. Axisymmetric Harmonic 3-Node Triangular Solids............................................................... 345 11.8.2. Axisymmetric Harmonic 6-Node Triangular Solids............................................................... 345 11.8.3. Axisymmetric Harmonic 4-Node Quadrilateral Solids without ESF........................................ 346 11.8.4. Axisymmetric Harmonic 4-Node Quadrilateral Solids with ESF............................................. 346 11.8.5. Axisymmetric Harmonic 8-Node Quadrilateral Solids........................................................... 346 11.9. 3-D Solids................................................................................................................................... 347 11.9.1. 4-Node Tetrahedra.............................................................................................................. 347 11.9.2. 10-Node Tetrahedra............................................................................................................ 348 11.9.3. 5-Node Pyramids................................................................................................................ 348 11.9.4. 13-Node Pyramids.............................................................................................................. 349 11.9.5. 6-Node Wedges without ESF............................................................................................... 350 11.9.6. 6-Node Wedges with ESF.................................................................................................... 351 11.9.7. 15-Node Wedges................................................................................................................ 351 11.9.8. 8-Node Bricks without ESF.................................................................................................. 352 11.9.9. 8-Node Bricks with ESF....................................................................................................... 353 11.9.10. 20-Node Bricks................................................................................................................. 354 11.9.11. 8-Node Infinite Bricks........................................................................................................ 355 11.9.11.1. Lagrangian Isoparametric Shape Functions.............................................................. 355 11.9.11.2. Mapping Functions.................................................................................................. 356 11.9.12. 3-D 20-Node Infinite Bricks............................................................................................... 357 11.9.12.1. Lagrangian Isoparametric Shape Functions.............................................................. 357 11.9.12.2. Mapping Functions.................................................................................................. 358 11.9.13. General Axisymmetric Solids............................................................................................. 358 11.9.13.1. General Axisymmetric Solid with 4 Base Nodes......................................................... 360 11.9.13.2. General Axisymmetric Solid with 3 Base Nodes......................................................... 360 11.9.13.3. General Axisymmetric Solid with 8 Base Nodes......................................................... 360 11.9.13.4. General Axisymmetric Solid with 6 Base Nodes......................................................... 361 11.10. Electromagnetic Tangential Vector Elements.............................................................................. 361 11.10.1.Tetrahedral Elements........................................................................................................ 362 11.10.2. Hexahedral Elements........................................................................................................ 363 12. Element Tools.................................................................................................................................... 365 12.1. Element Shape Testing................................................................................................................ 365 12.1.1. Overview ........................................................................................................................... 365 Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information x of ANSYS, Inc. and its subsidiaries and affiliates.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.