ebook img

Answer Set Solving in Practice Answer S in Practi Answe in Prac PDF

240 Pages·2012·1.94 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Answer Set Solving in Practice Answer S in Practi Answe in Prac

SSeSeriereiresi esI sSI SISSSNSNN: :1 :19 19393939-9-4-46460608088 GGG MMM EEE BBB SSSYYYNNNTTTHHHEEESSSIISISS L LLEEECCCTTTUUURRREEESSS O OONNN A AARRRTTTIIFIFFIICICCIIAIAALLL SERSERSER &&&CCC MMMooorrrgggaaannn & & & CCClllaaayyypppoooooolll PPPuuubbbllliiissshhheeerrrsss • • • IIINNNTTTEEELLLLLLIIGIGGEEENNNCCCEEE A AANNNDDD M MMAAACCCHHHIININNEEE L LLEEEAAARRRNNNIININNGGG K K K AAA MMM III NNN SSS KKK SSSeereririeieses sE E Eddidititotororsrs:s::RRRoononanaladldl dJ J . J.B .B Brraracachchmhmmaanan,n ,Y ,Y aYahahohoooo!o !R !R Reeseseseaeararcrchchh III ••• K K K WWWililliillailaimamm W W W. .C .C Coohohehenen,n ,C ,C Caararnrnenegegigieie eM M Meelellollolnon nU U Unniniviveverersrsisititytyy AAAnnnssswwweeerrr SSSeeettt SSSooolllvvviiinnnggg AAA UUU TTThhohomommaasas sG G G. .D .D Dieieitettttetererircicihch,h ,O ,O Orreregegogonon nS S tStatatatete eU U Unniniviveverersrsisititytyy FFF MMM AAA NNN AAAnnnssswwweeerrr S SSeeettt S SSooolllvvviininnggg i ininn P PPrrraaaccctttiicicceee NNN iiinnn PPPrrraaaccctttiiiccceee • • • S S S CCC MMMaarartrtitininn G G Geebebsbseserer,r ,R ,R Roololalananndd dK K Kaamammiininnsskskiki, i,B ,B Beenennjajajmammiininn K K Kaauauuffmfmmaanannnnn, ,a ,a nanndd dT T Toororsrststetenenn S S Scchchhaauauubbb HHH AAA UUU UUUnninvivieverersrsitistiyty yo o fo fP fP oPototstsddsadamamm, ,G ,G Geerermrmmaananynyy BBB AAAnnsnswswweerer rS S eSetet Pt P rProrogogrgraramammmmmininigng g( ( A(AASSPSP)P) )i si si sa a ad d edececlcalalrararatativtivieve ep p rproroboblbelelmemm s s osolovlvlivninigng ga a papppprproroaoacachch,h ,i ,ni niintitiiatiailallyllyl yt ta taialioliolrorereded dt to too mmmoododedeleilnilnigng gp p rproroboblbelelmemmss is ni ni nt ht htehe ea a rarereaea ao o fo fK fK Knnonowowwleleldedgdgege eR R Reepeprpreresesesenentnatattaitoitoinon na a nandnd dR R Reeaeasasosononinninigng g( (K (KKRRRRRR)). ).M .M Moororere er re recececenentnltylty,ly,, AAA ititsits sa a tattttrtraracactctivtivieve ec c ocomommbbibninianatatiotioinon no o fo fa fa ar ri cricihch hy y eyetet st s imsimimpplpelel em m moododedeleilnilnigng gl al alnangnguguauagagege ew w witithith hh h ihgigihgh-h-p-pepererfrofofrormrmmaanancncece es s osolovlvlivninigngg NNN SSS ccacapapapacacictiitieiteises hs h ahasas ss sp spapararkrkekeded di ni nitnetetrereresests ti tni ni nm m maananyny yo o tohthteherer ar a rarereaeasas es e vevevenen nb b ebeyeyoyonondnd dK K KRRRRRR... WWW EEE TTThhihsis ibs b obooookok kp p rpreresesesenentntsst as a ap p rpraracactcticitciacala li lni nitntrrtorododuducuctctioitoinon nt to ot oA A ASSPSP,Pa,a,iamimimininigng ga a tat u tu susinsinigng gA A ASSPSP Pl al alnangnguguauagagegeses as a nandnd ds sy sysyststeetmemmsss RRR S S S fofofror sr so solovlvlivninigng ga a papppplpilcilciacataitoitoinon np p rproroboblbelelmemmss. s.S .S tSatatrartritnitnigng gf fr froromomm t ht htehe ee e sessssesenentnitaitaila lf lof ofrormrmmaala lf lof ofuounundndadataitoitoinonsns, s,i ,ti tii tni nitnrtrotrododuducuceceses As A ASSPSP’Ps’s’s ETETET MMMaaarrrtttiininn G GGeeebbbssseeerrr S S S ssosolovlvlivninigng gt et etcechchnhnonoloololgogygy, y,m ,m moododedeleilnilnigng gl al alnangnguguauagagege ea a nandnd dm m meetehthtohodododoloololgogygy, y,w ,w whhihlieliel ei li lliullulsustsrtratrataitnitnigng gt ht htehe eo o vovevereraralall lls lso solovlvlivninigng gp p rproorcocecesesssss OOO LLL bbyby yp p rpraracactcitcitciacala le le xexaxamammpplpelelses. s. . VVV RRRooollalaannnddd K KKaaammmiininnssskkkiii III NNN GGG I I I BBBeeennnjjajaammmiininn K KKaaauuufffmmmaaannnnnn NNN P P P RRR TTTooorrrsssttteeennn S SSccchhhaaauuubbb AAA CCC TTT III CCC EEE AAAbbbooouuuttt S S YSYYNNNTTTHHHEESESISIsIss TTThhihsis ivs v ovoloululmummee ei si s ias a ap p rprinrinitnetetded dv v everesrsriosioinon no o fo fa fa aw w oworokrkr kt ht htahata ta ta pappppepeaearasrsr is ni ni nt ht htehe eS S ySynyntnhthteheseississis MMM DDDigigiigtiatiatla lL lL iLbibirbrarararyry oy of o fE fE nEngngigninieneeeererinrinigng ag an andnd dC C oComommppuputueterter Sr S cSiceiceniencnecec. e.S .S ySynyntnhthtehesesissis iLs L eLecectcututruerersess OOO RRR pprpororvovidvidiede ce co cononcncisciesies, e,o ,or oirgirgiigninianal alp lp rpererseesesnentnatattaitoitoinonsn so sof o fi fmi mimppoporotratratnantn tr ter erseesesaearacrchrch ha an andnd dd d edeveveveloelolpopmpmmeenentntt GGG AAA tototpopipcicsic,s ,sp ,p upubublbilsilhsihseheded dq q uquiucickicklkyl,yl ,yi n,i ni nd d idgigiigtiatiatl ala lan andnd dp p rpirnirnitn tf tof ofromrmrmaatast.st .sF .F oForo rm rm mooroerer ie ni nifnofofromrmrmaataitoitoinonn NNN vvisvisiitis tiw tw wwwwww.wm.m.moororgrgaganancnclcalalyaypypopoooolo.lc.lc.ocomomm &&& CCC SSSYYYNNNTTTHHHEEESSSIISISS L LLEEECCCTTTUUURRREEESSS O OONNN A AARRRTTTIIFIFFIICICCIIAIAALLL IISISBSBNBN:N: : 9 9797878-8-1-1-1-6-6060808484545-5-9-9797171-1-1-11 LLL MMMooorrrgggaaannn & & & C CClllaaayyypppoooooolll P PPuuubbbllliisisshhheeerrrsss 990900000000000 AAA YYY IIINNNTTTEEELLLLLLIIGIGGEEENNNCCCEEE A AANNNDDD M MMAAACCCHHHIININNEEE L LLEEEAAARRRNNNIININNGGG PPP OOO wwwwwwwww..m.mmooorrgrggaananncclclalayaypyppooooooll.l.c.cocoommm 999778781816160608088445459597971711111 OOO LLL RRRoononanaladldl dJ J . J.B .B Brraracachchmhmmaanan,n ,W ,W Wililliillailaimamm W W W. .C .C Coohohehenen,n ,a ,a nandnd dT T Thhohomommaasas sG G G. .D .D Dieieitettttetererircicihch,h ,S ,S eSereririeieses Es E Eddidititotororsrss Answer Set Solving in Practice Synthesis Lectures on Artificial Intelligence and Machine Learning Editors RonaldJ.Brachman,Yahoo!Labs WilliamW.Cohen,CarnegieMellonUniversity PeterStone,UniversityofTexasatAustin AnswerSetSolvinginPractice MartinGebser,RolandKaminski,BenjaminKaufmann,andTorstenSchaub 2012 PlanningwithMarkovDecisionProcesses:AnAIPerspective MausamandAndreyKolobov 2012 ActiveLearning BurrSettles 2012 ComputationalAspectsofCooperativeGameTheory GeorgiosChalkiadakis,EdithElkind,andMichaelWooldridge 2011 RepresentationsandTechniquesfor3DObjectRecognitionandSceneInterpretation DerekHoiemandSilvioSavarese 2011 AShortIntroductiontoPreferences:BetweenArtificialIntelligenceandSocialChoice FrancescaRossi,KristenBrentVenable,andTobyWalsh 2011 HumanComputation EdithLawandLuisvonAhn 2011 iii TradingAgents MichaelP.Wellman 2011 VisualObjectRecognition KristenGraumanandBastianLeibe 2011 LearningwithSupportVectorMachines ColinCampbellandYimingYing 2011 AlgorithmsforReinforcementLearning CsabaSzepesvári 2010 DataIntegration:TheRelationalLogicApproach MichaelGenesereth 2010 MarkovLogic:AnInterfaceLayerforArtificialIntelligence PedroDomingosandDanielLowd 2009 IntroductiontoSemi-SupervisedLearning XiaojinZhuandAndrewB.Goldberg 2009 ActionProgrammingLanguages MichaelThielscher 2008 RepresentationDiscoveryusingHarmonicAnalysis SridharMahadevan 2008 EssentialsofGameTheory:AConciseMultidisciplinaryIntroduction KevinLeyton-BrownandYoavShoham 2008 AConciseIntroductiontoMultiagentSystemsandDistributedArtificialIntelligence NikosVlassis 2007 IntelligentAutonomousRobotics:ARobotSoccerCaseStudy PeterStone 2007 Copyright©2013byMorgan&Claypool Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans—electronic,mechanical,photocopy,recording,oranyotherexceptforbriefquotationsin printedreviews,withoutthepriorpermissionofthepublisher. AnswerSetSolvinginPractice MartinGebser,RolandKaminski,BenjaminKaufmann,andTorstenSchaub www.morganclaypool.com ISBN:9781608459711 paperback ISBN:9781608459728 ebook DOI10.2200/S00457ED1V01Y201211AIM019 APublicationintheMorgan&ClaypoolPublishersseries SYNTHESISLECTURESONARTIFICIALINTELLIGENCEANDMACHINELEARNING Lecture#19 SeriesEditors:RonaldJ.Brachman,Yahoo!Labs WilliamW.Cohen,CarnegieMellonUniversity PeterStone,UniversityofTexasatAustin SeriesISSN SynthesisLecturesonArtificialIntelligenceandMachineLearning Print1939-4608 Electronic1939-4616 Answer Set Solving in Practice Martin Gebser,Roland Kaminski,Benjamin Kaufmann,andTorsten Schaub UniversityofPotsdam SYNTHESISLECTURESONARTIFICIALINTELLIGENCEANDMACHINE LEARNING#19 M &C Morgan &cLaypool publishers ABSTRACT Answer set programming (ASP) is a declarative problem solving approach, initially tailored to modeling problems in the area of knowledge representation and reasoning (KRR).More recently, its attractive combination of a rich yet simple modeling language with high-performance solving capacitieshassparkedinterestinmanyotherareasevenbeyondKRR. ThisbookpresentsapracticalintroductiontoASP,aimingatusingASPlanguagesandsystems forsolvingapplicationproblems.Startingfromtheessentialformalfoundations,itintroducesASP’s solvingtechnology,modelinglanguageandmethodology,whileillustratingtheoverallsolvingprocess bypracticalexamples. KEYWORDS answersetprogramming,declarativeproblemsolving,logicprogramming vii To Pascal, and all the Ones who enriched our lives in a lasting way.

Description:
The goal of this book is to enable people to use answer set programming (ASP) for problem solving . A solution is usually extracted from the instantiation of the variables in a successful query. As mentioned A cardinality rule with an upper bound can be expressed by the following three rules (intr
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.