ebook img

ANSYS FLUENT 14.0 Theory Guide PDF

826 Pages·2016·24.75 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ANSYS FLUENT 14.0 Theory Guide

ANSYS FLUENT Theory Guide ANSYS, Inc. Release 14.0 Southpointe November 2011 275 Technology Drive Canonsburg, PA 15317 ANSYS, Inc. is [email protected] certified to ISO http://www.ansys.com 9001:2008. (T) 724-746-3304 (F) 724-514-9494 Copyright and Trademark Information © 2011 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited. ANSYS, ANSYS Workbench, Ansoft, AUTODYN, EKM, Engineering Knowledge Manager, CFX, FLUENT, HFSS and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. ICEM CFD is a trademark used by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product, service and feature names or trademarks are the property of their respective owners. Disclaimer Notice THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFID- ENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS.The software products and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions.The software products and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions of that software license agreement. ANSYS, Inc. is certified to ISO 9001:2008. U.S. Government Rights For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use, duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc. software license agreement and FAR 12.212 (for non-DOD licenses). Third-Party Software See the legal information in the product help files for the complete Legal Notice for ANSYS proprietary software and third-party software. If you are unable to access the Legal Notice, please contact ANSYS, Inc. Published in the U.S.A. Table of Contents Using This Manual..................................................................................................................................... xxv 1.The Contents of This Manual............................................................................................................. xxv 2.The Contents of the FLUENT Manuals............................................................................................... xxvi 3.Typographical Conventions............................................................................................................ xxvii 4. Mathematical Conventions............................................................................................................. xxvii 5.Technical Support ........................................................................................................................... xxix 1. Basic Fluid Flow....................................................................................................................................... 1 1.1. Overview of Physical Models in ANSYS FLUENT.................................................................................. 1 1.2. Continuity and Momentum Equations............................................................................................... 2 1.2.1.The Mass Conservation Equation.............................................................................................. 2 1.2.2. Momentum Conservation Equations........................................................................................ 3 1.3. User-Defined Scalar (UDS) Transport Equations.................................................................................. 4 1.3.1. Single Phase Flow.................................................................................................................... 4 1.3.2. Multiphase Flow....................................................................................................................... 5 1.4. Periodic Flows .................................................................................................................................. 6 1.4.1. Overview................................................................................................................................. 7 1.4.2. Limitations............................................................................................................................... 7 1.4.3. Physics of Periodic Flows.......................................................................................................... 8 1.4.3.1. Definition of the Periodic Velocity.................................................................................... 8 1.4.3.2. Definition of the Streamwise-Periodic Pressure................................................................ 8 1.5. Swirling and Rotating Flows.............................................................................................................. 9 1.5.1. Overview of Swirling and Rotating Flows................................................................................ 10 1.5.1.1. Axisymmetric Flows with Swirl or Rotation..................................................................... 10 1.5.1.1.1. Momentum Conservation Equation for Swirl Velocity............................................. 11 1.5.1.2.Three-Dimensional Swirling Flows.................................................................................. 11 1.5.1.3. Flows Requiring a Moving Reference Frame................................................................... 11 1.5.2. Physics of Swirling and Rotating Flows.................................................................................... 11 1.6. Compressible Flows........................................................................................................................ 12 1.6.1.When to Use the Compressible Flow Model............................................................................ 14 1.6.2. Physics of Compressible Flows................................................................................................ 14 1.6.2.1. Basic Equations for Compressible Flows......................................................................... 15 1.6.2.2.The Compressible Form of the Gas Law.......................................................................... 15 1.7. Inviscid Flows ................................................................................................................................. 16 1.7.1. Euler Equations...................................................................................................................... 16 1.7.1.1.The Mass Conservation Equation.................................................................................... 16 1.7.1.2. Momentum Conservation Equations.............................................................................. 17 1.7.1.3. Energy Conservation Equation....................................................................................... 17 2. Flows with Moving Reference Frames................................................................................................... 19 2.1. Introduction ................................................................................................................................... 19 2.2. Flow in a Moving Reference Frame.................................................................................................. 21 2.2.1. Equations for a Moving Reference Frame................................................................................ 21 2.2.1.1. Relative Velocity Formulation......................................................................................... 22 2.2.1.2. Absolute Velocity Formulation....................................................................................... 23 2.2.1.3. Relative Specification of the Reference Frame Motion..................................................... 24 2.3. Flow in Multiple Reference Frames.................................................................................................. 24 2.3.1.The Multiple Reference Frame Model...................................................................................... 25 2.3.1.1. Overview....................................................................................................................... 25 2.3.1.2. Examples....................................................................................................................... 25 2.3.1.3.The MRF Interface Formulation...................................................................................... 27 2.3.1.3.1. Interface Treatment: Relative Velocity Formulation................................................. 27 Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information iii of ANSYS, Inc. and its subsidiaries and affiliates. ANSYS FLUENT Theory Guide 2.3.1.3.2. Interface Treatment: Absolute Velocity Formulation............................................... 28 2.3.2.The Mixing Plane Model......................................................................................................... 28 2.3.2.1. Overview....................................................................................................................... 29 2.3.2.2. Rotor and Stator Domains.............................................................................................. 29 2.3.2.3.The Mixing Plane Concept............................................................................................. 30 2.3.2.4. Choosing an Averaging Method..................................................................................... 31 2.3.2.4.1. Area Averaging..................................................................................................... 31 2.3.2.4.2. Mass Averaging .................................................................................................... 31 2.3.2.4.3. Mixed-Out Averaging............................................................................................ 32 2.3.2.5. Mixing Plane Algorithm of ANSYS FLUENT ..................................................................... 33 2.3.2.6. Mass Conservation ........................................................................................................ 33 2.3.2.7. Swirl Conservation......................................................................................................... 33 2.3.2.8.Total Enthalpy Conservation.......................................................................................... 34 3. Flows Using Sliding and Dynamic Meshes............................................................................................ 35 3.1. Introduction ................................................................................................................................... 35 3.2. Dynamic Mesh Theory.................................................................................................................... 36 3.2.1. Conservation Equations ......................................................................................................... 37 3.2.2. Six DOF (6DOF) Solver Theory................................................................................................. 38 3.3. Sliding Mesh Theory....................................................................................................................... 39 4.Turbulence............................................................................................................................................. 41 4.1. Underlying Principles of Turbulence Modeling................................................................................. 41 4.1.1. Reynolds (Ensemble) Averaging.............................................................................................. 41 4.1.2. Filtered Navier-Stokes Equations............................................................................................. 42 4.1.3. Hybrid RANS-LES Formulations............................................................................................... 44 4.1.4. Boussinesq Approach vs. Reynolds Stress Transport Models..................................................... 44 4.2. Spalart-Allmaras Model................................................................................................................... 44 4.2.1. Overview............................................................................................................................... 45 4.2.2.Transport Equation for the Spalart-Allmaras Model................................................................. 45 4.2.3. Modeling the Turbulent Viscosity............................................................................................ 46 4.2.4. Modeling the Turbulent Production........................................................................................ 46 4.2.5. Modeling the Turbulent Destruction....................................................................................... 47 4.2.6. Model Constants.................................................................................................................... 48 4.2.7.Wall Boundary Conditions...................................................................................................... 48 4.2.8. Convective Heat and Mass Transfer Modeling.......................................................................... 49 4.3. Standard, RNG, and Realizable k- ε Models....................................................................................... 49 4.3.1. Standard k- ε Model............................................................................................................... 49 4.3.1.1. Overview....................................................................................................................... 49 4.3.1.2. Transport Equations for the Standard k- ε Model............................................................. 50 4.3.1.3. Modeling the Turbulent Viscosity................................................................................... 50 4.3.1.4. Model Constants........................................................................................................... 51 4.3.2. RNG k- ε Model....................................................................................................................... 51 4.3.2.1. Overview....................................................................................................................... 51 4.3.2.2. Transport Equations for the RNG k- ε Model.................................................................... 51 4.3.2.3. Modeling the Effective Viscosity..................................................................................... 52 4.3.2.4. RNG Swirl Modification.................................................................................................. 53 4.3.2.5. Calculating the Inverse Effective Prandtl Numbers.......................................................... 53 4.3.2.6. The R-ε Term in the ε Equation........................................................................................ 53 4.3.2.7. Model Constants........................................................................................................... 54 4.3.3. Realizable k- ε Model.............................................................................................................. 54 4.3.3.1. Overview....................................................................................................................... 54 4.3.3.2. Transport Equations for the Realizable k- ε Model........................................................... 56 4.3.3.3. Modeling the Turbulent Viscosity................................................................................... 57 Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information iv of ANSYS, Inc. and its subsidiaries and affiliates. ANSYS FLUENT Theory Guide 4.3.3.4. Model Constants........................................................................................................... 58 4.3.4. Modeling Turbulent Production in the k- ε Models.................................................................. 58 4.3.5. Effects of Buoyancy on Turbulence in the k- ε Models.............................................................. 59 4.3.6. Effects of Compressibility on Turbulence in the k- ε Models..................................................... 60 4.3.7. Convective Heat and Mass Transfer Modeling in the k- ε Models.............................................. 60 4.4. Standard and SST k- ω Models......................................................................................................... 62 4.4.1. Standard k- ω Model............................................................................................................... 62 4.4.1.1. Overview....................................................................................................................... 62 4.4.1.2. Transport Equations for the Standard k- ω Model............................................................ 63 4.4.1.3. Modeling the Effective Diffusivity................................................................................... 63 4.4.1.3.1. Low-Reynolds-Number Correction........................................................................ 63 4.4.1.4. Modeling the Turbulence Production............................................................................. 64 4.4.1.4.1. Production of k..................................................................................................... 64 4.4.1.4.2. Production of ω..................................................................................................... 64 4.4.1.5. Modeling the Turbulence Dissipation............................................................................. 65 4.4.1.5.1. Dissipation of k..................................................................................................... 65 4.4.1.5.2. Dissipation of ω..................................................................................................... 66 4.4.1.5.3. Compressibility Correction.................................................................................... 67 4.4.1.6. Model Constants........................................................................................................... 67 4.4.2. Shear-Stress Transport (SST) k- ω Model.................................................................................. 68 4.4.2.1. Overview....................................................................................................................... 68 4.4.2.2. Transport Equations for the SST k- ω Model.................................................................... 68 4.4.2.3. Modeling the Effective Diffusivity................................................................................... 69 4.4.2.4. Modeling the Turbulence Production............................................................................. 70 4.4.2.4.1. Production of k..................................................................................................... 70 4.4.2.4.2. Production of ω..................................................................................................... 70 4.4.2.5. Modeling the Turbulence Dissipation............................................................................. 71 4.4.2.5.1. Dissipation of k..................................................................................................... 71 4.4.2.5.2. Dissipation of ω..................................................................................................... 71 4.4.2.6. Cross-Diffusion Modification.......................................................................................... 72 4.4.2.7. Model Constants........................................................................................................... 72 4.4.3.Turbulence Damping.............................................................................................................. 72 4.4.4.Wall Boundary Conditions...................................................................................................... 73 4.5. k- kl- ω Transition Model.................................................................................................................. 74 4.5.1. Overview............................................................................................................................... 74 4.5.2. Transport Equations for the k- kl- ω Model............................................................................... 74 4.5.2.1. Model Constants........................................................................................................... 79 4.6.Transition SST Model....................................................................................................................... 79 4.6.1. Overview............................................................................................................................... 80 4.6.2.Transport Equations for the Transition SST Model.................................................................... 80 4.6.2.1. Separation Induced Transition Correction....................................................................... 81 4.6.2.2. Coupling the Transition Model and SST Transport Equations........................................... 83 4.6.2.3.Transition SST and Rough Walls...................................................................................... 84 4.6.3. Specifying Inlet Turbulence Levels.......................................................................................... 84 4.7.The V2F Model................................................................................................................................ 86 4.8. Reynolds Stress Model (RSM)........................................................................................................... 87 4.8.1. Overview............................................................................................................................... 87 4.8.2. Reynolds Stress Transport Equations....................................................................................... 87 4.8.3. Modeling Turbulent Diffusive Transport.................................................................................. 88 4.8.4. Modeling the Pressure-Strain Term......................................................................................... 89 4.8.4.1. Linear Pressure-Strain Model.......................................................................................... 89 4.8.4.2. Low-Re Modifications to the Linear Pressure-Strain Model.............................................. 90 Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information v of ANSYS, Inc. and its subsidiaries and affiliates. ANSYS FLUENT Theory Guide 4.8.4.3. Quadratic Pressure-Strain Model.................................................................................... 91 4.8.4.4. Low-Re Stress-Omega Model......................................................................................... 92 4.8.5. Effects of Buoyancy on Turbulence......................................................................................... 93 4.8.6. Modeling the Turbulence Kinetic Energy................................................................................. 94 4.8.7. Modeling the Dissipation Rate................................................................................................ 95 4.8.8. Modeling the Turbulent Viscosity............................................................................................ 95 4.8.9.Wall Boundary Conditions...................................................................................................... 96 4.8.10. Convective Heat and Mass Transfer Modeling........................................................................ 96 4.9. Scale-Adaptive Simulation (SAS) Model........................................................................................... 97 4.9.1. Overview............................................................................................................................... 97 4.9.2.Transport Equations for the SAS Model................................................................................... 98 4.10. Detached Eddy Simulation (DES)................................................................................................. 100 4.10.1. Overview ........................................................................................................................... 101 4.10.2. Spalart-Allmaras Based DES Model...................................................................................... 101 4.10.3. Realizable k- ε Based DES Model......................................................................................... 102 4.10.4. SST k- ω Based DES Model................................................................................................... 103 4.10.5. Improved Delayed Detached Eddy Simulation (IDDES)........................................................ 104 4.10.5.1. Overview of IDDES..................................................................................................... 104 4.10.5.2. IDDES Model Formulation.......................................................................................... 104 4.11. Large Eddy Simulation (LES) Model.............................................................................................. 105 4.11.1. Overview ........................................................................................................................... 105 4.11.2. Subgrid-Scale Models......................................................................................................... 106 4.11.2.1. Smagorinsky-Lilly Model............................................................................................ 107 4.11.2.2. Dynamic Smagorinsky-Lilly Model.............................................................................. 108 4.11.2.3.Wall-Adapting Local Eddy-Viscosity (WALE) Model...................................................... 109 4.11.2.4. Algebraic Wall-Modeled LES Model (WMLES).............................................................. 110 4.11.2.4.1. Algebraic WMLES Model Formulation................................................................ 111 4.11.2.4.1.1. Reynolds Number Scaling......................................................................... 111 4.11.2.5. Dynamic Kinetic Energy Subgrid-Scale Model............................................................. 113 4.11.3. Inlet Boundary Conditions for the LES Model....................................................................... 113 4.11.3.1.Vortex Method........................................................................................................... 114 4.11.3.2. Spectral Synthesizer................................................................................................... 115 4.12. Embedded Large Eddy Simulation (ELES)..................................................................................... 116 4.12.1. Overview ........................................................................................................................... 116 4.12.2. Selecting a Model............................................................................................................... 116 4.12.3. Interfaces Treatment........................................................................................................... 117 4.12.3.1. RANS-LES Interface.................................................................................................... 117 4.12.3.2. LES-RANS Interface.................................................................................................... 118 4.12.3.3. Internal Interface Without LES Zone........................................................................... 118 4.12.3.4. Grid Generation Guidelines ....................................................................................... 119 4.13. Near-Wall Treatments for Wall-Bounded Turbulent Flows.............................................................. 119 4.13.1. Overview ........................................................................................................................... 119 4.13.1.1.Wall Functions vs. Near-Wall Model............................................................................. 120 4.13.1.2.Wall Functions........................................................................................................... 122 4.13.2. Standard Wall Functions..................................................................................................... 122 4.13.2.1. Momentum............................................................................................................... 122 4.13.2.2. Energy....................................................................................................................... 123 4.13.2.3. Species...................................................................................................................... 125 4.13.2.4.Turbulence ................................................................................................................ 126 4.13.3. Scalable Wall Functions ...................................................................................................... 127 4.13.4. Non-Equilibrium Wall Functions.......................................................................................... 127 4.13.4.1. Standard Wall Functions vs. Non-Equilibrium Wall Functions....................................... 129 Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information vi of ANSYS, Inc. and its subsidiaries and affiliates. ANSYS FLUENT Theory Guide 4.13.4.2. Limitations of the Wall Function Approach................................................................. 129 4.13.5. Enhanced Wall Treatment ε-Equation (EWT-ε)...................................................................... 129 4.13.5.1.Two-Layer Model for Enhanced Wall Treatment........................................................... 130 4.13.5.2. Enhanced Wall Treatment for Momentum and Energy Equations ................................ 132 4.13.6. Enhanced Wall Treatment ω-Equation (EWT-ω).................................................................... 135 4.13.7. User-Defined Wall Functions............................................................................................... 135 4.13.8. LES Near-Wall Treatment..................................................................................................... 135 4.14. Curvature Correction for the Spalart-Allmaras and Two-Equation Models..................................... 136 5. Heat Transfer....................................................................................................................................... 139 5.1. Introduction ................................................................................................................................. 139 5.2. Modeling Conductive and Convective Heat Transfer...................................................................... 139 5.2.1. Heat Transfer Theory............................................................................................................. 139 5.2.1.1.The Energy Equation.................................................................................................... 139 5.2.1.2.The Energy Equation in Moving Reference Frames........................................................ 140 5.2.1.3.The Energy Equation for the Non-Premixed Combustion Model.................................... 141 5.2.1.4. Inclusion of Pressure Work and Kinetic Energy Terms.................................................... 141 5.2.1.5. Inclusion of the Viscous Dissipation Terms.................................................................... 141 5.2.1.6. Inclusion of the Species Diffusion Term........................................................................ 142 5.2.1.7. Energy Sources Due to Reaction................................................................................... 142 5.2.1.8. Energy Sources Due To Radiation................................................................................. 143 5.2.1.9. Interphase Energy Sources........................................................................................... 143 5.2.1.10. Energy Equation in Solid Regions............................................................................... 143 5.2.1.11. Anisotropic Conductivity in Solids.............................................................................. 143 5.2.1.12. Diffusion at Inlets....................................................................................................... 143 5.2.2. Natural Convection and Buoyancy-Driven Flows Theory........................................................ 144 5.3. Modeling Radiation ...................................................................................................................... 144 5.3.1. Overview and Limitations..................................................................................................... 145 5.3.1.1. Advantages and Limitations of the DTRM..................................................................... 145 5.3.1.2. Advantages and Limitations of the P-1 Model............................................................... 146 5.3.1.3. Advantages and Limitations of the Rosseland Model.................................................... 146 5.3.1.4. Advantages and Limitations of the DO Model............................................................... 146 5.3.1.5. Advantages and Limitations of the S2S Model.............................................................. 147 5.3.2. Radiative Transfer Equation.................................................................................................. 147 5.3.3. P-1 Radiation Model Theory.................................................................................................. 149 5.3.3.1.The P-1 Model Equations............................................................................................. 149 5.3.3.2. Anisotropic Scattering................................................................................................. 150 5.3.3.3. Particulate Effects in the P-1 Model.............................................................................. 151 5.3.3.4. Boundary Condition Treatment for the P-1 Model at Walls............................................. 152 5.3.3.5. Boundary Condition Treatment for the P-1 Model at Flow Inlets and Exits...................... 153 5.3.4. Rosseland Radiation Model Theory....................................................................................... 154 5.3.4.1.The Rosseland Model Equations................................................................................... 154 5.3.4.2. Anisotropic Scattering................................................................................................. 154 5.3.4.3. Boundary Condition Treatment at Walls........................................................................ 155 5.3.4.4. Boundary Condition Treatment at Flow Inlets and Exits................................................. 155 5.3.5. Discrete Transfer Radiation Model (DTRM) Theory................................................................. 155 5.3.5.1.The DTRM Equations.................................................................................................... 155 5.3.5.2. Ray Tracing.................................................................................................................. 156 5.3.5.3. Clustering.................................................................................................................... 157 5.3.5.4. Boundary Condition Treatment for the DTRM at Walls................................................... 158 5.3.5.5. Boundary Condition Treatment for the DTRM at Flow Inlets and Exits............................ 158 5.3.6. Discrete Ordinates (DO) Radiation Model Theory................................................................... 158 5.3.6.1.The DO Model Equations............................................................................................. 159 Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information vii of ANSYS, Inc. and its subsidiaries and affiliates. ANSYS FLUENT Theory Guide 5.3.6.2. Energy Coupling and the DO Model............................................................................. 160 5.3.6.2.1. Limitations of DO/Energy Coupling..................................................................... 161 5.3.6.3. Angular Discretization and Pixelation........................................................................... 161 5.3.6.4. Anisotropic Scattering................................................................................................. 164 5.3.6.5. Particulate Effects in the DO Model.............................................................................. 165 5.3.6.6. Boundary and Cell Zone Condition Treatment at Opaque Walls..................................... 165 5.3.6.6.1. Gray Diffuse Walls............................................................................................... 167 5.3.6.6.2. Non-Gray Diffuse Walls........................................................................................ 167 5.3.6.7. Cell Zone and Boundary Condition Treatment at Semi-Transparent Walls...................... 168 5.3.6.7.1. Semi-Transparent Interior Walls........................................................................... 168 5.3.6.7.2. Specular Semi-Transparent Walls......................................................................... 169 5.3.6.7.3. Diffuse Semi-Transparent Walls............................................................................ 172 5.3.6.7.4. Partially Diffuse Semi-Transparent Walls............................................................... 173 5.3.6.7.5. Semi-Transparent Exterior Walls........................................................................... 173 5.3.6.7.6. Limitations.......................................................................................................... 175 5.3.6.7.7. Solid Semi-Transparent Media............................................................................. 176 5.3.6.8. Boundary Condition Treatment at Specular Walls and Symmetry Boundaries................. 176 5.3.6.9. Boundary Condition Treatment at Periodic Boundaries................................................. 176 5.3.6.10. Boundary Condition Treatment at Flow Inlets and Exits............................................... 176 5.3.7. Surface-to-Surface (S2S) Radiation Model Theory.................................................................. 176 5.3.7.1. Gray-Diffuse Radiation................................................................................................. 176 5.3.7.2.The S2S Model Equations............................................................................................. 177 5.3.7.3. Clustering.................................................................................................................... 178 5.3.7.3.1. Clustering and View Factors................................................................................ 178 5.3.7.3.2. Clustering and Radiosity...................................................................................... 179 5.3.8. Radiation in Combusting Flows............................................................................................ 179 5.3.8.1.The Weighted-Sum-of-Gray-Gases Model..................................................................... 179 5.3.8.1.1.When the Total (Static) Gas Pressure is Not Equal to 1 atm.................................... 181 5.3.8.2.The Effect of Soot on the Absorption Coefficient........................................................... 181 5.3.8.3.The Effect of Particles on the Absorption Coefficient..................................................... 182 5.3.9. Choosing a Radiation Model................................................................................................. 182 5.3.9.1. External Radiation ....................................................................................................... 183 6. Heat Exchangers.................................................................................................................................. 185 6.1.The Macro Heat Exchanger Models................................................................................................ 185 6.1.1. Overview of the Macro Heat Exchanger Models.................................................................... 185 6.1.2. Restrictions of the Macro Heat Exchanger Models................................................................. 186 6.1.3. Macro Heat Exchanger Model Theory.................................................................................... 187 6.1.3.1. Streamwise Pressure Drop........................................................................................... 188 6.1.3.2. Heat Transfer Effectiveness........................................................................................... 190 6.1.3.3. Heat Rejection............................................................................................................. 190 6.1.3.4. Macro Heat Exchanger Group Connectivity.................................................................. 192 6.2.The Dual Cell Model...................................................................................................................... 193 6.2.1. Overview of the Dual Cell Model........................................................................................... 193 6.2.2. Restrictions of the Dual Cell Model........................................................................................ 194 6.2.3. Dual Cell Model Theory......................................................................................................... 194 6.2.3.1. NTU Relations.............................................................................................................. 195 6.2.3.2. Heat Rejection............................................................................................................. 195 7. Species Transport and Finite-Rate Chemistry..................................................................................... 197 7.1.Volumetric Reactions .................................................................................................................... 197 7.1.1. Species Transport Equations................................................................................................. 197 7.1.1.1. Mass Diffusion in Laminar Flows................................................................................... 198 7.1.1.2. Mass Diffusion in Turbulent Flows................................................................................ 198 Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information viii of ANSYS, Inc. and its subsidiaries and affiliates. ANSYS FLUENT Theory Guide 7.1.1.3.Treatment of Species Transport in the Energy Equation................................................. 198 7.1.1.4. Diffusion at Inlets......................................................................................................... 199 7.1.2.The Generalized Finite-Rate Formulation for Reaction Modeling............................................ 199 7.1.2.1.The Laminar Finite-Rate Model..................................................................................... 199 7.1.2.2. Pressure-Dependent Reactions.................................................................................... 202 7.1.2.3.The Eddy-Dissipation Model......................................................................................... 204 7.1.2.4.The Eddy-Dissipation Model for LES............................................................................. 205 7.1.2.5.The Eddy-Dissipation-Concept (EDC) Model................................................................. 206 7.1.2.6.The Thickened Flame Model......................................................................................... 207 7.1.2.7.The Relaxation to Chemical Equilibrium Model............................................................. 209 7.2.Wall Surface Reactions and Chemical Vapor Deposition.................................................................. 210 7.2.1. Surface Coverage Reaction Rate Modification....................................................................... 212 7.2.2. Reaction-Diffusion Balance for Surface Chemistry................................................................. 213 7.2.3. Slip Boundary Formulation for Low-Pressure Gas Systems..................................................... 214 7.3. Particle Surface Reactions............................................................................................................. 216 7.3.1. General Description.............................................................................................................. 216 7.3.2. ANSYS FLUENT Model Formulation....................................................................................... 217 7.3.3. Extension for Stoichiometries with Multiple Gas Phase Reactants.......................................... 219 7.3.4. Solid-Solid Reactions............................................................................................................ 219 7.3.5. Solid Decomposition Reactions............................................................................................ 219 7.3.6. Solid Deposition Reactions................................................................................................... 220 7.3.7. Gaseous Solid Catalyzed Reactions on the Particle Surface.................................................... 220 7.4. Reacting Channel Model............................................................................................................... 220 7.4.1. Overview and Limitations..................................................................................................... 220 7.4.2. Reacting Channel Model Theory........................................................................................... 221 7.4.2.1. Flow Inside the Reacting Channel................................................................................. 221 7.4.2.2. Outer Flow in the Shell................................................................................................. 223 8. Non-Premixed Combustion................................................................................................................. 225 8.1. Introduction ................................................................................................................................. 225 8.2. Non-Premixed Combustion and Mixture Fraction Theory............................................................... 225 8.2.1. Mixture Fraction Theory....................................................................................................... 226 8.2.1.1. Definition of the Mixture Fraction................................................................................ 226 8.2.1.2.Transport Equations for the Mixture Fraction................................................................ 228 8.2.1.3.The Non-Premixed Model for LES................................................................................. 229 8.2.1.4. Mixture Fraction vs. Equivalence Ratio.......................................................................... 229 8.2.1.5. Relationship of Mixture Fraction to Species Mass Fraction, Density, and Temperature..... 230 8.2.2. Modeling of Turbulence-Chemistry Interaction..................................................................... 231 8.2.2.1. Description of the Probability Density Function............................................................ 231 8.2.2.2. Derivation of Mean Scalar Values from the Instantaneous Mixture Fraction................... 232 8.2.2.3.The Assumed-Shape PDF............................................................................................. 233 8.2.2.3.1.The Double Delta Function PDF........................................................................... 233 8.2.2.3.2. The β-Function PDF............................................................................................. 234 8.2.3. Non-Adiabatic Extensions of the Non-Premixed Model.......................................................... 235 8.2.4. Chemistry Tabulation ........................................................................................................... 237 8.2.4.1. Look-Up Tables for Adiabatic Systems........................................................................... 237 8.2.4.2. 3D Look-Up Tables for Non-Adiabatic Systems.............................................................. 239 8.3. Restrictions and Special Cases for Using the Non-Premixed Model................................................. 241 8.3.1. Restrictions on the Mixture Fraction Approach...................................................................... 242 8.3.2. Using the Non-Premixed Model for Liquid Fuel or Coal Combustion...................................... 244 8.3.3. Using the Non-Premixed Model with Flue Gas Recycle.......................................................... 245 8.3.4. Using the Non-Premixed Model with the Inert Model............................................................ 246 8.3.4.1. Mixture Composition................................................................................................... 246 Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information ix of ANSYS, Inc. and its subsidiaries and affiliates. ANSYS FLUENT Theory Guide 8.3.4.1.1. Property Evaluation............................................................................................. 247 8.4.The Laminar Flamelet Models Theory............................................................................................. 248 8.4.1. Restrictions and Assumptions............................................................................................... 248 8.4.2.The Flamelet Concept........................................................................................................... 248 8.4.2.1. Overview..................................................................................................................... 248 8.4.2.2. Strain Rate and Scalar Dissipation................................................................................. 250 8.4.2.3. Embedding Laminar Flamelets in Turbulent Flames...................................................... 251 8.4.3. Flamelet Generation............................................................................................................. 252 8.4.4. Flamelet Import ................................................................................................................... 252 8.5.The Steady Laminar Flamelet Model Theory................................................................................... 254 8.5.1. Overview ............................................................................................................................. 254 8.5.2. Multiple Steady Flamelet Libraries........................................................................................ 255 8.5.3. Steady Laminar Flamelet Automated Grid Refinement.......................................................... 255 8.5.4. Non-Adiabatic Steady Laminar Flamelets.............................................................................. 256 8.6.The Unsteady Laminar Flamelet Model Theory............................................................................... 257 8.6.1.The Eulerian Unsteady Laminar Flamelet Model.................................................................... 257 8.6.1.1. Liquid Reactions.......................................................................................................... 259 8.6.2.The Diesel Unsteady Laminar Flamelet Model....................................................................... 260 9. Premixed Combustion......................................................................................................................... 263 9.1. Overview and Limitations............................................................................................................. 263 9.1.1. Overview ............................................................................................................................. 263 9.1.2. Limitations........................................................................................................................... 264 9.2. C-Equation Model Theory.............................................................................................................. 264 9.2.1. Propagation of the Flame Front............................................................................................ 264 9.3. G-Equation Model Theory............................................................................................................. 266 9.3.1. Numerical Solution of the G-equation................................................................................... 267 9.4.Turbulent Flame Speed Models..................................................................................................... 267 9.4.1. Zimont Turbulent Flame Speed Closure Model...................................................................... 268 9.4.1.1. Zimont Turbulent Flame Speed Closure for LES............................................................. 269 9.4.1.2. Flame Stretch Effect..................................................................................................... 269 9.4.1.3. Gradient Diffusion....................................................................................................... 270 9.4.1.4.Wall Damping.............................................................................................................. 271 9.4.2. Peters Flame Speed Model.................................................................................................... 271 9.4.2.1. Peters Flame Speed Model for LES................................................................................ 272 9.5. Extended Coherent Flamelet Model Theory................................................................................... 273 9.5.1. Closure for ECFM Source Terms............................................................................................. 275 9.5.2.Turbulent Flame Speed in ECFM............................................................................................ 278 9.5.3. LES and ECFM...................................................................................................................... 278 9.6. Calculation of Properties............................................................................................................... 281 9.6.1. Calculation of Temperature................................................................................................... 281 9.6.1.1. Adiabatic Temperature Calculation............................................................................... 282 9.6.1.2. Non-Adiabatic Temperature Calculation....................................................................... 282 9.6.2. Calculation of Density.......................................................................................................... 282 9.6.3. Laminar Flame Speed........................................................................................................... 283 9.6.4. Unburnt Density and Thermal Diffusivity............................................................................... 283 10. Partially Premixed Combustion........................................................................................................ 285 10.1. Overview.................................................................................................................................... 285 10.2. Limitations.................................................................................................................................. 285 10.3. Partially Premixed Combustion Theory........................................................................................ 285 10.3.1. Calculation of Scalar Quantities........................................................................................... 286 10.3.2. Laminar Flame Speed......................................................................................................... 287 11. Composition PDF Transport.............................................................................................................. 289 Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information x of ANSYS, Inc. and its subsidiaries and affiliates.

Description:
Справочное пособие. Издательство ANSYS, Inc. Southpointe, 2011 г., 862 с. В пособии представлено теоретическое описание методов решения задач с помощью пакета ANSYS FLUENT 14.0.Содержани
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.