A ARE VA Q12 Structural Material ANP-10334NP TM Revision 0 Topical Report October 2015 AREVA Inc. (c) 2015 AREVA Inc. ANP-1 0334NP Revision 0 Copyright © 2015 AREVA Inc. All Rights Reserved AREVA Inc. ANP-1 0334NP Revision 0 QI2 TM Structural Material Topical Report Pacqei Nature of Changes Section(s) Item or Page(s) Description and Justification 1 All Initial Issue AREVA Inc. ANP-10334NP Revision 0 Q12TM Structural Material Topical Report Pacqe ii Contents 1.0 INTRODUCTION ...................................................................... 1-1 2.0 SUMMARY............................................................................. 2-1 3.0 APPLICABLE REGULATORY GUIDANCE......................................... 3-1 4.0 MATERIAL DEFINITION ............................................................. 4-1 4.1 Material Composition.......................................................... 4-1 4.2 Microstructure........ .......................................................... 4-2 4.3 Manufacturing.................................................................. 4-2 5.0 IRRADIATION EXPERIENCE........................................................ 5-1 6.0 PHYSICAL PROPERTIES............................................................ 6-1 6.1 Melting Point ................................................................... 6-1 6.2 Density.......................................................................... 6-1 6.3 Heat Capacity.................................................................. 6-2 6.4 Thermal Expansion............................................................ 6-3 6.5 Thermal Conductivity.......................................................... 6-3 6.6 Young's Modulus .............................................................. 6-4 6.7 Poisson's Ratio ................................................................ 6-5 7.0 MECHANICAL BEHAVIOR OF Q12TM ........................................... ... 7-1 7.1 Tensile Properties of Unirradiated Material ................................. 7-1 7.2 Tensile Properties of Irradiated Material..................................... 7-2 7.3 Fatigue Properties............................................................. 7-2 8.0 OXIDATION AND HYDROGEN PICKUP ........................................... 8-1 8.1 Basis of Q12TM Oxidation and Hydrogen Pickup Models .................. 8-2 8.1.1 Fuel Cladding Oxidation............................................... 8-2 8.1.2 Corrosion Sample in Reactor D24.................................... 8-2 8.1.3 Creep Sample in Reactor D24 ....................................... 8-3 8.1.4 Fuel Rod Plenum Region Samples in Reactor D71 ................ 8-4 8.1.5 Grid Oxide Measurements............................................ 8-4 8.2 Q12TM Guide Tube Oxidation Model............ ............................. 8-5 8.3 Spacer Grid Oxidation Model................................................. 8-6 8.4 Hydrogen Pickup Model....................................................... 8-6 9.0 FREE GROWTH AND CREEP....................................................... 9-1 AREVA Inc. ANP-1 0334NP Revision 0 QI2TM Structural Material Topical Report Paqe iii 9.1 Q12TM Alloy Free Growth ..................................................... 9-1 9.1.1 Irradiation in BOR-60 .................................................. 9-1 9.1 .2 Irradiation in Reactor D24............................................. 9-2 9.1.3 Q12TM Free Growth Model............................................ 9-2 9.1.4 Q12TM Free Growth Hydrogen Effects ............................ 9-3 - 9.2 Q12 TM Alloy Creep............................................................. 9-4 9.2.1 Irradiation in Reactor D24............................................. 9-4 9.2.2 Irradiation in BOR-60.................................................. 9-5 9.2.3 Q12TM Creep Model ................................................... 9-6 10.0 GROWTH CORRELATIONS........................................................ 10-1 10.1 Fuel Assembly Growth Correlation......................................... 10-1 10.2 Q12TM Spacer Grid Growth Correlation.................................... 10-2 11.0 SURVEILLANCE..................................................................... 11-1 11.1 U.S. Surveillance .............................. ....................... :....... 11-1 11.2 European Surveillance....................................................... 11-1 12.0 UPDATE PROCESS................................................................. 12-1 12.1 Fuel Assembly Growth Model............................................... 12-1 12.2 Spacer Grid Growth Model .......................................... ,.....1.2.- 2 12.3 NRC Notification......................................................... :.....12-2 13.0 REFERENCES ........................................................................ 13-1 AREVA Inc. ANP-1 0334NP Revision 0 Q12TM Structural Material Topical Report Panqe iv List of Tables Table 3-1 Applicable Standard Review Plan Criteria and Associated Q12TM Structural Material Input for Design Evaluation ............................ 3-3 Table 4-1 Chemical Composition of Q12TM Quaternary Alloy .......................... 4-3 Table 4-2 Kearns Factors for Q12TM and M5®............................................ 4-4 Table 5-1 Summary of Q12 TM Cladding Experience .................................... 5-2 Table 5-2 Summary of Q12 TM Guide Tube and Grid Experience....................... 5-3 Table 7-1 Tensile Properties of Unirradiated Q12TM and M5® Tubing at Room Temperature.................................................................. 7-3 Table 7-2 Tensile Properties of Unirradiated Q12TM and M5® Tubing at 315°C......7-4 Table 7-3 Tensile Properties of Unirradiated Q12TM and M5® Tubing at 400°C ...... 7-5 Table 7-4 Tensile Properties of Unirradiated Q12TM and M5® Sheet at Room Temperature.................................................................. 7-6 Table 7-5 Tensile Properties of Unirradiated Q12TM and MS® Sheet at 340°C ........ 7-7 Table 7-6 Tensile Properties of Irradiated Q12TM Fuel Cladding at Elevated Temperature.................................................................. 7-8 Table 8-1 Oxide Thickness and Hydrogen Content Measurements for Corrosion, Creep, and Plenum Samples ................................... 8-8 Table 9-1 Coefficients for Q12TM Free Growth Model................................... 9-7 Table 11-1 PIE Plan for Lead Assemblies in Reactor B42 ............................ 11-2 Table 11-2 PIE Plan for Lead Assemblies in Reactor B40 ............................ 11-3 Table 11-3 PIE Plan for European Lead Assemblies in 2015 ......................... 11-4 AREVA Inc. ANP-1 0334NP Revision 0 Q12TM Structural Material Topical Report Pa~qe v List of Figures Figure 4-1 Optical Microscopy of M5® and Q12TM Microstructures .................... 4-5 Figure 4-2 Distribution of Precipitates in M5® and Q12TM Microstructures............. 4-6 Figure 4-3 Q12TM Fabrication Process Outline........................................... 4-7 Figure 6-1 Young's Modulus Measurements and Model .......... ..................... 6-6 Figure 7-1 Fatigue Data and Model....................................................... 7-9 Figure 8-1 Flowchart for Development of Q12TM Oxidation Models.................... 8-9 Figure 8-2 Flowchart for Development of Q12TM Hydriding Model.................... 8-10 Figure 8-3 Geometry of Crevice Corrosion Sample.................................... 8-11 Figure 8-4 Q12TM Spacer Grid Oxide Thickness Measurements after Two, Three, and Four Annual Cycles of Irradiation ............................ 8-12 Figure 8-5 Comparison between Measurements and Predictions for the Oxidation Model Developed for Q12TM Cladding......................... 8-13 Figure 8-6 Comparison between Measurement and Prediction for the Oxidation Model for QI2TM Guide Tubes............................................. 8-14 Figure 8-7 Comparison between Measurement and Prediction for the Oxidation Model Developed for Q12TM Grids......................................... 8-15 Figure 8-8 Comparison between Measurement and Prediction for the Hydrogen Pickup Model Developed for Q12TM Guide Tubes and Spacer Grids 8-16 ... Figure 9-1 Free Growth versus Fluence Comparison of Results from BOR-60 - and D24....................................................................... 9-8 Figure 9-2 Schematic of Axial Creep and Free Growth Material Test Rods ........... 9-9 Figure 9-3 Free Growth versus Fluence: (a) Full Range of Data; (b) Detail for Fluences < 20 E+25 n/m2.................................................. 9-10 Figure 9-4 Comparison of Q12TM Free Growth for Fresh and Pre-Hydrided Specimens .......... ....................................................... 9-11 Figure 9-5 QI2 TM and M5® Creep - D24 Reactor Irradiation (10 MPa Compression)............................................................... 9-12 Figure 9-6 Q12TMand MS® Creep BOR-60 Irradiation (20 MPa Tension) .......... 9-13 - Figure 9-7 Q12 TM and MS® Creep BOR-60 Irradiation (40 MPa Tension).......... 9-14 - Figure 9-8 Q12TM Normalized Creep Strain - BOR-60 and D24 Reactor Irradiation.................................................................... 9-15 Figure 9-9 Comparison of Q12TM Axial Creep Predictions and Experimental Results....................................................................... 9-16 AREVA Inc. ANP-1 0334NP Revision 0 Q12TM Structural Material Topical Report Paae vi Figure 9-10 Comparison between Q12TM Axial Creep Predictions and Experimental Results ........................................................ 9-17 Figure 10-1 Q12 TM Fuel Assembly Growth Data and Design Limits................... 10-4 Figure 10-2 Upper Design Limit for Q12TM Grid Growth Using M5® and QI2 TM Grid Growth Data............................................................. 10-5 AREVA Inc. ANP-1 0334NP / Revision 0 Q12TM Structural Material Topical Report Paaqe vii Nomenclature (If applicable) Acronym Deftinition AOOs Anticipated Operational Occurrences FA Fuel Assembly GT Guide Tube LDL Lower Design Limit MTRs Material Test Rods NRC Nuclear Regulatory Commission PIE Post-Irradiation Examination PWR Pressurized Water Reactor RCCA Rod Cluster Control Assembly SRP Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants TE Total Elongation UDL Upper Design Limit UE Uniform Plastic Elongation UTS Ultimate Tensile Strength YS Yield Strength AREVA Inc. ANP-1 0334NP Revision 0 QI2TM Structural Material Topical Report Paqe viii ABSTRACT The purpose of this topical report is to present the material definition and material characteristics for a new structural alloy, Q12TM. Q12TM is an alloy composed of zirconium, niobium, iron and tin. The Q12TM material is intended for use in fuel assembly structural components (guide tubes, instrument tubes and spacer grids.) A discussion is presented of the current regulatory guidance related to structural material. This guidance is found primarily in NUREG-0800 Chapter 4.2. A comparison of applicable NUREG-0800 Chapter 4.2 criteria and the design evaluation input for the Q12TM material is provided. The composition of the Q12T material is defined. The Q12T microstructure and manufacturing process is described. The irradiation experience with the 012TM material to-date is summarized. Fuel assemblies with Q12T cladding, guide tubes and spacer grids have been irradiated. While Q12T will not be used for cladding the irradiation experience provides information about the material behavior. The physical properties, mechanical behavior, oxidation and hydrogen pick-up fractions are defined. The information that will be used in design evaluations is summarized. The free growth and creep behavior of Q12Th is presented. This information is not used in design evaluations but is presented to demonstrate that Q12TM behavior is well understood and predictable. The Q12TM fuel assembly and grid growth correlations are presented. The correlations are empirical in nature. The fuel assembly growth is an area in which Q12TM represents a significant improvement over the behavior of M5® as a structural material.
Description: